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Abstract: A family of Schwartz functions W(t) are interpreted as eigensolutions of MADEs in
the sense thatW (δ)(t) = EW(qγt) where the eigenvalue E ∈ R is independent of the advancing
parameter q > 1. The parameters δ, γ ∈ N are characteristics of the MADE. Some issues, which are
related to corresponding q-advanced PDEs, are also explored. In the limit that q → 1+ we show
convergence of MADE eigenfunctions to solutions of ODEs, which involve only simple exponentials
and trigonometric functions. The limit eigenfunctions (q = 1+) are not Schwartz, thus convergence
is only uniform in t ∈ R on compact sets. An asymptotic analysis is provided for MADEs which
indicates how to extend solutions in a neighborhood of the origin t = 0. Finally, an expanded table of
Fourier transforms is provided that includes Schwartz solutions to MADEs.
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1. Introduction

The introduction of a relaxing parameter q > 1 in differential equations was found to provide
stability properties for their corresponding solutions. This is a phenomenon well-known in numerical
analysis where if the Ordinary Differential Equation (ODE)

y′(t) = f (t, y(t)) , y(t0) = y0,

is stiff then one can try to use the backward Euler method to obtain the sequence {〈tn, yn〉}∞
n=0 by first

considering the algebraic equations

tn+1 = tn + ∆t , yn+1 = yn + f (tn+1, yn+1) · ∆t ,

for small time-steps ∆t > 0. If one can obtain yn+1 explicitly in terms of yn then the iteration scheme
often converges much faster, and for longer time intervals, than that provided by the forward Euler
method [1], p. 349. That such a principle holds for ODEs as ∆t → 0+ was established through the
study of Multiplicatively Advanced Differential Equations (MADEs) as q→ 1+, and will be discussed
further in this article. Part of our analysis of stability will require obtaining uniform apriori bounds.
This will be achieved in a somewhat general setting, and the consequences will be presented in the
form of examples of advanced differential equations.

Axioms 2020, 9, 83; doi:10.3390/axioms9030083 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0002-7036-3988
https://orcid.org/0000-0003-4833-0802
http://dx.doi.org/10.3390/axioms9030083
http://www.mdpi.com/journal/axioms
https://www.mdpi.com/2075-1680/9/3/83?type=check_update&version=2


Axioms 2020, 9, 83 2 of 28

1.1. Solutions of MADEs as Eigenfunctions

In [2] solutions to equations of the form

y′(t) = ay(qt) + by(t) , y(0) = 1 or 0 (wlog) , (1)

were studied for q > 1, a ∈ C, b ∈ R and t ≥ 0. In the case that b = 0, with y(0) = 0, solutions
y(t) are referred to as eigenfunctions since y(t) → 0 as t → ∞. Specific asymptotic properties of
solutions were obtained in Theorem 10 of [3]. Here we only consider the case that b = 0 and a ∈ R,
however the derivatives may be of higher (integer) order than in Equation (1). In addition, we extend
solutions of these equations to all t ∈ R so that the eigen equation, referred to as an eigen-MADE, has
a solution y(t) ∈ S(R) the Schwartz space of infinitely differentiable functions, with derivatives that
decay faster than reciprocal polynomials (as defined in [4] section V.3). An asymptotic theory near
t = 0 can be developed indicating that an extension to t < 0 is quite natural. In this way the special
functions that we study are eigenfunctions in L2(R), although not in the traditional, local (q = 1) sense.
The significance of these functions will be demonstrated by examples, and convergence to familiar
functions is obtained on compact subsets of R, as q→ 1+.

1.2. Brief Overview

The study of multiply advanced differential equations falls within the area of functional
differential equations, as is studied for instance in Fox, et al. [2], Kato, et al. [3] and Dung [5]. There is
also significant overlap with the area of q-difference differential equations, where the multiplicative
advancement y(t) → y(qt) is referred to as a dilation and is denoted σq(y(t)) = y(qt). There is a
rich and active study within the area of q-difference differential equations with dilations involving
q > 1. These are highlighted by works of: L. Di Vizio [6–8]; C. Hardouin [7]; T. Dreyfus [9,10];
A. Lastra [10–19]; S. Malek [10–22]; J. Sanz [17–19]; H. Tahara [23]; and C. Zhang [8,24]; along with
further references by these researchers and others. Often these studies in q-difference differential
equations overlap with the area of Gevrey asymptotics.

In the current work we continue by focusing on global solutions of a MADE on R. In particular,
we discuss several techniques for starting with a given global solution to an original MADE and then
generating solutions of new related MADEs. This theme will be developed as follows: In Section 2,
a known MADE solution first introduced in [25], namely qCos(t), is used to produce a simple related
solution C̃q(t) = qCos(t/

√
q) which is an eigensolution of a MADE in the sense of the Abstract. In turn,

C̃q(t) is then used to obtain a new q-advanced Airy function Aiq(t) satisfying a MADE analogue of
the Airy differential equation. Then Aiq(t) itself is used along with convolution to generate families of
functions φq(x, t) solving a q-advanced PDE.

In Section 3, a family of MADE solutions, under convolution and auto-correlation, are seen
to produce related solutions of new MADEs. Furthermore, the least-element method in Poincare
asymptotics is deployed to find natural extensions to related MADE solutions on the negative real
line. A theory of asymptotic extensions to t < 0 is developed to clarify the notion that solutions
to MADEs behave smoothly in a neigborhood of the origin. We also give conditions that ensures a
natural extension to all of R, as is needed to even consider a Fourier transform. An investigation of the
inhomogeneous MADEs that these solve is begun.

In Section 4 we focus on considering solutions of MADEs as perturbations of classical solutions,
and, mirroring a more direct convergence proof in Section 2, we exhibit MADE solutions which
converge to a classical solution of a damped-oscillation equation—the convergence being uniform on
compact subsets of [0, ∞).

In Section 5, we return to the topics of convolution and auto-correlation to observe their impact
when applied to MADE solutions. In this paper, we will discuss convolutions, correlations, and Fourier
transforms for MADEs.
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A table of Fourier transforms of global MADE solutions under study here is provided in Section 6.
These will be solutions of new MADEs, for which we obtain new elements in a table of Fourier
transforms. This new table mimics what is often done for Laplace transforms, in the study of linear
constant coefficient ODEs.

In various theories of differential equations, convolutions provide a useful tool since general
solutions can be determined from fundamental solutions, as demonstrated here in Equation (33).
This is one motivation for obtaining solutions to homogenous equations, as appears in Proposition 2.

2. A Normalized Cosine Example and Extensions

From [25], consider the following Schwartz functions, for q > 1 and all t ∈ R,

qCos(t) ≡ Nq

∞

∑
k=−∞

(−1)k

qk2 · exp(−qk|t|) (2)

qSin(t) ≡ sign(t)Nq

∞

∑
k=−∞

(−1)k

qk(k−1)
exp(−qk|t|) , (3)

where
1

Nq
≡

∞

∑
k=−∞

(−1)k

qk2 . (4)

Next define

C̃q(t) ≡ qCos
(

t
√

q

)
= Nq

∞

∑
k=−∞

(−1)k

q k2 · exp

(
−qk|t|
√

q

)
. (5)

There are several properties that we note. In particular, the function C̃q(t) is normalized, in that
the uniform bound ‖C̃q‖∞ = 1 holds, after some delicate work performed in [25], for each q > 1. It also
solves the following eigen-MADE for all t ∈ R and each q > 1,

d2C̃q(t)
dt2 = − C̃q(qt) , C̃q(0) = 1 , C̃ ′q(0) = 0 . (6)

From (6) we see that C̃q(t) satisfies an eigen-MADE in the sense of the Abstract, with E = −1
independently of the advancing parameter q > 1. Note that qCos′′(t) = −q qCos(qt) (as recorded
in (10) below) does not have an eigenvalue (−q) independent of q, thus we rely on C̃q(t) as the
appropriate eigen-MADE solution.

