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Abstract: A novel method for generating and providing quadrature solutions to families of linear,
second-order, ordinary differential equations is presented in this paper. It is based upon a comparison
of control system feedback diagrams—one representing the system and equation under study and a
second equalized to it and providing solutions. The resulting Riccati equation connection between
them is utilized to generate and solve groups of equations parameterized by arbitrary functions
and constants. This method also leads to a formal solution mechanism for all second-order linear
differential equations involving an infinite series of integrals of each equation’s Schwarzian derivative.
The practicality of this mechanism is strongly dependent on the series rates of and allowed regions
for convergence. The feedback diagram method developed is shown to be equivalent to a comparable
method based on the differential equation’s normal form and another relying upon the grouping of
terms for a reduction of the equation order, but augmenting their results. Applications are also made
to the Helmholtz equation.
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1. Introduction

In Control and Systems Theory, feedback diagrams have long been used to provide clear pictorial
representations of closed-loop systems and their corresponding differential equation descriptions.
These diagrams have proven to be useful tools in the analysis of differential equations for both
characterization and solutions [1]. In this paper, we construct and apply a method derived from
competing diagrammatic representations to investigate the initial value problem of the linear
second-order, variable coefficient, nonhomogeneous, differential equation,

..
y(x) + p(x)

.
y(x) + q(x)y(x) = fy(x), (1)

for the solution interval (x0, x) subject to the initial values y(x0) = y0 and
.
y(x0) =

.
y0. The coefficients

p(x) and q(x) and driving function fy(x) are assumed to be sufficiently smooth over the desired
interval so as to guarantee the existence and uniqueness of solutions. We are simultaneously seeking
quadrature, or integral form, solutions, as well as the functional forms of the coefficients p(x) and
q(x), for which these solutions are valid. To achieve this purpose, two second-order linear systems
are presented: The first portraying the system under investigation described by Equation (1) and the
second modified to provide integral form general solutions. The coefficients of this second system are
then adjusted to correspond to those of the first, thereby making the two systems effectively identical
and providing solutions for both. The coefficient relationship between the two systems necessitates
the solution of a Riccati equation, which can be expressed so as to maintain the same form for all
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differential equations. This nonlinear relation can limit the range of equations that are exactly solvable
by the constructed system correspondence. However, when coupled with series solution procedures
applied to this unchanging Riccati equation, the feedback diagram can ideally demonstrate the solution
to all equations in the form of Equation (1). Additionally, the feedback diagram method provides
a generation mechanism for identifying and solving an unlimited sequence of second-order linear
differential equations amenable to a quadrature solution.

A good number of formulations for second-order differential equations have been presented with
methods for solutions for some classes of equations, often involving substitutions and regroupings
leading to equation simplification. For example, the so-called normal form technique [2,3], which is
discussed and compared in detail in Section 7, is seen to parallel the method here, but depends
on a Helmholtz equation solution for completion. Another representative example is the work by
Bougoffa [4], in which the presence of a constant condition among the coefficients is shown to lead to
the solution of certain second-order equations falling within that category. Badani [5] has introduced a
procedure for grouping terms so as to reduce linear second-order equations to first-order equations.
As in the feedback diagram method, a similar Riccati equation must be solved to provide direct solutions
to the original differential equation. A comparison of Badani’s approach and the method presented
here is also discussed in Section 7. Lastly, a number of advanced studies (see, for example, [6]) consider
Equation (1) as a special case within a more general formulation, often under specific circumstances.
Such studies are not included in the following discussion.

A general iterative procedure, which is complementary to approaches such as those described
above, is the Adomian Decomposition Method (ADM) [7,8]. This is a highly versatile series technique
that has been applied to linear, nonlinear, and stochastic ordinary and partial differential equations
in many areas of applied science and engineering. Its usefulness has been greatly enhanced
by the development of several modified versions that avoid series divergence and/or accelerate
convergence [9,10]. Although other methods could also serve as possible choices, the ADM is
representative of such widely used current iteration techniques. Most importantly for this discussion,
its incorporation and application to the unvarying-in-form Riccati connection between the two feedback
diagram systems developed here allows for the solution, in principle, of any differential equation in
the form of Equation (1), essentially only subject to successful series convergence.

The format of the presentation of this feedback diagram method for generating and solving groups
of equations in the form of Equation (1) is as follows. In Section 2, the basic methodology is developed
utilizing state-variable and state-transition matrix principles, which inherently and directly incorporate
homogeneous and particular solutions together with initial conditions for nonhomogeneous problems.
In Section 3, the feedback diagram mechanism is used to generate a wide class of second-order,
linear equations with solutions, with these equations being governed by the choices for two arbitrary
functions p(x) and v(x). In Section 4, three particular solutions for the Riccati equation connection
between the two alternative linear systems are established and utilized. Each of these solutions is in
keeping with the ideal goal of solving Equation (1) for any p(x) and q(x), but the actual outcome in
each case provides solutions for a specific family of q(x) coefficients for arbitrary p(x). These families
and solutions are governed by additional parameters and/or functions. In Section 5, the results of
the previous two sections are applied to the solution of the one-dimensional Helmholtz equation.
Additionally, in Section 6, the Adomian Decomposition Method is applied to the Riccati equation,
producing a prescription for its solution and hence the corresponding solution for Equation (1) for any
set of coefficients p(x) and q(x), provided that the series description converges. Moreover, in Section 7,
comparisons are made with the normal form technique and the method presented in Badani’s work [5].
These methods turn out to be similar in mathematical phraseology and essentially identical in outcome
to the feedback diagram approach, but are more limited in scope compared to the results stemming
from the investigation of the universal Riccati equation presented here.
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2. Descriptive Systems

2.1. System One

The feedback diagram of Figure 1 presents the usual depiction of the second-order, linear,
differential Equation (1). It includes two integrators, a summing box on the left, two amplifiers
representing the variable coefficients p(x) and q(x), and the nonhomogeneous driving function fy(x).
This is a format widely used with simulation software. Note, for example, that at the output of the
summing box,

..
y(x) = −p(x)

.
y(x) − q(x)y(x) + fy(x) is as required.

Axioms 2020, 9, x FOR PEER REVIEW 3 of 23 

2. Descriptive Systems 

2.1. System One 

The feedback diagram of Figure 1 presents the usual depiction of the second-order, linear, 
differential Equation (1). It includes two integrators, a summing box on the left, two amplifiers 
representing the variable coefficients 𝑝(𝑥)  and  𝑞(𝑥) , and the nonhomogeneous driving 
function 𝑓 (𝑥). This is a format widely used with simulation software. Note, for example, that at the 
output of the summing box, 𝑦(𝑥) = −𝑝(𝑥)𝑦(𝑥) − 𝑞(𝑥)𝑦(𝑥) + 𝑓 (𝑥) is as required. 

 
Figure 1. System One representation of linear, second-order, ordinary differential equations, Equation 
(1) or Equation (6). 𝑦 (𝑥) indicates a System One output. 

An inherent alternative description, known as the state variable approach, is simultaneously 
indicated in Figure 1. For this case, the second-order system is evaluated as two first-order equations 
in terms of the state variables 𝑢  and 𝑢  through the following transformation: 𝑦(𝑥) = 𝑢 (𝑥), 𝑦(𝑥) =  𝑢 (𝑥) = 𝑢 (𝑥), (2)𝑢 (𝑥) = −𝑞(𝑥)𝑢 (𝑥) −  𝑝(𝑥)𝑢 (𝑥) + 𝑓 (𝑥), (3)𝑦 (𝑥 ) = 𝑦 = 𝑢 (𝑥 ),   𝑦(𝑥 ) = 𝑦 = 𝑢 (𝑥 ), (4)

or in matrix form: 𝑢 (𝑥)𝑢 (𝑥) =  0 1−𝑞(𝑥) −𝑝(𝑥) 𝑢 (𝑥)𝑢 (𝑥) + 01 𝑓 (𝑥). (5)

By renaming the vectors and matrices within Equation (5), the standard, variable-coefficient 
linear system canonical form description for this single-input, single-output (SISO) case is expressed 
as 𝒖(𝑥) = 𝑨𝑰(𝑥)𝒖(𝑥) + 𝒃𝑓 (𝑥). (6)

Matrix 𝑨𝑰(𝑥)  is the companion matrix of the corresponding characteristic polynomial of 
Equation (1), and the standard general solution to equations (5) and (6) [11] (pp. 114–118), [12] (pp. 
74-75) is obtained from the fundamental or state transition matrix 𝜱𝑰(𝑥, 𝑥 ) as 𝒖(𝑥) = 𝜱𝑰(𝑥, 𝑥 )𝒖(𝑥 ) + 𝜱𝑰(𝑥, 𝑥 )𝒃𝑓 (𝑥 )𝑑𝑥′. (7)

The roman numeral superscript, I, emphasizes that the matrix relates to System One. This result 
in Equation (7) is also the variable coefficient version of Duhamel’s Formula [13] (p.149) and exhibits 
the zero-input and zero-state responses for the state vector 𝒖(𝑥) and single input 𝑓 (𝑥), respectively, 
in the two terms on the right-hand side. The 2 x 2 state transition matrix of Equation (7) for the initial-
value problem of Equation (1) is, more specifically, 𝜱𝑰(𝑥, 𝑥 ) =  𝛷 (𝑥, 𝑥 ) 𝛷 (𝑥, 𝑥 )𝛷 (𝑥, 𝑥 ) 𝛷 (𝑥, 𝑥 ) , (8)

Figure 1. System One representation of linear, second-order, ordinary differential equations, Equation (1)
or Equation (6). yI(x) indicates a System One output.