Since C̃q(t) is not only C∞ and bounded, but in fact Schwartz, we can obtain its Fourier transform,
an operation defined for any f ∈ L1(R), as

f̂ (ω) = F [ f (t)](ω) ≡ 1√
2π

∫ ∞

−∞
e−iωt · f (t) dt .

In [25] it was found that

F [C̃q(t)](ω) =
2(µq2)3Nq√

2π
· 1

θ(q2; q ω2)
, (7)

where Nq was defined in Equation (4) above, and the other normalizing constant is

µq ≡
∞

∏
n=1

(
1− 1

qn

)
.
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To express the Fourier transform of linear, homogeneous MADEs, we found multiple uses of the
Jacobi theta function

θ(q; u) ≡
∞

∑
n=−∞

un

qn(n−1)/2
= µq · (1 + u) ·

∞

∏
n=1

(
1 +

u
qn

)(
1 +

1
uqn

)
, (8)

which allows the association that Nq = θ(q2;−1/q), and which ensures that Nq 6= 0 for all q > 1,
due to the product formula. It will be of significance to note that the reciprocal 1/θ(q; u), for u ≥ 0,
is Schwartz when extended to be identically 0 for u < 0. Critical algebraic properties that we use are

θ(q; qpu) = qp(p+1)/2up · θ(q; u) , ∀p ∈ Z, u ∈ C∗ , and v · θ(q; 1/v) = θ(q; v) , ∀v ∈ C∗ . (9)

A consequence is that the only zeros of θ(q; u) are for u = −qp for all p ∈ Z. This is obvious from
the product definition of θ(q; u) in Equation (8).

2.1. Uniform Convergence

Using Taylor series methods as an approach paralleling that in [25] we show:

Proposition 1. On any compact subset of R, C̃q(t) approaches cos(t) uniformly as q→ 1+.

Proof. A given compact set is contained in an interval [−ρ, ρ] for ρ sufficiently large, so it suffices to
prove the theorem on [−ρ, ρ].

First, recall the following results shown in [25]

qCos(0) = 1 qSin(0) = 0

qCos′(t) = −qSin(t) qSin′(t) = q qCos(qt)

qCos′′(t) = −q qCos(qt) qSin′′(t) = −q2
qSin(qt) . (10)

From these, by induction on the even order derivatives of qCos(t), we obtain the higher
order derivatives

qCos(2L)(t) = (−1)LqL2
qCos(qLt) , (11)

and
qCos(2L+1)(t) = [(−1)LqL2

qCos(qLt)]′ = (−1)L+1qL2+L
qSin(qLt) . (12)

We infer all derivatives of C̃q(t) via

C̃(2L)
q (t) = [qCos(t/

√
q)](2L) = (−1)LqL2

qCos(qLt/
√

q)(1/
√

q)(2L) (13)

= (−1)LqL2−L
qCos(qLt/

√
q) = (−1)LqL2−LC̃q(qLt) , (14)

and
C̃(2L+1)

q (t) = [(−1)LqL2−L
qCos(qLt/

√
q)]′ = (−1)L+1qL2−1/2

qSin(qLt/
√

q) . (15)

Evaluating the derivatives of C̃q(t) at t = 0 yields

C̃(2L)
q (0) = (−1)LqL2−L and C̃(2L+1)

q (0) = 0 (16)

for all L ≥ 0.
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Next computing P2N+1[C̃q](t), the 2N + 1 degree Taylor polynomial for C̃q(t) expanded about
t = 0, gives

P2N+1[C̃q](t) =
2N+1

∑
p=0

C̃(p)
q (0)

p!
tp =

N

∑
L=0

(−1)LqL2−L

(2L)!
t2L , (17)

with remainder term

R2N+1[C̃q](t) =
C̃(2N+2)

q (ξ)t2N+2

(2N + 2)!
=

(−1)N+1q(N+1)2−(N+1)C̃q(qN+1ξ)t2N+2

(2N + 2)!
, (18)

for appropriate ξ between 0 and t. Using the sup norm ‖C̃q‖∞ = ‖ qCos‖∞ = qCos(0) = 1, along with
the fact that |t| ≤ ρ, to bound from above, we obtain

|R2N+1[C̃q](t)| =
qN2+N |C̃q(qN+1ξ)||t|2N+2

(2N + 2)!
≤ qN2+Nρ2N+2

(2N + 2)!
.

Let P2N+1[cos](t) and R2N+1[cos](t) denote the 2N + 1 degree Taylor polynomial and remainder
terms for cos(t) respectively. Then, for each N ≥ 1 and each t with |t| ≤ ρ, one has∣∣C̃q(t)− cos(t)

∣∣ (19)

≤
∣∣C̃q(t)− P2N+1[C̃q](t)

∣∣+ ∣∣P2N+1[C̃q](t)− P2N+1[cos](t)
∣∣+ |P2N+1[cos](t)− cos(t)|

≤
∣∣R2N+1[C̃q](t)

∣∣+ ∣∣∣∣∣ N

∑
L=0

(−1)LqL2−L

(2L)!
t2L −

N

∑
L=0

(−1)L

(2L)!
t2L

∣∣∣∣∣+ |R2N+1[cos](t)|

≤ qN2+Nρ2N+2

(2N + 2)!
+
(

qN2−N − 1
) N

∑
L=0

ρ2L

(2L)!
+

ρ2N+2

(2N + 2)!

≤ qN2+Nρ2N+2

(2N + 2)!
+
(

qN2−N − 1
)

eρ +
ρ2N+2

(2N + 2)!
. (20)

Now, given any ε > 0 choose N0 ≥ 1 such that ρ2N0+2/(2N0 + 2)! < ε/3. Then one has

1 < ε(2N0 + 2)!/[3ρ2N0+2]. Next choose q0 > 1 with 1 < qN2
0+N0

0 < ε(2N0 + 2)!/[3ρ2N0+2]. Then for
all 1 < q < q0 one has

0 <
qN2

0+N0 ρ2N0+2

(2N0 + 2)!
<

qN2
0+N0

0 ρ2N0+2

(2N0 + 2)!
<

ε

3
and 0 <

ρ2N0+2

(2N0 + 2)!
<

ε

3
. (21)

Next choose q1 > 1 such that qN2
0−N0

1 − 1 < ε/[3eρ]. Then for all 1 < q < q1 one has

0 <
(

qN2
0−N0 − 1

)
eρ <

(
qN2

0−N0
1 − 1

)
eρ <

ε

3
. (22)

For the given ε, set N = N0 in (19) and (20). Then for |t| ≤ ρ and all 1 < q < min{q0, q1},
applying the bounds (21) and (22) to (20) gives∣∣C̃q(t)− cos(t)

∣∣ < ε

3
+

ε

3
+

ε

3
= ε , (23)

verifying uniform convergence of C̃q(t) to cos(t) on [−ρ, ρ] as q→ 1+.



Axioms 2020, 9, 83 6 of 28

Remark 1. Note that, alternatively, one can express Proposition 1 as

(∀ I ⊂⊂ R compact ) =⇒ lim
q→1+

sup{|C̃q(t)− cos(t)| : t ∈ I} = 0 (24)

A similar convergence proof is given in Section 4, with details related to the novelty of the result.

2.2. Application to PDE Example

We are now in a position to obtain q-versions of various equations using C̃q(t) as a building block
for relaxing equations. For example, define the Airy function (see page 570 in [26])

Ai(t) ≡ 1
π

∫ ∞

0
cos

(
u3

3
+ u · t

)
du , t ∈ R .