An inherent alternative description, known as the state variable approach, is simultaneously
indicated in Figure 1. For this case, the second-order system is evaluated as two first-order equations
in terms of the state variables u1 and u2 through the following transformation:

y(x) = u1(x),
.
y(x) =

.
u1(x) = u2(x), (2)

.
u2(x) = −q(x)u1(x) − p(x)u2(x) + fy(x), (3)

y0(x0) = y0 = u1(x0),
.
y(x0) =

.
y0 = u2(x0), (4)

or in matrix form: [ .
u1(x)

.
u2(x)

]
=

[
0 1
−q(x) −p(x)

][
u1(x)
u2(x)

]
+

[
0
1

]
fy(x). (5)

By renaming the vectors and matrices within Equation (5), the standard, variable-coefficient linear
system canonical form description for this single-input, single-output (SISO) case is expressed as

.
u(x) = AI(x)u(x) + b fy(x). (6)

Matrix AI(x) is the companion matrix of the corresponding characteristic polynomial of
Equation (1), and the standard general solution to equations (5) and (6) [11] (pp. 114–118), [12]
(pp. 74–75) is obtained from the fundamental or state transition matrix ΦI(x, x0) as

u(x) = ΦI(x, x0)u(x0) +

∫ x

x0

ΦI(x, x′)b fy(x′)dx′. (7)

The roman numeral superscript, I, emphasizes that the matrix relates to System One. This result in
Equation (7) is also the variable coefficient version of Duhamel’s Formula [13] (p. 149) and exhibits the
zero-input and zero-state responses for the state vector u(x) and single input fy(x), respectively, in the
two terms on the right-hand side. The 2 x 2 state transition matrix of Equation (7) for the initial-value
problem of Equation (1) is, more specifically,

ΦI(x, x0) =

[
ΦI

11(x, x0) ΦI
12(x, x0)

ΦI
21(x, x0) ΦI

22(x, x0)

]
, (8)
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where the four elements ΦI
i j(x, x0) are only nonzero for x ≥ x0 for initial-value problems. Finally,

since we are only interested in y(x) = u1(x) in Equation (1), the top row of Equation (7) provides the
general solution to Equation (1):

yI(x) = u1(x) = ΦI
11(x, x0)y0 + ΦI

12(x, x0)
.

y0 +

∫ x

x0

ΦI
12(x, x′) fy(x′)dx′. (9)

Here, the u(x0) initial conditions have been replaced by those for y0 and
.

y0, as per Equation (4).
Hence, whenever a state transition matrix can be found for a system, its two top row elements ΦI

11(x, x0)

and ΦI
12(x, x0) provide the solution to Equation (1) by means of Equation (9).

2.2. System Two

A more general second-order linear system description for the SISO case compared to Equation (5)
has the following state space description (with u1(x) = y(x)):[ .

u1(x)
.

u2(x)

]
=

[
a11(x) a12(x)
a21(x) a22(x)

][
u1(x)
u2(x)

]
+

[
b1(x)
b2(x)

]
fu(x), (10)

and

y(x) =
[

1 0
][ u1(x)

u2(x)

]
. (11)

A solution for this system through Equations (7) and (8) is not available in the general case of
arbitrary ai j(x), where i, j = 1, 2. However, since this general system has an overabundance of variable
attributes for the purposes of matching System One, modifications can be implemented that guarantee
the obtainability of a state transition matrix, as in Equation (8). Therefore, further simplification is
imposed, as shown in Figure 2.
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Figure 2. System Two modifications from the most general system include a21(x) = 0, a12(x) = 1, and
b1 = 0, b2 = 1. yII(x) indicates a System Two output.

The most important change for System Two is that a21(x) has been set to zero. The resulting
triangular form for ΦII(x, x0) ensures that it can be readily calculated from its definition as a fundamental

matrix,
.

ΦII(x, x0) = AII(x)ΦII(x, x0), where the roman numeral II denotes System Two. A more
extensive comparison of Systems One and Two reveals that for a21(x) = 0, the specific value of
component a12(x) drops out of the analysis and can thereby be replaced by a nonzero constant
chosen to be one for simplicity. Similarly, the general components b1(x) and b2(x) provide an
unnecessary complication for solutions to System One and are replaced by constant values of zero and
one, respectively.

2.3. Solutions for System Two

The differential equation solutions to System Two are obtained next, followed by the derivation of
conditions necessary for their transference or application to System One.
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The state-space description of System Two then becomes[ .
u1(x)

.
u2(x)

]
=

[
a11(x) 1

0 a22(x)

][
u1(x)
u2(x)

]
+

[
0
1

]
fu(x), (12)

or
.
u(x) = AII(x)u(x) + b fu(x). (13)

The resulting state-transition matrix elements required for solutions, as previously noted in
Equations (7) and (9), are summarized in the following theorem:

Theorem 1. A general 2 x 2 fundamental matrix ΦII(x, x0) for the second-order system of Equation (12),
valid over the interval (x0, x) and to be used with initial conditions u1(x0) = u10 and u2(x0) = u20, is given by
its four matrix elements:

ΦII
11(x, x0) = eA11(x,x0), (14)

where

A11(x, x0) =

∫ x

x0

a11(x′′ )dx′′ , (15)

ΦII
22(x, x0) = eA22(x,x0), (16)

where

A22(x, x0) =

∫ x

x0

a22(x′′ )dx′′ , (17)

ΦII
21(x, x0) = 0, (18)

and

ΦII
12(x, x0) = eA11(x,x0)

∫ x

x0

eA22(λ,x0)−A11(λ,x0)dλ. (19)

Proof of Theorem 1 follows in Appendix A.

In summary, for System Two,

ΦII(x, x0) =

[
ΦII

11(x, x0) ΦII
12(x, x0)

ΦII
21(x, x0) ΦII

22(x, x0)

]
=

 eA11(x,x0) eA11(x,x0)
∫ x

x0
eA22(λ,x0)−A11(λ,x0)dλ

0 eA22(x,x0)

. (20)

From Equation (20), the state-space solution for System Two analogous to Equation (7) for System
One is [

u1(x)
u2(x)

]
=

[
ΦII

11 ΦII
12

0 ΦII
22

][
u10

u20

]
+

∫ x

x0

[
ΦII

11 ΦII
12

0 ΦII
22

][
0
1

]
fu(x′)dx′, (21)

for the elements defined by Equations (14) to (19). Since we are primarily interested in y(x) = u1(x),
the top row of Equation (21) shows the final desired solution for System Two:

yII(x) = u1(x) = ΦII
11(x, x0)u10 + ΦII

12(x, x0)u20 +

∫ x

x0

ΦII
12(x, x′) fu(x′)dx′. (22)

2.4. Equalization of Systems One and Two

A direct comparison is made between Figures 1 and 2, in order to apply the results of
Equations (20)–(22) to System One. Using System Two, we see that u1(x) = y(x),

.
u1(x) =

.
y(x), and[ .

u1(x) =
.
y(x)

]
= a11(x)[u1(x) = y(x)] + u2(x), (23)

.
u2(x) = a22(x)u2(x) + fu(x). (24)
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From Equation (23),
u2(x) =

.
y(x) − a11(x)y(x). (25)

The differentiation of Equation (25) and comparison with Equation (24) shows that

..
y(x) − a11(x)

.
y(x) −

.
a11(x)y(x) = a22(x)

[
u2(x) =

.
y(x) − a11(x)y(x)

]
+ fu(x), (26)

from which we have a System Two description in terms of its output y(x) and its derivatives

..
y(x) − (a11(x) + a22(x))

.
y(x) −

( .
a11(x) − a11(x)a22(x)

)
y(x) = fu(x). (27)

In order for System Two of Figure 2 to provide the same input/output behavior as System One
and Equation (1), the following equivalences must hold from Equation (27):

p(x) = −(a11(x) + a22(x)), (28)

q(x) = −
( .
a11(x) − a11(x)a22(x)

)
, (29)

and
fy(x) = fu(x). (30)

If the component values of System One are to be brought into System Two, then, from Equations (28)
and (29), for known p(x) and q(x),

a22(x) = −a11(x) − p(x), (31)

and
.

a11(x) + p(x)a11(x) + a2
11(x) = −q(x). (32)

Therefore, the determination of the proper choices for System Two coefficients a11(x) and a22(x)
that ensure equivalence with System One comes from the Riccati equation solution of Equation (32),
together with Equation (31).

2.5. Application of System Two Solutions to System One

The general solution to the differential equation describing System Two, Equation (22), shows the
homogeneous solution with arbitrary constants in terms of the state-variable initial conditions and
the particular response due to the driving function. For given a11(x) and a22(x), the resulting matrix
elements are presented in equations (14) through (19) and summarized in the complete state transition
matrix of Equation (20). Then, this general solution will also apply to System One if the appropriate
equivalent coefficients a11(x) and a22(x) resulting from the given p(x) and q(x) of Equations (31) and
(32) are incorporated in the ΦII

11(x, x0) and ΦII
12(x, x0) matrix element calculations of Equations (14)

through (19). These must be combined with the driving function equivalence of Equation (30) and
the conversion from state-variable initial conditions to those originally posed for output y(x) and its
derivative in System One. Hence,

[u1(x0) = u10] = [y(x0) = y0], (33)

and, from Equation (25),

[u2(x0) = u20] =
[ .
y(x0) − a11(x0)y(x0)

]
=

.
y0 − a11(x0)y0. (34)

With these equivalents, together with that of Equation (30), Equation (22) becomes

yII(x) =
[
ΦII

11(x, x0) − a11(x0)ΦII
12(x, x0)

]
y0 + ΦII

12(x, x0)
.

y0 +

∫ x

x0

ΦII
12(x, x′) fy(x′)dx′. (35)
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For matrix elements calculated appropriately, that is, through the additional relations of
Equations (31) and (32), the System Two solution will match that of System One. If a final comparison is
made between Equation (35) and Equation (9), then solutions for System One can be readily identified
as depending on System Two matrix elements as

ΦI
11(x, x0) = ΦII

11(x, x0) − a11(x0)ΦII
12(x, x0) (36)

and
ΦI

12(x, x0) = ΦII
12(x, x0). (37)

Therefore, for resulting system equivalence, the impulse response functions Φ12(x, x0) for both
systems are seen to be identical, and the Φ11(x, x0) matrix elements differ whenever the initial value
of the System Two component a11(x) resulting from the Riccati equation equivalence process of
Equation (32) is nonzero.

In summary, when the System Two matrix elements ΦII
11(x, x0) and ΦII

12(x, x0) are calculated via
Equations (14) and (19) using the appropriately chosen functions a11(x) and a22(x) that result from the
System One, System Two equalization process of Equations (28) to (32), they provide the System One
counterpart matrix elements necessary and sufficient for solutions to that system. Upon completion of
this process in what follows, yI(x) = yII(x) and Equation (35) solutions apply to either system.

2.6. System One Solutions from the Riccati Equation Connection

It has been shown that System One solutions can be constructed from readily calculable System
Two matrix elements as per Equations (36) and (37) and Equations (14) through (19). Therefore, we
must now search for appropriate System Two coefficients a11(x) and a22(x) that correspond to System
One p(x) and q(x) from Equations (31) and (32). An important aspect of Equation (32) is the recognition
that various functional forms, such as a11(x) = constant = a or a11(x) = 1

x used in Equations (20)
and (35), present solutions to differential equations in the form of Equation (1) for the specific

coefficient interrelations q(x) = ap(x) − a2 or q(x) = − p(x)
x , respectively. Note that the former case of

constant a11 = a has been previously analyzed from a related yet different viewpoint in [1]. Similarly,
other choices, such as a11(x) = tanh(x) or− tan(x), also lead to comparable coefficient interrelationships
and equation solutions. However, it is advantageous and more systematic for some situations to deal
with the Riccati equation connection for a11(x) of Equation (32) by means of a transformation to a new

function, v(x) = a11(x) +
p(x)

2 , which results in
.
v(x) + v2(x) =

.
p(x)

2 +
p2(x)

4 − q(x). For known p(x) and
q(x), and by defining

fv(x) =
.
p(x)

2
+

p2(x)
4
− q(x), (38)

this becomes
.
v(x) + v2(x) = fv(x). (39)

The quantity fv(x) is the negative of the Schwarzian derivative for Equation (1) and plays an
important role in more generalized studies of differential equations [14].

Solutions for v(x) or a11(x) are the main links between Systems One and Two, and the relations
among the feedback coefficients are

a11(x) = v(x) −
p(x)

2
(40)

and, from Equation (31),

a22(x) = −v(x) −
p(x)

2
. (41)
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Assuming that v(x) solutions are obtained from Equation (39), we can recast the matrix elements
from Equations (14) through (19) in terms of the calculated v(x) and known p(x) by using

A11(x) =
∫ x

x0

[
a11(x′′ ) = v(x′′ ) −

p(x′′ )
2

]
dx′′ = V(x, x0) −

1
2

P(x, x0). (42)

Here,

V(x, x0) =

∫ x

x0

v(x′′ )dx′′ (43)

and

P(x, x0) =

∫ x

x0

p(x′′ )dx′′ (44)

follow the previous format of small letter-capital letter integral definitions, as in Equations (15) and
(17). Similarly,

A22(x) =
∫ x

x0

[
a22(x′′ ) = −v(x′′ ) −

p(x′′ )
2

]
dx′′ = −V(x, x0) −

1
2

P(x, x0), (45)

and the System Two state transition matrix ΦII(x, x0) in Equation (20) is

ΦII(x, x0) =

[
ΦII

11(x, x0) ΦII
12(x, x0)

ΦII
21(x, x0) ΦII

22(x, x0)

]
=

 eV(x,x0)−
1
2 P(x,x0) eV(x,x0)−

1
2 P(x,x0)

∫ x
x0

e−2V(λ,x0)dλ

0 e−V(x,x0)−
1
2 P(x,x0)

. (46)

When the top two matrix elements of Equation (46) for calculated v(x) are substituted into
Equation (35), the System One solution, yI(x), results in

yI(x) = eV(x,x0)−
1
2 P(x,x0)

[
1− a11(x0)

∫ x
x0

e−2V(λ,x0)dλ
]
y0+

eV(x,x0)−
1
2 P(x,x0)

[∫ x
x0

e−2V(λ,x0)dλ
]

.
y0 +

∫ x
x0

[
eV(x,x′)− 1

2 P(x,x′)
∫ x

x′ e−2V(λ,x′)dλ
]

fy(x′)dx′.
(47)

Note that, here, a11(x0) for Equations (35) and (47) is given from Equation (40) as

a11(x0) = v(x0) −
p(x0)

2
. (48)

An additional note of concurrence for the ΦII
11(x, x0) and ΦII

12(x, x0)matrix elements of Equation (46)
is provided by the reduction of order technique for independent solutions, since yh1(x) = ΦII

11(x, x0)

and yh2(x) = ΦII
12(x, x0) exactly adhere to the well-known interconnecting result [15] (pp. 171–172) of

yh2(x) = yh1

∫ x

x0

k1
e−P(x′,x0)

y2
h1(x

′)
dx′ + k2

. (49)

Here, the constants can be seen to be k2 = ΦII
12(x0, x0) = 0 and k1 =

.
Φ

II
12(x0, x0) = ΦII

22(x0, x0) = 1 from
Equation (A2) of Appendix A, thereby providing agreement for the upper-right matrix element expression.
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3. Generation of Second-Order Linear Differential Equations for System One Solvable
by Quadrature

Although solutions v(x) to the Riccati equation of Equation (39) clearly exist for certain forms of
fv(x), we can reverse our emphasis in that equation and search for possible coefficients q(x) that result
from arbitrary choices for continuous p(x) and v(x). That is, from Equations (38) and (39),

q(x) =
.
p(x)

2
−

.
v(x) +

p2(x)
4
− v2(x), (50)

determines those q(x) values with given p(x) and arbitrarily chosen v(x) that define the specific System
One whose solutions are known from Equation (47). Functional possibilities for v(x), together with
given p(x), then define a family of differential equations exhibiting this form of solution. An example
of such a system and its specific second-order linear differential equation follow.