Some properties of this C∞(R) function are that Ai(t) → 0 as |t| → ∞, and Ai(0) > 0.
We now show:

Proposition 2. The q-advanced Airy function is defined here to be

Aiq(t) ≡ 1
π

∫ ∞

0
C̃q

(
u3

3
+ u · t

)
du , t ∈ R , (25)

for q > 1. The functions Ai(t) and Aiq(t) satisfy the homogeneous ODE and MADE

Ai′′(t) − t · Ai(t) = 0 , Aiq′′(t) − q−1/3t · Aiq
(

q2/3t
)

= 0 , (26)

respectively, for t ≥ 0. Basic properties of Aiq(t) for q > 1, are that Aiq(t) is Schwartz with Aiq(0) > 0.
Furthermore, for each T > 0, ε > 0, and R > T sufficiently large, ∃ q(ε, T, R) > 1 so that

sup { |Ai(t) − Aiq(t)| : |t| ≤ T , 1 < q < q(ε, T, R) } < ε . (27)

In other words, Aiq(t)→ Ai(t) uniformly for t in compact subsets of R, as q→ 1+.

Remark 2. Verifying convergence in Equation (27) may seem rather straight forward, due to the uniform
convergence of C̃q(t) to cos(t) on compact sets. However, we need to use a careful ε/3 argument, as
demonstrated here.

Proof. That Aiq(t) is Schwartz follows from the same for C̃q(t), whereas the property Aiq(0) > 0
requires a manipulation of theta functions, and is shown in Appendix A. We start with the second
equation in (26) since the first equation is known to hold [26]. First define the function

S̃q(t) ≡
∫ t

0
C̃q(s) ds , so that S̃q(0) = 0 , S̃q(±∞) = 0 .

Now compute, using v = q(u3/3 + ut), and w = q1/3u, for t ≥ 0,

Aiq′′(t) =
1
π

∫ ∞

0
− u2 C̃q

(
q ·
(

u3

3
+ u · t

))
du (28)

=
−1
qπ

∫ ∞

0
q(u2 + t) · C̃q

(
q · (u3

3
+ u · t)

)
du +

t
π

∫ ∞

0
C̃q

(
q · (u3

3
+ u · t)

)
du

=
−1
qπ

∫ ∞

0

dS̃q (v)
dv

dv +
t
π

∫ ∞

0
C̃q

(
w3

3
+ w · q2/3t

)
(dw/q1/3)

= (−S̃q(∞) + S̃q(0))/(qπ) + q−1/3t · Aiq
(

q2/3t
)

.
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Next, to show convergence, consider any ε > 0 and, without loss of generality, fix T > 1. Let t be
in the interval |t| ≤ T. Then, for any R > T, using integration by parts and boundedness of the sine
function, we can write

Ai(t) − 1
π

∫ R

0
cos

(
u3

3
+ u · t

)
du =

1
π

∫ ∞

R

1
u2 + t

· d
du

sin
(

u3

3
+ u · t

)
du (29)

=
− sin

(
R3

3 + R · t
)

π(R2 + t)
− 1

π

∫ ∞

R

−2u
(u2 + t)2 · sin

(
u3

3
+ u · t

)
du

Thus, for all |t| ≤ T we can easily find R > T sufficiently large so that∣∣∣∣Ai(t) − 1
π

∫ R

0
cos

(
u3

3
+ u · t

)
du
∣∣∣∣ ≤ 2

π · (R2 − T)
. (30)

The bound in Equation (30) also holds if Ai(t) is replaced with Aiq(t) since |C̃q(t)| ≤ 1 and
|S̃q(t)| ≤ 1 for all q > 1. Now, fix R > 0 sufficiently large so that the bounds in (30), and also (30) with
cos replaced by C̃q, are less than ε/3. It is essential to note that this value of R is independent of q > 1.

Finally, for each t ∈ R, define the function

Vt(u) ≡
u3

3
+ u t , so that Vt ([0, R]) =

[0 , R3/3 + R t] , t ≥ 0[
−2|t|3/2/3 , max{0, R3/3 + R t}

]
, t < 0

.

The union of these Vt([0, R]) over t ∈ [0, R], is the interval I ≡ [−2T3/2/3 , R3/3 + R T]. From
the uniform convergence in Equation (24) we can choose q(ε, T, R) > 1 so that∣∣∣∣ cos (Vt(u)) − C̃q (Vt(u))

∣∣∣∣ <
πε

3 · R , (31)

for |t| ≤ T , |u| ≤ R, and 1 < q < q(ε, T, R). This is now sufficient to verify the expression in
Equation (27).

2.3. A q-Advanced PDE Example

The argument in the proof of Proposition 2 shows that knowledge of one MADE can help to
generate and study other MADEs. In fact, this extends to Partial Differential Equations (PDEs).
For example, consider the linear constant-coefficient Airy PDE [27]

∂t φ(x, t) = a ∂ 3
x φ(x, t) , φ(x, 0) = f (x) , (32)

for x ∈ R, t ∈ R+
0 , and constant a > 0. To obtain an advanced-type equation, consider the kernel

function, defined for each t > 0,

Aq(t)(x) ≡ 1
3
√

t A0(q)
Aiq

(
x
3
√

t

)
, for x ∈ R , (33)

for appropriate A0(q) 6= 0, to be determined. For any integrable f (x) and any a 6= 0, define,

φq(x, t) ≡
[
Aq(−at) ∗ f

]
(x) =

[
f ∗ Aq(−at)

]
(x) =

∫ ∞

−∞
f (y) · Aq(−at)(x− y) dy , (34)
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(compare with Equation (2.2) of [27]). Recall that the functional operation of convolution for integrable
functions g, h ∈ L1(R) gives a new function g ∗ h ∈ L1(R) defined by

g ∗ h(x) ≡
∫ ∞

−∞
g(y) · h(x− y) dy =

√
2πF−1

[
F [g] · F [h]

]
(x) , (35)

where the last equality in Equation (35) is the Convolution Theorem (see [28] Theorem IX.4). To discover
the PDE that φq solves, first compute the t-partial derivative of Equation (34), to obtain

∂t φq(x, t) ≡ −1
3t

φq(x, t) +
−1
3t

∫ ∞

−∞
f (y) · (x− y)

(at)2/3 A0(q)
· Aiq ′

(
x− y

(−at)1/3

)
dy . (36)

Now, taking three derivatives of Equation (34) with respect to x, gives

∂ 3
x φq(x, t) ≡ 1

(−at)1/3
∂

∂x

∫ ∞

−∞
f (y) · q−1/3 (x− y)

−at A0(q)
· Aiq

(
q2/3 (x− y)
(−at)1/3

)
dy (37)

=
−1
atq

φq

(
x,

t
q2

)
+
−1
atq

∫ ∞

−∞
f (y) · (x− y)

(at/q2)2/3 A0(q)
· Aiq′

(
x− y

(−at/q2)1/3

)
dy . (38)

By replacing t → q2t in Equation (38), one can verify that the q-advanced PDE, for q > 1 and
q2 > 1,

∂t φq(x, t) =
a q3

3
· ∂ 3

x φq

(
x, q2t

)
, (39)

holds. To obtain consistency with the initial data f (x), first define the constant, for q > 1,

A0(q) ≡
∫ ∞

−∞
Aiq(t) dt , (40)

which is finite since Aiq(t) is Schwartz (thus integrable) for q > 1. Then we require,

The q-Airy Hypothesis: Given q > 1, the expression in Equation (40) does not vanish, ie. A0(q) 6= 0.

In Appendix B we show that the q-Airy Hypothesis holds for all q > 1. Then
f (x) is continuous, integrable, and bounded

and

the q-Airy Hypothesis holds

=⇒ (∀x ∈ R)
(

lim
t→0+

φq(x, t) = f (x)
)

, (41)

where convergence in Equation (41) is pointwise, and is shown in Appendix C using a mollifier-type
argument. If, in addition, we have f ∈ C1 ∩ L1 and f ′ ∈ L∞, then convergence in Equation (41)
becomes uniform.