3.1. Exponential and Sinusoidal Coefficients

Example 1. To illustrate the process of generating equations in the form of Equation (1) with the quadrature
solution described by Theorem One and Equation (47), consider an example of combined exponential and
sinusoidal coefficients chosen to be p(x) = 2(cosx + e−x) and v(x) = (cosx− e−x). From Equation (50),
q(x) = 2e−x(2cosx− 1), and hence, the resulting differential equation that is generated or produced by this
process is

..
y(x) + 2(cosx + e−x)

.
y(x) + 2e−x(2cosx− 1)y(x) = fy(x). (51)

This is assumed to hold for interval (0, x) and general but unspecified initial conditions y0,
.
y0, and driving

function fy(x). From Equation (40), a11(x) = −2e−x, from which a11(x0) = −2e−x0 . From Equations (42)
through (46), we can deduce that V(x, x0) = (sinx− sinx0) + (e−x

− e−x0), P(x, x0) = 2(sinx− sinx0) −

2( e−x
− e−x0), and A11(x) = V(x, x0) −

1
2 P(x, x0) = −2(e−x0 − e−x). Then, from Equation (46),

ΦII
11(x, x0) = e−2(e−x0−e−x), (52)

and

ΦII
12(x, x0) = e−2(e−x0−e−x)

∫ x

x0

e−2(sinλ−sinxo)−2(e−λ−e−x0 )dλ. (53)

From Equation (47), for x0 = 0 and a11(x0) = −2, this can be simplified to the quadrature solution for
Equation (51):

yI(x) = e−2(1−e−x)
[
y0 +

(
2y0 +

.
y0

) ∫ x
x0=0 e−2sinλ−2e−λ+2dλ

]
+∫ x

x0=0

[
e−2(e−x′

−e−x)
∫ x
λ=x′ e−2(sinλ−sinx′)−2(e−λ−e−x′)dλ

]
fy(x′)dx′.

(54)

Hence, the System One general solution for Equation (51) is given by Equation (54). To further verify
the related behavior of Systems One and Two under the connecting conditions of Equations (30)–(32), (36),
and (37), MATLAB Simulink simulation software has been used for this example and others to examine and
compare the homogeneous and particular solution components, as well as the total solutions resulting from their
two respective feedback system diagrams. Particular solution comparisons have included the choices of step,
sinusoidal, and exponential functions for the driving term fy(x). Maximum numerical differences in the order of
a few thousandths of a percent were found near points of rapid variation in the system response, but were usually
much lower. These differences were further reduced whenever it was possible to decrease the simulation step size.

4. Equations Solvable by Quadrature Resulting from Particular Riccati Equation Solutions

Although it is presently not possible to solve the Riccati equation of Equation (39) in closed
form for any function fv(x), i.e., for any choice of coefficients p(x) and q(x), particular solutions exist
for specific forms of the function fv(x) defined by Equation (38). Furthermore, any such particular
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forms for fv(x) also interrelate and hence limit the resulting q(x) and p(x) possibilities that allow a
corresponding quadrature solution. Groups of second-order, linear differential equations characterized
by the same form for that function then share a common quadrature solution description determined
by Equations (38) through (48).

An alternative but related view of Riccati equation solutions is provided by the transformation of

v(x) in Equation (39) to another function w(x) through v(x) =
.

w(x)
w(x) , which results in

..
w(x) − fv(x)w(x) = 0. (55)

If two linearly independent solutions w1(x) and w2(x) can be found to Equation (55), then the
general form for Equation (39) for v(x) is determined by [16] (pp. 239–242)

v(x) =
c1

.
w1(x) + c2

.
w2(x)

c1w1(x) + c2w2(x)
=

.
w1(x) + c3

.
w2(x)

w1(x) + c3w2(x)
, (56)

where c3 = c2
c1

. Although finding exact solutions to Equation (55) in the general case is usually as
difficult as solving Equation (39) directly, simultaneous observations for both the Riccati equation and
the corresponding Helmholtz equation can be insightful, as discussed with the normal form approach
in Section 7.

In the following, three groups of linear, second-order, variable coefficient, ordinary differential
equations are presented. The first corresponds to the function fv(x) of Equation (38) chosen to be
constant, and hence readily admitting a solution v(x) to Equation (39), and the next two groups each
assume a special form for the v(x) or a11(x) Riccati equation solution. In all cases, either function
fv(x) or v(x) then determines the relationship between coefficients, that is, initially chosen p(x) and
subsequently calculated q(x), through Equations (38) and (39). This resulting coefficient pair then
defines the explicit version of Equation (1) describable by the quadrature solution of Equations (38)
through (48).

4.1. Group One: Quadrature Solution to Equation (1) Corresponding to the fv(x) Constant

If the function fv(x) of Equation (38) is constant, then the Riccati equation of Equation (39) is
readily solvable for functions v(x), as summarized in the ensuing proposition.

Proposition 1. For the coefficients p(x) and q(x) of Equation (1) assuming values such that function

fv(x) =
.

p(x)
2 +

p2(x)
4 − q(x) of Equation (38) is constant, then the following results for Riccati equation solution

v(x) are valid over interval (x0, x) with real constant c.
Category 1(a): For fv(x) = c2 > 0,

v(x) = c
[

v(x0)cosh c(x− x0) + csinh c(x− x0)

c cosh c(x− x0) + v(x0)sinh c(x− x0)

]
. (57)

Category 1(b): For fv(x) = c2 = 0,

v(x) =
v(x0)

1 + v(x0)(x− x0)
. (58)

Category 1(c): For fv(x) = −c2 < 0,

v(x) = c
[

v(x0)cos c(x− x0) − csin c(x− x0)

c cos c(x− x0) + v(x0)sin c(x− x0)

]
. (59)



Axioms 2020, 9, 91 11 of 24

Proof of Proposition 1. For category 1(a), c2 > 0. For Equation (39), the separation of variables v and x,
followed by partial fraction expansion and integration over (x0, x), leads to Equation (57). Alternatively,
the transformation of v(x) to w(x) resulting in Equation (55) leads to cosh and sinh function solutions
for that equation. Equation (57) then results from Equation (56).

For category 1(b), c2 = 0. The direct integration of either Equation (39) or Equation (55) leads to
Equation (58).

For category1(c), −c2 < 0. As in case 1(a) above, the separation of variables with partial
fraction expansion and the direct integration of Equation (39) leads to Equation (59). Alternatively,
from Equation (55), the resulting cos and sin solutions inserted in Equation (56) reproduce Equation (59).

The families of equations solvable from this methodology for the function fv(x) constant are
determined in each category by the Equation (38) definition. For each choice of coefficient p(x),
the corresponding second coefficient q(x) is determined as follows:

Category 1(a), fv(x) = c2 > 0:

q(x) =
.
p(x)

2
+

p2(x)
4
− c2. (60)

Category 1(b), fv(x) = c2 = 0:

q(x) =
.
p(x)

2
+

p2(x)
4

. (61)

Category 1(c), fv(x) = −c2 < 0:

q(x) =
.
p(x)

2
+

p2(x)
4

+ c2. (62)

Then, each p(x) and q(x) pair defined by these relations results in a form of Equation (1) whose
quadrature solution is given by Equation (35), as determined by the following matrix elements
calculated from Equations (40) through (46) for the v(x) results of Equations (57)–(59).

Category 1(a):

ΦII
11(x, x0) = e−

1
2 P(x,x0)

[
cosh(c(x− x0)) +

1
c

v(x0)sinh c(x− x0)
]
, (63)

ΦII
12(x, x0) = e−

1
2 P(x,x0)

1
c
[sinh(c(x− x0))]. (64)

Category 1(b):
ΦII

11(x, x0) = e−
1
2 P(x,x0)[1 + v(x0)(x− x0)], (65)

ΦII
12(x, x0) = e−

1
2 P(x,x0)[x− x0]. (66)

Category 1(c):

ΦII
11(x, x0) = e−

1
2 P(x,x0)

[
cos(c(x− x0)) +

1
c

v(x0)sin c(x− x0)
]
, (67)

ΦII
12(x, x0) = e−

1
2 P(x,x0)

1
c
[sin (c(x− x0))]. (68)

Here, as in Equation (44), P(x, x0) is the integral of arbitrarily chosen p(x). These elements are
used in each case in Equation (35) to solve Equation (1) over (x0, x) for initial conditions y(x0) = y0 and
.
y(x0) =

.
y0. Note that the presence of v(x0) vanishes algebraically from the final result of Equation (35),

since p(x), q(x), c, and x0 are the only elements directly determining the final solution for differential
equations of Group One.



Axioms 2020, 9, 91 12 of 24

Despite the straightforward nature of the resulting matrix elements of Equations (63) to (68),
the form of the solution generally provided by this method for this group can introduce computational
difficulties due to the logarithmic functions that are present. For example, for Category 1(c) and

depending on the solution interval, V(x, x0) = ln
[
cos (c(x− x0)) +

v(x0)
c sin (c(x− x0))

]
will have

multiple zeroes and negative regions occurring within its argument, which can halt the calculation.
Hence, alternative computational strategies may be required at times. �

Constant Coefficient Equations

A last point of significance for this section is that all constant coefficient ordinary differential
equations in the form of Equation (1) are included within Group One. That is, for constants p(x) = p0

and q(x) = q0, the quantity fv(x) =
p2

0
4 − q2

0 will determine which of the three previous categories
provides the solution, depending on whether constant fv(x) is positive, negative, or zero.

4.2. Group Two: Quadrature Solution to Equation (1) Corresponding to a11(x) = α(x)q(x)

Given the Riccati equation for v(x), Equation (39), and the structure of the function fv(x) of

Equation (38), the fact that v(x) = p(x)
2 is an immediate solution of Equation (39) for q(x) = 0 suggests

a trial solution of the form

v(x) =
p(x)

2
+ α(x)q(x) (69)

that will also satisfy this equation for known, real, nonzero function α(x), which is arbitrary within
some limitations to be discussed. From Equation (40), this is equivalent to a11(x) = α(x)q(x). Due to
its arbitrary character, the function α(x) will serve to define families of possible real coefficients
q(x) of Equation (1) amenable to the System Two solutions of Equations (40) to (48). The coefficient
p(x) is assumed to be given. Upon substitution of the

.
v(x) and v2(x) terms from Equation (69) into

Equation (39), it is seen that coefficients q(x) for which Equation (69) holds must satisfy the additional
Riccati equation

.
q(x) +

[
p(x) +

.
α(x)
α(x)

+
1

α(x)

]
q(x) + α(x)q2(x) = 0. (70)

A solution to this Riccati equation leads to the following theorem.

Theorem 2. For a given real coefficient p(x) of Equation (1) and the trial solution of Equation (69), a corresponding
functional form for feedback element a11(x) that provides particular solutions for v(x) of Equation (39) and
hence direct application of the solution methodology of Equations (35) to (37) and equations (40) to (48) to
Equation (1) is obtained as

a11(x) = α(x)q(x) =
α(x0)q(x0)e−P(x,x0)−Iα(x,x0)

1 + α(x0)q(x0)
∫ x

x0
e−P(x′,x0)−Iα(x′,x0)dx′

, (71)

from which coefficient q(x) follows as q(x) = a11(x)
α(x) . Here, α(x0) and q(x0) are initial values, P(x, x0) is defined

by Equation (44), and Iα(x, x0) is defined by

Iα(x, x0) =

∫ x

x0

1
α(x′′ )

dx′′ . (72)

Furthermore, the complementary state-variable matrix elements for utilization in Equation (35) (or Equations (46)
and (47)) are

ΦII
11(x, x0) = 1 + α(x0)q(x0)

∫ x

x0

e−P(x′,x0)−Iα(x′,x0) dx′ (73)
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and
ΦII

12(x, x0) = ΦII
11(x, x0)

∫ x
x0

e−P(λ,x0)

[ΦII
11(λ,x0)]

2 dλ =[
1 + α(x0)q(x0)

∫ x
x0

e−P(x′,x0)−Iα(x′,x0) dx′
] ∫ x

x0

e−P(λ,x0)[
1+α(x0)q(x0)

∫ λ
x0

e−P(x′ ,x0)−Iα(x′ ,x0) dx′
]2 dλ.

(74)

The value of a11(x0) to be used with these matrix elements in Equation (35) is a11(x0) = α(x0)q(x0).
The Proof of Theorem 4.2.1 follows in Appendix A.

In summary, a family of equations in the form of Equation (1) has been established in this
section for arbitrary coefficient p(x) and the second coefficient q(x) determined from Equation (71),
together with the matrix elements of Equations (73) and (74) comprising each family’s solution from
Equation (35). Individual family members are ascertained by the specific choices for the initial
parameter q(x0) and function of proportionality α(x) of Equations (69) and (72). The great latitude in

choosing function α(x) presents a wide variety of possibilities for interrelating coefficients q(x) = a11(x)
α(x)

and p(x) through Equation (71). For example, the choice of α(x) = − 1
p(x) leads to versions of the

q(x) = − p(x)
x result discussed in Section 2.6, with specific details being dependent upon the value of x0.

However, as seen in Equations (71) and (72), choices for the function α(x) should preclude those that
would introduce singular points within the solution interval. Conversely, the solution interval (x0, x)
should be adjusted accordingly for a specific α(x) to avoid problematic regions for α(x), Iα(x, x0), q(x),
ΦII

11(x, x0), and ΦII
12(x, x0).

4.3. Group Three: Quadrature Solution to Equation (1) Corresponding to a11(x) = α(x)
√

q(x)

Another group of solutions for v(x) of the Riccati Equation (39) is obtained from a trial solution of
the form

v(x) =
p(x)

2
+ α(x)

√
q(x), (75)

which is equivalent to a11(x) = α(x)
√

q(x). Again, this is motivated by the fact that v(x) = p(x)
2 is an

exact solution to Equation (39) for the case of q(x) = 0. The coefficient p(x) is real-valued and arbitrary,
but assumed to be known, and here, α(x) is again a real-valued and arbitrary known function of
proportionality that will be assumed to be strictly positive. Moreover, only positive real resulting q(x)
functions are included. This will restrict consideration in this case to equations of form (1) with real
coefficients only.

In parallel to what was seen in Section 4.2, the use of Equation (75) in Equation (39) results in the
Bernoulli equation [17] (p. 49)

.
q(x) + 2

(
p(x) +

.
α(x)
α(x)

)
q(x) + 2

(
α(x) +

1
α(x)

)√
q3(x) = 0, (76)

of power γ = 3
2 for the nonlinear q(x) term. The solution of this equation leads to the next theorem.

Theorem 3. For a given real coefficient p(x) of Equation (1) and the trial solution of Equation (75), a corresponding
functional form for feedback element a11(x) that provides particular solutions for v(x) of Equation (39) and
hence direct application of the solution methodology of Equations (35) to (37) and Equations (40) to (48) to
Equation (1) is obtained as

a11(x) = α(x)
√

q(x) =
α(x0)

√
q(x0)e−P(x,x0)[

1 + α(x0)
√

q(x0)
∫ x

x0

[
α2(x′)+1
α2(x′)

]
e−P(x′,x0)dx′

] , (77)
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from which q(x) follows as q(x) =
(

a11(x)
α(x)

)2
. Additionally, the corresponding state-variable matrix elements for

Equation (35) are
ΦII

11(x, x0) = eA11(x,x0) =

exp

∫ x
x0

α(x0)
√

q(x0)e−P(x,x0)[
1+α(x0)

√
q(x0)

∫ x′

x0

[
α2(x′′ )+1

α2(x′′ )

]
e−P(x′′ ,x0)dx′′

]dx′

 (78)

and

ΦII
12(x, x0) = ΦII

11(x, x0)

[∫ x
x0

e−P(λ,x0)

[ΦII
11(λ,x0)]

2 dλ
]
=

ΦII
11(x, x0)

∫ x
x0

e−P(λ,x0)exp

−2
∫ λ

x0

α(x0)
√

q(x0) e−P(x′ ,x0)[
1+α(x0)

√
q(x0)

∫ x′

x0

[
α2(x′′ )+1

α2(x′′ )

]
e−P(x′′ ,x0)dx′′

]dx′

dλ.
(79)

The Proof of Theorem 3 follows in the Appendix A.

As in Section 4.2, the arbitrariness of α(x) is limited to strictly positive continuous functions not
introducing singularities to any of the differential equation quantities of Equations (77)–(79) over the
solution range (x0, x).

In summary, given the real coefficient p(x), adjunct (positive only) function α(x), and positive
initial value

√
q(x0), all of which are arbitrary within the restrictions cited, Equation (77) provides the

resulting form of the positive-only q(x) coefficients corresponding to the assumption of Equation (75)
and thereby appropriate for Equation (1) to be solvable by means of the matrix elements of Equations (78)
and (79) in Equation (35). Note that the initial value constant a11(x0) takes on the value α(x0)

√
q(x0)

from Equations (40) and (75). As in Section 4.2, and despite limitations, the range of possibilities
encompassed by the arbitrary function α(x) and parameter q(x0) offers a wide array of equations in
the form of Equation (1) with quadrature solutions.

5. Application to the One-Dimensional Helmholtz Equation

The one-dimensional Helmholtz equation is of importance to many branches of physics and
engineering, often representing time-independent wave behavior that occurs in quantum mechanics,
electromagnetics, and optics [18] (pp. 31–44), [19] (pp. 206–229). This equation is often dealt with
through the WKB approximation in the Physical Sciences [20] (pp. 27–37), which can provide accurate
results comparable to those from more exact methods [21]. The Helmholtz equation and its solution
also have bearings on the diffusion equation and related studies [22].

Since the nonhomogeneous version of this equation is of the form

..
y(x) + q(x)y(x) = fy(x), (80)

the families of specific differential equations with quadrature solutions obtained in Sections 3 and 4 apply
directly for the choice of coefficient p(x) = 0, thereby supplying additional non-approximate solutions.
Although wave investigations using this equation are usually posed as boundary value problems,
the initial value version developed here can be interpreted as a portrayal of unidirectional wave
propagation over region (x0, x) in infinite media with spatially varying characteristics, as indicated
by non-constant q(x). With this interpretation as the background, exact propagation results for
Equation (80) can be taken from Sections Three and Four and are summarized in the following.