3. Solutions of MADEs and Natural Extensions

Define the family of Dirichlet-type functions for t ∈ R+
0 , and q > 1, as introduced in [29],

fµ,λ(t) ≡
∞

∑
m=−∞

(−1)m e−qmt

qm(m−µ)/λ
. (42)

For each µ ∈ Q and λ ∈ Q+, the corresponding function solves the eigen-MADE

∂ δ
t fµ,λ(t) = (−1)γ+δ qγ(γ+µ)/λ fµ,λ (qγ t) . (43)
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Here λ/2 = γ/δ ∈ Q+ is in reduced form with γ, δ ∈ N. The function fµ,λ(t) has eigenvalue

E = (−1)γ+δ qγ(γ+µ)/λ and can be normalized so that the function gµ,λ(t) ≡ fµ,λ

(
t/qγ(γ+µ)/(δλ)

)
solves the q-advanced eigen equation

∂ δ
t gµ,λ(t) = (−1)γ+δ gµ,λ (qγ t) . (44)

for t > 0. In this manner the q-dependence of the eigenvalue can be removed. Note that the sign of the
eigenvalue (−1)γ+δ can dramatically affect the behavior of the solution.

3.1. Flat Solutions of MADEs

In [29] we found special conditions under which fµ,λ(t) extends to all t ∈ R, so that

Fµ,λ(t) ≡
{

fµ,λ(t) , t ≥ 0

0 , t < 0
(45)

gives a Schwartz solution to an associated MADE to all t ∈ R . The essential condition is that
f (n)µ,λ (0

+) = 0 for all n ∈ N0, which is a property called flatness, at t = 0. It was shown in [29] that

fµ,λ(t) is flat at t = 0 ⇐⇒ µ is an odd integer and λ is an even integer .

This condition for flatness can be expressed as

µ = 2M + 1 (odd) , M ∈ Z and λ = 2N (even) , N ∈ N . (46)

Then, for 〈µ, λ〉 as in Equation (46), Fµ,λ(t) all solve first-order MADEs:

∂t Fµ,λ(t) = (−1)N+1 q(N+2M+1)/2 Fµ,λ(qNt) ,

for t ∈ R and q > 1. See examples in Figure 1. Furthermore, the Fourier transform has a special form:

F [F2M+1, 2N ] (ω) =
(−1)M µ3

q1/N
√

π
· qM(M+1)/(2N)

i ω
×[

1
N

N−1

∑
j=0

1
θ(q1/N , zj(ω)/q(M+1)/N)

]
,

where for each j ∈ {0, 1, 2, . . . , N − 1}, the points of valuation of the theta function require,

zj(ω) = −|ω|1/N · e3πi/(2N) · ei[arg(ω)]/N · ρj ,

for ρ ≡ ei2π/N , and {zj} are the N distinct solutions of (−zj)
N = −i ω.
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Figure 1. Three Flat Functions: Normalized plots of first-order MADE solutions that are flat at t = 0,
(1) f1,2(t) (dashed red), (2) f1,4(t) (solid blue), (3) f1,6(t) (dotted black line) all for q = 1.3.

3.2. A Non-Trivial Extension of a MADE Solution

Now consider the situation where ∃n∗ ∈ N0 where f (n∗)µ,λ (0+) 6= 0. Then an extension of fµ,λ(t)
to the region t < 0 is not so clear. However, by truncating the series in Equation (42) an asymptotic
exponential-series is obtainable that provides, what appears to be, a smooth extension to the t < 0
region. However, extending in this manner does not lead to a homogeneous, eigen-MADE in the
region t < 0. This is demonstrated with a specific example.

We begin by recalling the Airy equation as given in Proposition 2

y′′(t) − t y(t) = 0 . (47)

However, taking the derivative of this equation gives a generalization

y′′′(t) − y(t) = t y′(t) , (48)

where the right hand side is expected to be small for t ' 0. Hence a solution to the constant
coefficient equation

y′′′(t) − y(t) = 0 , (49)

see Section 4, may be considered to be an approximate solution to the Airy equation near the origin.
For example, the function

y(t) = (2/
√

3) e−t/2 sin(
√

3t/2) , (50)

solves (49) with initial conditions

y(0) = 0 , y′(0) = 1 , y′′(0) = −1 . (51)

Now we consider a q-relaxed version of (50) in the form of a solution to the MADE

η′′′(t) − q3 η(qt) = 0 , (52)

with parameter q > 1. Note that (52) is a multiplicatively advanced relaxed version of the approximate
Airy ODE (49) for q ' 1+. From Equations (42) and (43), a particular solution of Equation (52) is
η(t) = f1,2/3(t) for t ≥ 0. To extend η(t) to all of t ∈ R in a C∞ fashion, we find that

W1,2/3(t) ≡

 f1,2/3(t) , for t ≥ 0

(−1) f1,2/3

(
e 2πi/3t

)
+ (−1) f1,2/3

(
e 4πi/3t

)
, for t < 0

(53)
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is a Schwartz function, where f1,2/3(z) is analytic for <(z) > 0 and bounded for <(z) = 0. Although
there is no unique solution to MADEs in general, the functionW1,2/3(t) constructed in Equation (53)
will be called canonical, and it solves the MADE in Equation (52) for all t ∈ R.

3.3. Asymptotic Analysis of an Extension

There is an alternate continuous way to extend η(t) to the region t∗ < t < 0, for t∗ < 0 defined
below, in terms of q > 1. Define the constant C+q so that

1
C+q
≡ −

∞

∑
k=−∞

(−1)kqk

q3k(k−1)/2
= −θ(q3;−q) , (54)

where the last equality follows from (8). Note that θ(q3;−q) is non-zero for real q > 1 by (9), whence
C+q is well-defined and finite. For t ≥ 0 the function η(t) is defined as

η(t) ≡ C+q
∞

∑
k=−∞

(−1)ke−qkt

q3k(k−1)/2
=

f1,2/3(t)
−θ(q3;−q)

=
f1,2/3(t)
f ′1,2/3(0)

. (55)

Now, for t ≥ 0, η(t) solves (52) with initial conditions

η(0) = 0 , η′(0) = 1 , η′′(0) = −q . (56)

However, for each t < 0 the function η(t) diverges, due to the rapid growth of e−qkt = eqk |t|, in
k, as compared to that of q3k(k−1)/2 in the summands of (55), as k approaches infinity. Thus, for each
t < 0 the function η(t) is not defined.

To remedy this, while keeping the same summands as in (55), we truncate the upper limit of
summation in (55). Thus, for all t ∈ R we define the asymptotic extension η̃(t) of η(t) by

η̃(t) ≡ c̃(q, t)
N(q;t)

∑
k=−∞

(−1)ke−qkt

q3k(k−1)/2
, (57)

where the integer upper limit of the sum, and the normalizing coefficient, are defined to be

N(q, t) =

{
∞ , t ≥ 0

N∗(q, t) , t < 0
, c̃(q, t) =

C
+
q , t ≥ 0

C−q ≡
(
−∑

bN∗(q,t)c
k=−∞

(−1)kqk

q3k(k−1)/2

)−1
, t < 0

. (58)

Since it will follow from the definition below that N∗(q, t)→ ∞ as t→ 0−, continuity for η̃(t) is
achieved at t = 0. However, as a solution to a MADE, we have that η̃(t) ∈ D′, where D′ is the space of
distributions, dual to D ≡ C∞

0 (R), the set of compactly supported, infinitely differentiable functions.
In fact, since

η̃′′′(t) − q3 η̃(qt) = f̃ (t) , (59)

where f̃ ∈ D′, with supp( f̃ ) ⊂ (−∞, 0], we have that η̃(t) is a weak solution (as defined in [4] p. 149)
to the inhomogeneous extension of (52).

For t < 0, a best choice for N∗(q, t) is chosen to be the k value at which a local minimum for
the function

T (k, |t|) ≡ eqk |t|

q3k(k−1)/2
= eh(k,|t|) , (60)

exists, where the exponent function is defined to be

h(k, |t|) ≡ qk|t| − ln(q)(3k(k− 1)/2) . (61)
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The choice of truncation N∗(q) presented here is made based on the least-term approximation from
Poincaré asymptotics, as presented on p. 94 of Bender and Osrzag [26]:

“We look over the individual terms in the asymptotic series; ...For every given value of ...[t]...
we locate the smallest term. We then add all the preceding terms in the asymptotic series up
to but not including the smallest term.”