5.1. Results from Section 3.1

Given that p(x) = 0 in Equation (1) here, the relevant Helmholtz coefficients q(x) leading to the
subsequent quadrature solution are determined from Equations (38) and (39) by

q(x) = −
( .
v(x) + v2(x)

)
, (81)
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for given, real arbitrary v(x). The corresponding System Two feedback elements of Figure 2,
from Equations (40) and (41), are

a11(x) = −a22(x) = v(x), (82)

from which constant a11(x0) = v(x0). The quantity V(x, x0) of Equation (43) then determines the two
pertinent matrix elements of Equation (46) to be

ΦII
11(x, x0) = eV(x,x0), (83)

ΦII
12(x, x0) = eV(x,x0)

∫ x

x0

e−2V(λ,x0)dλ. (84)

The accompanying quadrature solution for Equations (83) and (84) follows as in Equation (47) by
inserting these matrix elements into Equation (35) to give

yI(x) = eV(x,x0)
[
1− v(x0)

∫ x
x0

e−2V(x′,x0)dx′
]
y0 + eV(x,x0)

[∫ x
x0

e−2V(x′,x0)dx′
]

.
y0+∫ x

x0

[
eV(x,x′)

∫ x
x′ e−2V(λ,x′)dλ

]
fy(x′)dx′.

(85)

There are many potentially useful versions of the Helmholtz equation available, with solutions
from Equations (81) to (85) stemming from the arbitrary nature of v(x) within Equation (81).

5.2. Results from Section 4.1

For this Group One case, from Equation (38) for p(x) = 0,

[ fv(x) = constant] = −q(x). (86)

Constant q(x) represents a simple and elementary Helmholtz equation for which the feedback
diagram method provides a relatively complicated solution. Nevertheless, the formalism provides
three possibilities for the constant of Equation (86) and for parameter c being any real constant:

Category 1(a), q(x) = −c2 < 0: v(x) given by Equation (57);
Category 1(b), q(x) = 0: v(x) given by Equation (58);
Category 1(c), q(x) = c2 > 0: v(x) given by Equation (59).

The corresponding matrix elements ΦII
11(x, x0) and ΦII

12(x, x0) are given by the three pairs of
Equations (63) and (64), (65) and (66), and (67) and (68) for P(x, x0) = 0 from Equation (44). The System
Two feedback elements are then

a11(x) = −a22(x) = v(x) (87)

from Equations (40) and (41) for p(x) = 0, and hence initial constant a11(x0) = v(x0). Finally, the System
One solution yI(x) is obtained from Equation (35) using the matrix elements whose values are outlined
above.

Clearly, direct and elementary methods for solving the Helmholtz equation under Group One
conditions of constant coefficient q(x) are preferable to the equivalent results obtained here.

5.3. Results from Section 4.2

The relevant Helmholtz q(x) coefficient is taken from Equation (71) as q(x) = a11(x)
α(x) with p(x) = 0

and P(x, x0) = 0, where

a11(x) = v(x) = α(x)q(x) =
α(x0)q(x0)e−Iα(x′, x0)[

1 + α(x0)q(x0)
∫ x

x0
e−Iα(x′, x0)dx′

] , (88)
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and Iα(x, x0) is defined by Equation (72). Real function α(x), assumed to be nonzero over (x0, x),
and initial constant q(x0) are both assumed to be arbitrary, provided that no singularities are introduced
for that region in the denominator of equations such as Equation (88) by these choices. The System Two
feedback elements are as in Equation (87), with a11(x0) = α(x0)q(x0). The matrix elements ΦII

11(x, x0)

and ΦII
12(x, x0) are determined by Equations (73) and (74) with P(x, x0) = 0:

ΦII
11(x, x0) = 1 + α(x0)q(x0)

∫ x

x0

e−Iα(x′, x0)dx′, (89)

ΦII
12(x, x0) =

[
1 + α(x0)q(x0)

∫ x

x0

e−Iα(x′, x0)dx′
] ∫ x

x0

[
1 + α(x0)q(x0)

∫ λ

x0

e−Iα(x′,x0) dx′
]−2

dλ. (90)

As before, the substitution of these matrix element expressions into Equation (35) generates the
yI(x) System One solution family for the corresponding family of Helmholtz equations.

5.4. Results from Section 4.3

In this case, q(x) for Helmholtz Equation (80) is obtained from Equation (77) as q(x) =
(

a11(x)
α(x)

)2

with P(x, x0) = 0 for arbitrary but strictly positive function α(x), where

a2
11(x) = v2(x) = α2(x)q(x) =

α2(x0)q(x0)[
1 + α(x0)

√
q(x0)

∫ x
x0

α2(x′)+1
α2(x′) dx′

]2 . (91)

The initial constant a11(x0) is then a11(x0) = α(x0)
√

q(x0), which is used with the following matrix
elements in Equation (35) to provide the yI(x) solution. The first matrix element is from Equation (78)
with P(x, x0) = 0:

ΦII
11(x, x0) = exp


∫ x

x0

α(x0)
√

q(x0)[
1 + α(x0)

√
q(x0)

∫ x′

x0

α2(x′′ )+1
α2(x′′ ) dx′′

]dx′

. (92)

Using Equation (92) in Equation (79), again with P(x, x0) = 0, gives the second matrix element:

ΦII
12(x, x0) = ΦII

11(x, x0)

∫ x

x0

exp

−2
∫ λ

x0

α(x0)
√

q(x0)[
1 + α(x0)

√
q(x0)

∫ x′

x0

α2(x′′ )+1
α2(x′′ ) dx′′

]dx′

dλ. (93)

6. Application of Series Methods for Riccati Equations without Known Particular Solutions

For known p(x) and q(x) of Equation (1), the Riccati Equation (39) connection between Systems One
and Two only differs from one equation or system under study to another by the (negative) Schwarzian
derivative Equation (38). Hence, it is effectively universal in both form and solution. For Riccati
equations without known particular solutions that would otherwise permit and guide further analysis,
a potentially useful alternative comes from a series approach, such as the single-variable Adomian
Decomposition Method (ADM) [8]. This versatile method compartmentalizes the analysis of nonlinear
ODEs into the general form

L[v] + R[v] + N[v] = fv(x), (94)

where L[v] is a chosen invertible linear operator, R[v] is the remaining part of linear operations, and N[v]
is the nonlinear operator, all of which act on v(x), together with the driving function taken from
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Equation (38). Due to the simplicity of Equation (39), L[v] = dv
dx , R[v] = 0, N[v] = v2, and the solution

is abstractly
v(x) = vh(x) + L−1[ fv(x)] − L−1[N[v(x)]], (95)

where inverse operator L−1[·] =
∫ x

x0
[·]dx′ and the homogeneous solution for L[v] is vh(x), which is equal

to constant v(x0). We also define integral Fv(x, x0) as the (negative) Schwarzian derivative integral

Fv(x, x0) = L−1[ fv(x)] =
∫ x

x0

fv(x′)dx′. (96)

The solution v(x) is assumed to be determined by the infinite series v(x) =
∑
∞

n=0 vn(x). Similarly,
the nonlinear component is assumed to be describable by N(v) =

∑
∞

n=0 An for the Adomian polynomials
An. These are defined for all n = 0, 1, . . . by

An =
1
n!

dn

dλn

[
N

[
v(λ) =

∑
∞

k=0
vk(x) λk

]]
λ=0. (97)

Although the higher Adomian polynomials become quite lengthy and calculationally intensive,
n-term approximations for them can provide accurate results with relatively rapid convergence for a
judicious choice of operators L and R in the general case [9,10]. However, for N(v) = v2, only two
N(v) derivatives are nonzero. In the original Adomian recursion scheme [8], the initial series element
for v(x) is chosen to be

v0(x) = vh(x) + L−1[ fv(x)] = v(x0) + Fv(x, x0). (98)

Note that the initial constant v(x0) is either found from Equation (48) for known a11(x0) or is
left undetermined as an arbitrary constant. From Equation (95) and the N[v] Adomian polynomial
expansion above, the v(x) function series components are

v1(x) = −L−1[A0], v2(x) = −L−1[A1], · · · vn(x) = −L−1[An−1]. (99)

For Equation (39), the first six Adomian polynomials are

A0 = v2
0, A1 = 2v0v1, A2 = 2v0v2 + v2

1, A3 = 2v0v3 + 2v1v2,
A4 = 2v0v4 + 2v1v3 + v2

2, A5 = 2v0v5 + 2v1v4 + 2v2v3.
(100)

From the uncomplicated nature of Equation (39), the higher Adomian polynomials are simplistic
in form, since for

n odd, An =
∑

all i+ j=n (viv j),
and n even, An =

∑
all i+ j=n (viv j

(
1− δi j

)
+ v2

i δi j),
(101)

where a Kronecker δi j demarcates the i = j terms. The convergence of the Adomian Decomposition
series has been examined and confirmed by several authors [23–26]. For Equation (39), from the
recursion scheme of Equation (99), the first four vn (x) elements using the Adomian polynomials of
Equation (100) are

v0(x) = v(x0) + Fv(x, x0),
v1(x) = −

∫ x
x0
[v(x0) + Fv(x′, x0)]

2dx′,

v2(x) =
∫ x

x0

{
2[v(x0) + Fv(x′, x0)]

∫ x′

x0
[v(x0) + Fv(x′′ , x0)]

2
dx′′

}
dx′,

v3(x) = −
∫ x

x0

{
2[v(x0) + Fv(x′, x0)][ v2(x′)] + [

∫ x′

x0
[v(x0) + Fv(x′′ , x0)]

2dx′′ ]
2
}

dx′.