Traditionally this rule gives a good estimate of the actual function, which is often the solution of a
differential equation. In our case the rule above can only be applied for t < 0 sufficiently close to the
origin, which for this function turns out to be

|t| < 3/(e
√

q ln(q)) .

This is a consequence of the following more general result.

Proposition 3. For µ, λ ∈ R with λ > 0, define the following function on t ∈ R

f̃ (t) =
N(q,t)

∑
k=−∞

ak e−qkt

qk(k−µ)/λ
, where: N(q, t) =

{
∞, t ≥ 0

N∗(q, t), t∗ < t < 0
, (62)

for any bounded sequence {ak} ∈ `∞. Define the exponential growth portion of the summands as

Tµ,λ(k, |t|) ≡ e qk |t|

qk(k−µ)/λ
= e hµ,λ(k,|t|) , where: hµ,λ(k, |t|) ≡ qk|t| − ln(q) · k(k− µ)

λ
. (63)

Then, define two constants, for fixed q > 1,

t∗ ≡
−2

λ e qµ/2 ln(q)
< 0 and N∗(q, t∗) ≡

1
ln(q)

+
µ

2
. (64)

For t ∈ (t∗, 0), the function N∗(q, t) exists uniquely as the local minimum of Tµ,λ(k, |t|).

Remark 3. The coefficients ak in Equation (62) play no part in the following analysis. However, if they decay
as |k| → ∞, or if they change sign, then the asymptotic behavior may be different than what is derived here.

Proof. Differentiating the exponent hµ,λ(k, |t|) = ln
[
Tµ,λ(k, |t|)

]
in (63) with respect to k gives the

critical point condition

ln(q) qk|t| − ln(q) (2k− µ)/λ = 0 ⇐⇒ |t|qk − (2k− µ)/λ = 0

⇐⇒ qk = (2k− µ)/(λ |t|) . (65)

Taking a second derivative of hµ,λ(k, |t|) with respect to k gives the inflection point condition

ln2(q) qk|t| − ln(q) (2/λ) = 0 ⇐⇒ ln(q) qk|t| − (2/λ) = 0

⇐⇒ k =
ln [2/(λ|t| ln(q))]

ln(q)
. (66)

Interpreting the middle critical point condition in (65) as the intersection of the concave up function
|t|qk with the fixed line (2k− µ)/λ reveals three possibilities:

Case 1: There are two critical points k1 < k2 with an intervening inflection point k3 ∈ (k1, k2) for |t|
and q sufficiently small. By the first derivative test, a local maximum occurs at k1 while the
desired local minimum then occurs at k2.
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Case 2: An edge case occurs, in which the two critical points coalesced to one point equaling the
inflection point, k1 = k2 = k3. There is no local minimum for hµ,λ(k, |t|) in this setting.

Case 3: There are no critical points when either |t| or q is too large, resulting in no local minimum for
hµ,λ(k, |t|) in this setting.

Thus, the edge case, Case 2, marks the transition at which a local minimum of the summand
Tµ,λ(k, |t|) occurs, and hence Case 2 marks the transition at which an asymptotic phenomena for the
index k occurs. To quantify this point of transition, we note that the edge case, Case 2, where the
inflection point equals the critical point, implies that the solution of (65) also simultaneously solves (66)
in this setting. Substituting the expression for qk in (65) into (66) gives

ln(q) · 2k− µ

λ
− 2

λ
= 0 ⇐⇒ k =

1
ln(q)

+
µ

2
. (67)

Then substituting the value of k = 1/ ln(q) + µ/2 as obtained in (67) into the value of k in
Equation (65) gives the value of |t| = |t∗| that corresponds to this transition as

|t∗| =
2

λ e qµ/2 ln(q)
. (68)

Thus, we saw that Case 2 holding implies that

|t| = 2/(λ e qµ/2 ln(q)) = |t∗| and k1 = k2 = k3 = (µ/2) + (1/ ln(q)) .

Conversely, if |t| = 2/(λ e qµ/2 ln(q)) = |t∗|, then (66) holds if and only if

ln(q) qk · 2/(λ e qµ/2 ln(q))− (2/λ) = 0 ⇐⇒ qk = e qµ/2 = q1/ ln(q)qµ/2

⇐⇒ k = (µ/2) + (1/ln(q)) . (69)

Furthermore, observe that since y = exp(x− 1) is concave up with tangent line y = x at x = 1
then the inequality exp(x− 1) ≥ x holds for all x and equality holds if and only if x = 1. Replacing x
by (k− µ/2) ln(q) in our inequality gives

qk−µ/2

e
≥
(

k− µ

2

)
ln(q) with equality holding iff

(
k− µ

2

)
ln(q) = 1 . (70)

Multiplying the inequality on the left through by 2/(λ ln(q)) gives

2qk

λ e qµ/2 ln(q)
= qk|t∗| ≥

2k− µ

λ
with equality holding iff k =

µ

2
+

1
ln(q)

, (71)

whence (65) also holds at the same value of k = µ/2 + 1/ ln(q). Thus, the critical points and the
inflection point coalesced to the common value k = µ/2 + 1/ ln(q) and Case 2 holds. We see that
Case 2 holding is equivalent to −t = t∗ = 2/(λ e qµ/2 ln(q)) holding. Furthermore, one sees that
Case 1 holds when |t| < |t∗|, and a local minimum is obtained. Thus, the asymptotic phenomena
occurs for |t| < |t∗| where for the upper index limit N∗(q, t) we take the larger of the two solutions to
the transendental equation for k∗ in Equation (65):

qk∗ =
2k∗ − µ

λ |t| . (72)

Then, for |t| < |t∗| = 2/(λ e qµ/2 ln(q)) sufficiently small, Tµ,λ(k, |t|) has a local minimum
at N∗(q, t) = k∗, which can be found by taking a seed point greater than the value
ln (2/(|t|λ ln(q))) / ln(q) of the inflection point and utilizing Newton’s method.
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3.4. Special Case of the Derivative of an Airy Approxiamtion

We return to considering the special case that µ = 1, λ = 2/3 and ak = (−1)k. However, rather
than illustrating a graph of the above phenomena for f1,2/3(t)/ f ′1,2/3(0), we instead illustrate the
behavior for its derivative

φ(t) ≡ f ′1,2/3(t)/ f ′1,2/3(0) = f1,5/3(t)/ f1,5/3(0) ,

in Figure 2 below. In this setting, µ = 5/3, λ = 2/3, and the asymptotic extension of φ(t) is

φ̃(t) ≡ C−1
q

N(q,t)

∑
k=−∞

(−1)ke−qkt

q3k(k−5/3)/2
, where: N(q, t) =

{
∞, t ≥ 0

N∗(q, t), t∗ < t < 0
, (73)

where for t < 0, we compute, using q = 1.2, µ = 1, and λ = 2/3,

t∗ ≡
−2

λ e qµ/2 ln(q)
' −5.081 and N∗(q, t∗) ≡

1
ln(q)

+
µ

2
' 5.985 . (74)

Figure 2. (Left) Asymptotic extension φ̃(t) from Equation (73) for φ(t) (solid red) together with a
similarly constructed asymptotic extension for −χ(−∞,0](t)W1,5/3(t)/ f ′1,2/3(0) (dashed blue) both for
q = 1.2. (Right) Plots of etK̃(t) where the functions K̃(t) are defined in Equation (76) for q = 1.2.
Failure of the asymptotic extension is found to be around t = −1, as compared to the computed value
of t∗ = −1.8. The upper-sum limits, from left to right, are N∗ = 6, 10(dotted), 20, 30.

For t ∈ (−t∗, 0) the function N∗(q, t) = N∗(1.2, t) is the k value giving the larger of the two
solutions to the transendental equation:

qk = 3(2k− 5/3)/(2|t|) , (75)

which is the analogue of (65) and (72). The asymptotic extension φ̃(t) is given by the solid red graph in
Figure 2 (Left). Defining the function

W ′
1,2/3(t) ≡ W1,5/3(t) ,

the dotted blue graph in Figure 2 (Left) is the asymptotic extension of −χ(−∞,0](t)W1,5/3(t) to R.
The asymptotic extension of the derivative f ′1,2/3(t)/ f ′1,2/3(0) (rather than the original function
f1,2/3(t)/ f ′1,2/3(0)) is used due to non-vanishing at t = 0 as well as due to its comparatively
flatter derivative.
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From Figure 2 the asymptotic expansion is valid to around t ∼ −2, using N∗ ∼ 10, rather than
t ∼ −5, using N∗ ∼ 6, contrary to what was expected from Equation (74). This is due to the alternation
ak = (−1)k since cancelations require a more careful analysis. This is not done here, but the next
example considers a comparatively simple case, which gives a better comparison.

3.5. An even Simpler Example of MADE Asymptotics

In this section, we motivate a simpler type of asymptotic extension, distinct from Section 3.4,
using two examples.

To begin, we recall a MADE that was studied in [30], for q > 1 and t ≥ 0,

∂tK̃(t) = −q K̃(qt) , K̃(t) ≡
N(q;t)

∑
j=−∞

e−qjt

qj(j−1)/2
, (76)

where for t ≥ 0 set N(q; t) = ∞. Here we consider the extension to negative values of the parameter.
Then, for t∗ < t < 0, we will choose the constant N(q; t) = N∗(q, t∗). To use the asymptotic analysis,
note that ak = 1, µ = 1 and λ = 2. Thus, we obtain an approximate MADE solution extension to the
region t < 0. Start by defining

T ≡ eqj |t|

qj(j−1)/2
= eh , where: h ≡ qj|t| − ln(q)(j(j− 1)/2) .

Differentiating h with respect to j gives the critical condition

ln(q) qj|t| − ln(q)(2j− 1)/2 = 0 ⇐⇒ qj = (2j− 1)/(2|t|) .

The second derivative gives the inflection condition

ln2(q) qj|t| − ln(q) = 0 ⇐⇒ j = − ln[|t| ln(q)]/(ln(q)) .

Combining these expressions to eliminate qj|t| gives

ln(q) (ln(q)(2j− 1)/2) − ln(q) = 0 ⇐⇒ j∗ =
1

ln(q)
+

1
2
≡ N∗(q, t∗) ,

from Equation (67) which then results in

t∗ = −(2j∗ − 1)/(2qj∗) ,

from Equation (68). For t∗ < t < 0, we have N(q, t) > N(q, t∗) = j∗. By inspection, Figure 2
(Right) indicates that we maintain a good asymptotic expansion by letting all N(q, t) = N(q, t∗) = j∗.
In particular, for q = 1.2 our rule suggests j ≤ bj∗c = N∗ ∼ 6, which is expected to be valid for
t ∈ (−1.8, 0). The Right of Figure 2 indicates a good match for t ∈ (−1, 0), using N∗ ∼ 10.

Finally, we return to Equation (57), and consider the slightly different series, for all t > t∗ (where
t∗ < 0)

η̃∗(t) ≡ c̃∗(q, t)
bN(q;t)c

∑
k=−∞

(−1)ke−qkt

q3k(k−1)/2
+ c̃∗(q, t)

bN∗(q;t∗)c

∑
k=−∞

(−1)k

q3k(k−1)/2
· χ(t∗ ,0)(t) , (77)

where now the integer upper-sum limit, and the normalizing coefficient, are defined to be, respectively

N(q, t) =

{
∞ , t ≥ 0

N∗(q, t∗) , t∗ < t < 0
, c̃(q, t) =

C
+
q , t ≥ 0

C−q ≡
(
−∑

bN∗(q,t)c
k=−∞

(−1)kqk

q3k(k−1)/2

)−1
, t∗ < t < 0

(78)
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The function η̃(t) is differentiable for t ∈ (t∗, ∞), and solves an inhomogeneous MADE

η̃′′′∗ (t) − q3 η̃∗(qt) = f̃∗(t) , (79)

where f̃∗ ∈ D′ is derived in Appendix D. Note that f̃∗(t) is distinct from f̃ (t) for t > t∗ in Equation (59),
and the corresponding weak solution η̃∗(t) is much easier to compute than η̃(t), with little consequence
to the asymptotics.

4. Convergence of MADEs to Classical Solutions

In this section, we present another example where we can study convergence of a MADE solution
to its classical analogue. This requires an apriori uniform bound in a fixed neighborhood of t = 0 for
all q > 1 sufficiently small. Obtaining a uniform-in-q bound for general fµ,λ(t) is rather deep, and
complicated by the presence of the alternation (−1)m in Equation (42). Here we study a series without
this alternating factor, which defines a function that behaves like a damped oscillation. The details are
more challenging than what appears in the proof of Proposition 1, so a full analysis is provided.

Consider the following linear third-order MADE

f (3)(t) = q3 f (qt) (80)

for q > 1, on the interval t ∈ [0, ∞), satisfying the initial conditions

f (0) = 0 , f ′(0) = 1 , f ′′(0) = −q . (81)

For small q > 1, as q→ 1+, Equations (80) and (81) can be considered to be a perturbation of the
classical analogue, which is the ODE

g(3)(t) = g(t) (82)

with initial conditions
g(0) = 0, g′(0) = 1 g′′(0) = −1 (83)

obtained by setting q = 1 in (80) and (81). One can check directly that (82) and (83) is solved uniquely by

g(t) = 2 · exp(−t/2) · sin(
√

3 t/2)
/√

3 . (84)

Now, using techniques mirroring those of Theorem 3.2 of [29], a particular solution to (80) is

f̃ (t) =
∞

∑
k=−∞

e−qkt/2 sin(
√

3qkt/2)
qk(k−1)/(2/3)

, (85)

for t ≥ 0. Note that the expression in Equation (85) does not have the alternation (−1)k, unlike the
expression in Equation (55) for η(t), and this will allow a sharp bound on f̃ (t) for all t ≥ 0, independent
of q > 1.

The first derivative of f̃ (t) is seen to be

f̃ ′(t) =
∞

∑
k=−∞

qke−qkt/2[(−1/2) sin(
√

3qkt/2) + (
√

3/2) cos(
√

3qkt/2)]
qk(k−1)/(2/3)

=
∞

∑
k=−∞

e−qkt/2 sin(
√

3qkt/2 + 2π/3)
qk(k−1−2/3)/(2/3)

(86)

where the fact that:

− sin(x) +
√

3 cos(x)
2

= cos(2π/3) sin(x) + sin(2π/3) cos(x) = sin(x + 2π/3) ,
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was used explicitly to obtain the last equality in (86). Using this identity implicitly, we obtain:

f̃ (2)(t) =
∞

∑
k=−∞

qke−qkt/2 sin(
√

3qkt/2 + 4π/3)
qk(k−1−2/3)/(2/3)

(87)

=
∞

∑
k=−∞

e−qkt/2 sin(
√

3qkt/2 + 4π/3)
qk(k−1−4/3)/(2/3)

and finally we verify:

f̃ (3)(t) =
∞

∑
k=−∞

e−qkt/2 sin(
√

3qkt/2 + 6π/3)
qk(k−1−6/3)/(2/3)

(88)

=
∞

∑
k=−∞

e−qk−1(qt)/2 sin(
√

3qk−1qt/2)
q[{(k−1)+1}][{(k−1)−1}−1]/(2/3)

=
∞

∑
m=−∞

e−qm(qt)/2 sin(
√

3qm(qt)/2)
q[m+1][{m−1}−1]/(2/3)

= q3
∞

∑
m=−∞

e−qm(qt)/2 sin(
√

3qm(qt)/2)
qm(m−1)/(2/3)

= q3 f̃ (qt) . (89)

A re-indexing m = k − 1 was used to move from (88) to (89). Note that (89) gives that (80) holds.
From (85)–(87), one sees that

f̃ (0) =
∞

∑
k=−∞

sin(0)
qk(k−1)/(2/3)