(102)
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Therefore, an overall solution v(x) is shown to be a series of terms composed of increasingly
multiple integrals of the negative Schwarzian derivative plus a constant for the differential equation.
This series solution is most appropriate for Riccati equations without identifiable particular solutions
for v(x), unlike those shown in the three categories of Section 4. The convergence of the v(x) series can

be examined through a ratio test [25] by checking whether ‖vn+1(x)‖
‖vn(x)‖

< 1 for an appropriately chosen
norm, which can also determine the radius of convergence of the series.

In summary, the implementation of the algorithm of Equations (99) through (102) provides a
general solution mechanism for Equation (39), and the link between a system under study and a
second system, which provides solutions to it through Equation (47) and the matrix elements of
Equation (46). This link is unchanging in form, varying only through the details of the negative
Schwarzian derivative. Hence, the series expansion v(x) =

∑
∞

n=0 vn(x) and its corresponding integral
series, V(x, x0), defined by Equation (43) and used directly in Equation (47), extend the applicability
of the feedback diagram method in principle to all differential equations in the form of Equation (1),
for which a (uniformly) convergent series can be obtained over interval (x0, x). However, this formal
solution will have practical utility that is highly dependent upon series convergence being adequately
rapid and regions of convergence being largely unrestricted.

ADM Implementation

Example 2. A simple example illustrates these results. Consider

..
y(x) + 2x

.
y(x) + x2y(x) = fy(x), (103)

for unspecified driving function fy(x), initial conditions y0 and
.
y0, and solution interval (0, x). The negative of

the Schwarzian derivative of Equation (38) is simply fv(x) = 1. Note that the solution to Equation (103) falls
within the Group One category presented in Section 4.1 for constant c = 1, in which the Equation (39) solution
is v(x) = tanh(x). As such, the exact solution to Equation (103) is obtainable either from Equation (35) together
with equations (63) and (64) or from Equation (47) together with Equations (43) and (44), with the final result
in either case being

y(x) =
(
e−x2

cosh(x)
)
y0 +

(
e−x2

sinh (x))
.

y0 +

∫ x

0
e−

(x2
−(x′)2)

2 sinh(x− x′
)

fy(x′)dx′. (104)

For series approximation, the ADM algorithm under these conditions, together with v(x0) = 0, leads to
the following sequence of Adomian polynomials:

A0 =
(
v2

0(x) = F2
v(x, 0)

)
= x2, A1 = − 2x4

3 , A2 = 17x6

45 ,

A3 = − 62x8

315 , A4 = 1382
14175 x6.

(105)

From these Adomian polynomials, six vn(x) elements follow from Equation (99):

v0(x) = x, v1(x) = − x3

3 , v2(x) = 2x5

15 , v3(x) = − 17x7

315 ,
v4(x) = 62x9

2835 , v5(x) = − 1382x11

155925 ,
(106)

which are seen to duplicate the MacLaurin Series for tanh(x) for its first six terms. Note, however, that the
region of convergence for this series is tightly restricted to |x| < π

2 . The integration of this last set of elements as
per Equation (43) gives the first six elements of V(x, x0 = 0),

V(x, 0) =
x2

2
−

x4

12
+

x6

45
−

17x8

2520
+

62x10

28350
−

1382x12

1871100
, (107)
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for subsequent usage in the ΦII
11(x, 0) and ΦII

12(x, 0) matrix elements of Equation (46). From the known tanh(x)
result, Equation (107) becomes V(x, 0) = ln(cosh(x)) in the limit within regions of convergence. Ultimately,
this appears as powers of cosh(x) due to exp(V) and exp (-2V) in Equations (46) and (47) for describing the two
matrix elements.

Some numerical details more fully characterize this illustration. The six-term approximate solution obtained
by the substitution of Equation (107) in Equation (47) is contrasted with the exact homogeneous solution of
Equation (103) in Figure 3. Also included is a nine-term approximate solution. For this comparison, the initial
values y0 and y.

0 were both chosen to be one.
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Figure 3. Exact-approximate solution comparison. Exact homogenous solution to Equation (103)
compared to solutions with six-term and nine-term expansions for V(x, 0). Initial values are y0 = 1
and

.
y0 = 1.

From the figure, for the interval (0, 1.57), the three solutions are found to be within much less than one per
cent of each other up till x = 1.2. At x = 1.5, the deviation of the nine-term approximation is about 2.2% above
the exact solution and that of the six-term approximation is about 4.1% below. The positive versus negative
deviations are generated by the positive versus negative sign of the highest order term in each approximation,
hence the bracketing of the exact result, and the series method ceases to apply at x = π

2 . The accuracy of the
approximate results are mediocre, with improvement requiring the generation of additional terms or possibly the
utilization of an alternate method.

Hence, although there is agreement for the Adomian Decomposition Method with previously determined
results for this simple example, limitations on its practicality for solutions of Riccati Equation (39) not connected
to particular solutions are seen to arise from issues of series convergence. The ADM has been chosen due to
its power and flexibility to encompass a wide variety of equations. However, an alternative, such as Picard’s
Iteration Method, also leads to a comparable series solution of multiple integrals of the Schwarzian derivative.
Other choices are the Homotopic Analysis Method (HAM) [27] and the Homotopic Perturbation Method
(HPM) [28], which often prove to be highly effective. These related approaches are widely used for nonlinear
differential equations, and both employ a series of calculated functions in a series expansion with a homotopic
expansion or imbedding parameter. Much as for the ADM, both methods employ linear and nonlinear equation
components within their analyses. As the imbedding parameter varies from zero to one (analogous to a homotopy
or continuous deformation from one topological surface or function to another), the series solution is altered from
serving as a solution to the linear component equation to solving the nonlinear one. Of further significance are the
facts that a small parameter is not required and that the series functions are calculated from a succession of linear
equations. Additionally, the application of HAM or HPM can often result in convergence requiring only a few
iterations [29]. Nevertheless, for any iteration scheme, the practical application of the feedback diagram method
for an infinite series solution for v(x) of Riccati Equation (39) is strongly contingent upon both sufficiently
unrestricted regions of convergence and a sufficiently rapid rate of series convergence.
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7. Conclusions and Discussion

In summary, a novel feedback diagram-based methodology has been constructed and presented
for the generation of equations solvable by quadrature, together with their corresponding solutions,
for those adhering to the standard form for second-order, linear differential equations, as in Equation (1),
with its coefficients p(x) and q(x) and initial conditions. Solutions of these equations (or systems) can
be acquired from another system, specifically designed to produce such results upon the determination
of solutions for feedback elements v(x) or a11(x) of the Riccati equation link between the two systems.
In Section 3, families of differential equations with solutions were generated by calculating q(x)
coefficients from choices for arbitrary p(x) and v(x). In Section 4, particular Riccati equation solutions
for v(x) or a11(x) were determined by either assuming constant values for the Schwarzian derivative
or specific assumed forms for these feedback elements in terms of p(x) and q(x). Under either set of
assumptions, q(x) and p(x) relations were determined, which describe families of solvable equations,
together with their corresponding quadrature solutions. In each case, members of these families were
specified by choices for an arbitrary function and parameter. In Section 5, the outcomes of the previous
two sections were extended to the physically important Helmholtz equation by limiting p(x) to zero.
Finally, in Section 6, the Adomian Decomposition Method was employed to provide a Riccati equation
series solution for all differential equations (1) not overtly dependent upon particular Riccati solutions
for v(x) or a11(x). The overall result, which is an infinite series in terms of multiple integrals of the
Schwarzian derivative, formally provides a quadrature solution to any linear, second-order differential
equation (1). However, important practical limitations may arise due to restrictions on solution regions
of applicability and/or slow rates of convergence.