= 0 , (90)

f̃ ′(0) =
∞

∑
k=−∞

sin(2π/3)
qk(k−5/3)/(2/3)

=

√
3

2

∞

∑
k=−∞

qk

(q3)k(k−1)/2
=

√
3

2
θ(q3; q) (91)

f̃ (2)(0) =
∞

∑
k=−∞

sin(4π/3)
qk(k−7/3)/(2/3)

=
−
√

3
2

∞

∑
k=−∞

(q2)k

(q3)k(k−1)/2
=
−
√

3
2

θ(q3; q2) , (92)

where the last equalities of (91) and (92) are obtained from (8).
Normalizing f̃ (t) by f̃ ′(0) = (

√
3/2)θ(q3; q) to obtain

f (t) = f̃ (t)/ f̃ ′(0) , (93)

one sees that f (t) now satisfies the MADE (80) along with the initial conditions (81). The last initial
condition follows from the fact that

f (2)(0) =
f̃ (2)(0)
f̃ (1)(0)

=
−(
√

3/2)θ(q3; q2)

(
√

3/2)θ(q3; q)
=
−θ(q3; q2)

θ(q3; q)
= −q , (94)

where the last equality in (94) follows from the next lemma.

Lemma 1. For q > 1 the Jacobi theta function (8) satisfies

θ(q3; q2)

θ(q3; q)
= q =

θ(q3;−q2)

θ(q3;−q)
. (95)

Proof. For the first equality in (95) one can write

θ(q3; q2) = θ(q3; q3(1/q)) = q3(1/q)θ(q3; 1/q) = q
[
q θ(q3; 1/q)

]
= q

[
θ(q3; q)

]
, (96)
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where the second equality is obtained from Equation (9) with u = (1/q), and the last equality is the
reciprocal identity in Equation (9) with v = q. Dividing (96) by θ(q3; q) gives (95). For the second
equality in (95), let u = (−1/q) and v = −q in Equation (9). Then as above θ(q3;−q2) = q θ(q3;−q).
The lemma is shown.

In addition to the last equality of (94) being proven by the first equality in (95) in Lemma 1,
the second equality of (95) proves that the second derivative ofW1,2/3(t)/W ′1,2/3(0) at t = 0 equals−q.

The following theta function bound will also be helpful.

Lemma 2. For q > 1 the Jacobi theta function (8) satisfies

θ(q3; 1)
θ(q3; q)

≤ 1 +
1
q3 < 2 . (97)

Proof. Observe that

θ(q3; 1) = µq3

∞

∏
n=0

[(
1 +

1
q3n

)(
1 +

1
q3(n+1)

)]

= µq3

[
∞

∏
n=0

(
1 +

1
q3n

)](
1 +

1
q3

)[ ∞

∏
n=0

(
1 +

1
q6+3n

)]
, (98)

while

θ(q3; q) = µq3

∞

∏
n=0

[(
1 +

q
q3n

)(
1 +

1
qq3(n+1)

)]

= µq3

[
∞

∏
n=0

(
1 +

q
q3n

)] [ ∞

∏
n=0

(
1 +

1
q4+3n

)]
. (99)

Comparing each factor in the square brackets in (98) with the corresponding factor in the square
brackets of (99) one sees that for all n ≥ 0(

1 +
1

q3n

)
≤
(

1 +
q

q3n

)
and

(
1 +

1
q6+3n

)
≤
(

1 +
1

q4+3n

)
, (100)

from which one concludes that
θ(q3; 1)

1 + 1/q3 ≤ θ(q3; q) , (101)

giving the left inequality in (97). The right inequality in (97) holds via the assumption that q > 1.

Next we compute all derivatives of g(t) = 2 exp(−t/2) sin(
√

3t/2)
/√

3 at t = 0 and of f (t) =
f̃ (t)/ f̃ ′(0) at t = 0, in preparation for the computation of the Taylor series expansion at t = 0 for both
g(t) and f (t). From (82) we immediately have that for k ≥ 0 and j = 0, 1, 2

g(3k+j)(t) = g(j)(t) . (102)

From (102) and (83) one concludes that for k ≥ 0

g(3k)(0) = g(0) = 0 , g(3k+1)(0) = g′(0) = 1 , g(3k+2)(0) = g′′(0) = −1 . (103)

The analogous results for f (t) = f̃ (t)/ f̃ ′(0) are obtained in the following lemma.
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Lemma 3. For t ≥ 0 and q > 1, let f (t) = f̃ (t)/ f̃ ′(0) with f̃ (t) given by (85). Then for k ≥ 0 and j = 0, 1, 2
one has

f (3k+j)(t) =
(

q3
)k(k+1)/2

qjk f (j)(qkt) . (104)

Furthermore, at t = 0 one has

f (3k)(0) = 0 , f (3k+1)(0) =
(

q3
)k(k+1)/2

qk , f (3k+2)(0) = −
(

q3
)k(k+1)/2

q2kq . (105)

Proof. We first establish (104) for the case that j = 0 by induction on k. So for j = 0 note that (104)

holds as a tautology for k = 0, and for k = 1 it holds by (89). Assume that f (3k)(t) =
(
q3)k(k+1)/2 f (qkt)

for fixed k. Then

f 3(k+1)(t) = f (3k+3)(t) =
[

f (3k)(t)
](3)

=

[(
q3
)k(k+1)/2

f (qkt)
](3)

(106)

=
(

q3
)k(k+1)/2

q3 f (qqkt)q3k =
(

q3
)(k+1)(k+2)/2

f (qk+1t) , (107)

where: the inductive hypothesis gives the rightmost equality in (106), and that (89) along with the
chain rule gives the first equality in (107). Thus, the j = 0 case holds for all k. Now differentiate the

expression f (3k)(t) =
(
q3)k(k+1)/2 f (qkt) either j = 1 or j = 2 times to obtain (104) in all remaining

cases. Evaluating (104) at t = 0 and relying on (90)–(94) gives (105).

Next, the 3N + 2-degree Taylor polynomials P3N [g](t), P3N [ f ](t) of g and f , respectively, expanded
about t = 0 are given by

P3N+2[g](t) =
3N+2

∑
n=0

g(n)(0)
n!

tn =
N

∑
k=0

g(3k)(0)
(3k)!

t3k +
N

∑
k=0

g(3k+1)(0)
(3k + 1)!

t3k+1

+
N

∑
k=0

g(3k+2)(0)
(3k + 2)!

t3k+2

=
N

∑
k=0

1
(3k + 1)!

t3k+1 +
N

∑
k=0

−1
(3k + 2)!

t3k+2 (108)

P3N+2[ f ](t) =
3N+2

∑
n=0

f (n)(0)
n!

tn =
N

∑
k=0

f (3k)(0)
(3k)!

t3k +
N

∑
k=0

f (3k+1)(0)
(3k + 1)!

t3k+1

+
N

∑
k=0

f (3k+2)(0)
(3k + 2)!

t3k+2

=
N

∑
k=0

q3k(k+1)/2qk

(3k + 1)!
t3k+1 +

N

∑
k=0

−q3k(k+1)/2q2kq
(3k + 2)!

t3k+2 (109)

where (108) follows from (103), and (109) follows from (105). For t ≥ 0, these have respective
remainder terms

R3N+2[g](t) =
g(3N+3)(ξ)

(3N + 3)!
t3N+3 =

g(ξ)
(3N + 3)!

t3N+3 , (110)

R3N+2[ f ](t) =
f (3N+3)(ζ)

(3N + 3)!
t3N+3 =

q3(N+1)(N+2)/2 f (qN+1ζ)

(3N + 3)!
t3N+3 (111)

for some ξ ∈ [0, t] and ζ ∈ [0, t]. The goal of uniform convergence on compact subsets is now obtained
in the following proposition.



Axioms 2020, 9, 83 20 of 28

Proposition 4. Let S be any compact set contained in [0, ∞). Then f (t) converges uniformly to g(t) on S as
q→ 1+, where f (t) is given by both (93) and (85), while g(t) is given by (84).