Two parallel and related developments, which lead to results quite similar to those of the feedback
diagram method, will now be compared and considered. The first method comes from the normal
form of Equation (1) [2,3], in which a product form of solution y(x) = z(x)w(x) is assumed with the
further assumption of

z(x) = e
−

1
2

∫ x
x0

p(x′)dx′
= e−

1
2 P(x,x0), (108)

using Equation (44). If these are substituted in Equation (1), its normal form is derived as

..
w(x) − fv(x)w(x) = e

1
2 P(x,x0) fy(x), (109)

together with appropriate initial conditions. The negative Schwarzian derivative definition for fv(x) of
Equation (38) has been utilized, and the solution to Equation (1) follows from Equations (108) and (109) as

y(x) = e−
1
2 P(x,x0)w(x). (110)

The normal form approach is usually presented as relying upon a solution to the nonhomogeneous
Helmholtz equation of Equation (109). However, for arbitrary coefficient fv(x), this is often as difficult
to solve as the original Equation (1), although some of the Helmholtz equation results of Section 5
derived here may be helpful. Two independent homogeneous solutions to Equation (109), wh1(x) and
wh2(x), would be required, or at least one would need to be determined, followed by a reduction
of order to generate the second. These two could then be used to construct an impulse response or
Green’s function to encompass the nonhomogeneous Equation (109) through the relation [16] (p. 113)

Gw(x, x′) = −

∣∣∣∣∣∣ wh1(x) wh2(x)
wh1(x′) wh2(x′)

∣∣∣∣∣∣∣∣∣∣∣∣ wh1(x′) wh2(x′)
.

wh1(x′)
.

wh2(x′)

∣∣∣∣∣∣
. (111)

This is the role played by ΦII
12(x, x′) in Section 2 for the feedback diagram method.
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An alternative to solving the homogeneous version of (109) follows the Riccati equation procedure

of Equation (39) utilized in Section 2. That is, with the substitution (recall Equation (55)) of v(x) =
.

w(x)
w(x) ,

this homogeneous version is seen to revert back to Equation (39) since

.
v(x) =

..
w(x)
w(x)

−

( .
w(x)
w(x)

)2

= fv(x) − v2(x). (112)

Any resulting solutions for v(x) could then be converted to homogeneous w(x) solutions by

wh(x) = wh(x0)eV(x,x0), (113)

using the V(x, x0) definition of Equation (43). A reduction of order for a second solution and the impulse
response of Equation (111) would then accommodate the nonhomogeneous version of Equation (109),
and a complete y(x) solution would result as per Equation (110). Overall, Equation (112) serves as a
connection between the normal form and the feedback diagram methods, making the Riccati equation
solutions of Section 4.2, Section 4.3, Section 5, and Section 6 available to each approach.

A second method, which parallels the development here, is that of Badani [5], who reduces the
general form of Equation (1) to a corresponding first-order nonhomogeneous equation through an
insightful grouping of terms and defining of functions. The derived equation can be solved directly by
an integrating factor, which also includes a key term which is itself a solution to a Riccati equation.
Through a comparison to the method presented here, that key term can be identified as −a11(x)
and the associated Riccati equation as Equation (32). Hence, the Badani method and the method
presented here both arrive at the same result, but by different routes. An advantage of the feedback
diagram method developed here is that in utilizing Equation (39) for v(x) rather than Equation (32)
for a11(x), the Schwarzian derivative can be used to systematically generate equations and their
quadrature solutions, as in Section 3.1; serve as a compact and useful marker to classify or characterize
second-order linear differential equations with solutions, as in Section 4.1; or develop series solutions
formally extendable to all versions of Equation (1), as established in Section 6. Badani presents several
well-chosen examples illustrating his approach for particular choices of the coefficients p(x) and q(x)
leading to particular Riccati solutions. However, the use of function v(x), Equation (39), and the
negative Schwarzian derivative of Equation (38) can together provide a broader, more systematic
perspective, as has been demonstrated by the generation of families of equations with solutions in
Sections 3–6.

Finally, the presentation of the feedback diagram method here outlines a pathway for extending
these results so as to obtain comparable families of equations with quadrature solutions for third-order
and even higher-order linear differential equations.
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Appendix A

Proof of Theorem 1. As a fundamental matrix, ΦII(x, x0) satisfies
.

ΦII(x, x0) = AII(x)ΦII(x, x0) with
initial conditions ΦII(x0, x0) = I. In detail, using AII(x) of Equations (12) and (13), we have the
following four equations:

dΦII
11(x, x0)

dx
= a11(x)ΦII

11(x, x0) + ΦII
21(x, x0), (A1)
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dΦII
12(x, x0)

dx
= a11(x)ΦII

12(x, x0) + ΦII
22(x, x0), (A2)

dΦII
21(x, x0)

dx
= a22(x)ΦII

21(x, x0), (A3)

dΦII
22(x, x0)

dx
= a22(x)ΦII

22(x, x0). (A4)

Starting with Equation (A3), we can see that ΦII
21(x, x0) = ΦII

21(x0, x0)e
∫ x

x0
a22(x′′ )dx′′

= 0,
since ΦII

21(x0, x0) = 0, giving Equation (18). Similarly, for ΦII
22(x0, x0) =1, the integration of Equation (A4)

gives ΦII
22(x, x0) = e

∫ x
x0

a22(x′′ )dx′′
, resulting in equations (16) and (17). Then, with ΦII

21(x, x0) = 0 and

ΦII
11(x0, x0) = 1, Equation (A1) leads to ΦII

11(x, x0) = e
∫ x

x0
a11(x′′ )dx′′

, giving Equation (14) together with
Equation (15). Finally, using integrating factor e−A11(x,x0) in Equation (A2) leads to

d
dx

[
e−A11(x,x0)ΦII

12(x, x0)
]
= e−A11(x,x0)[ΦII

22(x, x0) = eA22(x,x0)], (A5)

from which Equation (19) results upon integration over (x0, x) since ΦII
12(x0, x0) = 0. �

Proof of Theorem 2. Since the Riccati equation of Equation (70) is homogeneous, it is readily
transformable to a first-order differential equation by w = 1

q , giving

.
w(x) −

[
p(x) +

.
α(x)
α(x)

+
1

α(x)

]
w(x) = α(x). (A6)

Defining the function

I(x, x0) =

∫ x

x0

(
p(x′) +

.
α(x′)
α(x′)

+
1

α(x′)

)
dx′ = P(x, x0) + ln

(
α(x)
α(x0)

)
+ Iα(x, x0), (A7)

which incorporates the previous definition of Equation (72) for use within an integrating factor e−I(x,x0),
we can obtain

w(x) = eI(x,x0)w(x0) + eI(x,x0)

∫ x

x0

α(x′)e−I(x′,x0)dx′. (A8)

Since q(x) = 1
w(x) and q(x0) =

1
w(x0)

, Equation (71) is produced. For Equation (73), recall from
Equation (42) that, here, A11(x, x0) is equal to

A11(x, x0) =

∫ x

x0

α(x′′ )q(x′′ )dx′′ . (A9)

Given that the resulting α(x)q(x) of Equation (71) is the derivative of a logarithm,

A11(x, x0) = ln
[
1 + α(x0)q(x0)

∫ x

x0

e−P(x′,x0)−Iα(x′,x0)dx′
]
. (A10)

From this and Equation (14), ΦII
11(x, x0) = eA11(x,x0), and Equation (73) is verified. Finally,

for Equation (74), we have, from Equations (42) and (45), A22(x, x0) = −P(x, x0)−A11(x, x0), from which

A22(x, x0) −A11(x, x0) = −P(x, x0) − 2A11(x, x0), (A11)
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for A11(x, x0) denoted by Equation (A10). When equations (A10) and (A11) are inserted into the
original definition of ΦII

12(x, x0) of Equation (19), Equation (74) is the outcome. The a11(x0) value of
α(x0)q(x0) follows directly from Equations (40) and (69). �

Proof of Theorem 3. For the Bernoulli equation of Equation (76), the transformation q = z
1

1−γ = z−2

for γ = 3
2 converts it to the linear equation

.
z(x) −

(
p(x) +

.
α(x)
α(x)

)
z =

(
α(x) +

1
α(x)

)
. (A12)

Application of the integrating factor e
−

∫ x
x0

[p(x′)+
.
α(x′)
α(x′) ]dx′

= e−P(x,x0) α(x0)
α(x) for strictly positive α(x)

and α(x0) provides the solution

z(x) = eP(x,x0)
α(x)
α(x0)

z(x0) + eP(x,x0)α(x)
∫ x

x0

[
α2(x′) + 1
α2(x′)

]
e−P(x′,x0)dx′. (A13)

The substitution of Equation (A13) into the q-z relationship leads to the result of Equation (77).
For Equation (78), from equations (40) and (42),

A11(x, x0) =

∫ x

x0

√
α2(x′)q(x′)dx′. (A14)

The last integral inserted into the definition of ΦII
11(x, x0) shown in Equation (78) provides the

result there. Similarly, Equation (79) proceeds from the defining relation for ΦII
12(x, x0) repeated in

Equation (79) by using Equation (78). �
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