Proof. Without loss of generality, there is a ρ > 0 such that S ⊆ [0, ρ], and it is sufficient to prove
uniform convergence on [0, ρ]. For t ∈ [0, ρ], from the triangle inequality one has

| f (t)− g(t)| ≤ | f (t)− P3N+2[ f ](t)|+ |P3N+2[ f ](t)− P3N+2[g](t)|
+ |P3N+2[g](t)− g(t)| (112)

= |R3N+2[ f ](t)|+ |P3N+2[ f ](t)− P3N+2[g](t)|
+ |R3N+2[g](t)| (113)

Now for 0 ≤ t ≤ ρ and relying on (111), one starts with (114) to see

|R3N+2[ f ](t)| =

∣∣∣∣∣ q3(N+1)(N+2)/2 f (qN+1ζ)

(3N + 3)!
t3N+3

∣∣∣∣∣ (114)

≤ q3(N+1)(N+2)/2ρ3N+3

(3N + 3)!

∣∣∣ f (qN+1ζ)
∣∣∣

=
q3(N+1)(N+2)/2ρ3N+3

(3N + 3)!

∣∣∣∣ 1
f̃ (0)

f̃ (qN+1ζ)

∣∣∣∣ (115)

=
q3(N+1)(N+2)/2ρ3N+3

(3N + 3)!
× (116)∣∣∣∣∣ 1

(
√

3/2)θ(q3; q)

∞

∑
k=−∞

e−qkqN+1ζ/2 sin(
√

3qkqN+1ζ/2)
qk(k−1)/(2/3)

∣∣∣∣∣
≤ q3(N+1)(N+2)/2ρ3N+3

(3N + 3)!
2√

3θ(q3; q)

∞

∑
k=−∞

1

(q3)
k(k−1)/(2)

(117)

=
q3(N+1)(N+2)/2ρ3N+3

(3N + 3)!
2√

3θ(q3; q)
θ(q3; 1) (118)

<
q3(N+1)(N+2)/2ρ3N+3

(3N + 3)!
4√
3

, (119)

where: moving to (115) is obtained via (93); (116) follows from (85) and (91); the equality in (118) is
obtained by (8); and the inequality in (119) is given by (97) in Lemma 2. Similarly, from (110) and (84),
one has

|R3N+2[g](t)| =

∣∣∣∣ g(ξ)
(3N + 3)!

t3N+3
∣∣∣∣ (120)

≤ ρ3N+3

(3N + 3)!

∣∣∣2 exp(−ξ/2) sin(
√

3ξ/2)
/√

3
∣∣∣ ≤ 2ρ3N+3
√

3(3N + 3)!
.
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Also, from (108) and (109) if we let: ∆P[ f , g](t) ≡ P3N+2[ f ](t)− P3N+2[g](t), then

|∆P[ f , g](t)| =

∣∣∣∣∣ N

∑
k=0

q3k(k+1)/2qk − 1
(3k + 1)!

t3k+1 +
N

∑
k=0

−q3k(k+1)/2q2kq + 1
(3k + 2)!

t3k+2

∣∣∣∣∣
≤

N

∑
k=0

q3k(k+1)/2qk − 1
(3k + 1)!

ρ3k+1 +
N

∑
k=0

q3k(k+1)/2q2kq− 1
(3k + 2)!

ρ3k+2

≤
[
q3N(N+1)/2q2Nq− 1

] [ N

∑
k=0

ρ3k+1

(3k + 1)!
+

N

∑
k=0

ρ3k+2

(3k + 2)!

]
≤

[
q3N(N+1)/2q2Nq− 1

]
eρ . (121)

Applying (118), (121), and (120) to (113) one has that for N ≥ 0

| f (t)− g(t)| ≤ q3(N+1)(N+2)/2ρ3N+3

(3N + 3)!
4√
3

(122)

+
[
q3N(N+1)/2q2Nq− 1

]
eρ +

2ρ3N+3
√

3(3N + 3)!
.

Now, given ε > 0, choose N0 sufficiently large such that one has
4ρ3N0+3/ [√3(3N0 + 3)!

]
< ε/3. Then

1 < (ε/3)
[√

3(3N0 + 3)!
] / [

4ρ3N0+3
]

and 1 < 1 + ε/ [3eρ] .

Pick q0 > 1 so that

q3(N0+1)(N0+2)/2
0 < (ε/3)

[√
3(3N0 + 3)!

] / [
4ρ3N0+3

]
(123)

and
q3N0(N0+1)/2

0 q2N0
0 q0 < 1 + ε/ [3eρ] .

Then for 1 < q < q0 one has

q3(N0+1)(N0+2)/2 < (ε/3)
[√

3(3N0 + 3)!
] / [

4ρ3N0+3
]

(124)

and
q3N0(N0+1)/2q2N0 q < 1 + ε/ [3eρ] ,

whence for 1 < q < q0

2ρ3N0+3
√

3(3N0 + 3)!
< q3(N0+1)(N0+2)/2 4ρ3N0+3

√
3(3N0 + 3)!

< (ε/3) (125)

and [
q3N0(N0+1)/2q2N0 q− 1

]
eρ < ε/3 .

Applying (125) to (122) with N taken to be N0 one has that for 1 < q < q0

| f (t)− g(t)| ≤ ε/3 + ε/3 + ε/3 = ε . (126)

So f (t) approaches g(t) uniformly on [0, ρ] as q→ 1+, and the proposition is proven.
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5. Convolutions, Correlations and Bounds

Here we briefly demonstrate that solutions of MADEs beget new solutions of different MADEs.

5.1. Distinction between Convolutions and Correlations

Let f , g ∈ L1(R) and recall the standard definitions:

Convolution between f and g ≡ [ f ∗ g] (t) =
∫ ∞

−∞
f (s) · g(t− s) ds (127)

Correlation between f and g ≡ [ f ? g] (t) =
∫ ∞

−∞
f (s) · g(t + s) ds (128)

Proposition 5. Consider f , g ∈ S(R), which solve the following MADEs

f (a) = c f · f (qt) , g(b) = cg · g(qt) , (129)

respectively, for q > 1, a, b ∈ N, and c f 6= 0, cg 6= 0. Then the correlation and convolution solve the following
higher-order MADEs

[ f ∗ g](a+b) (t) =
c f · cg

q
[ f ∗ g] (qt) , [ f ? g](a+b) (t) = (−1)a c f · cg

q
[ f ? g] (qt) ,

and [ f ∗ g] , [ f ? g] ∈ S(R).

Proof. The fact that convolution and correlation preserve the Schwartz property follows from
Theorem 3.3 of [31]. The MADE equations easily follow from repeated applications of integration by
parts, use of Equation (129), and a change of variables.

5.2. Auto-Correlation

It was shown in Theorem 7 of [25] that the auto-correlation ofW−1,2(t) = F−1,2(t), as defined
in (45) for µ = −1 and λ = 2, givesW0,1(t) = f0,1(|t|), as defined in (42) for µ = 0 and λ = 1, in the
sense that

[W−1,2 ?W−1,2](t) ≡
∫ ∞

−∞
W−1,2(u) · W−1,2(u + t) du

=
−µ4

q

2 µ2
q2

· W−2,1(−t) =
−µ4

q

2 µ2
q2

· W−2,1(t) =
+µ4

q

2 µ2
q2

· W0,1

(
t
q

)
,

whereW−2,1(t) = f−2,1(|t|), as defined in (42) for µ = −2 and λ = 1. Using this result, along with the
Cauchy-Schwartz inequality it was shown in Proposition 4 of [25] that

0 < ‖W0,1‖∞ = W0,1(0) = θ(q2;−1/q) < 1 , ∀q > 1 .

This important bound allows one to obtain uniform convergence of the normalized function
W0,1(t)/W0,1(0) → cos(t), as q→ 1+.
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5.3. Cross-Correlation

Let us consider an example that involves different MADE solutions, to obtain a new MADE.
Knowing the Fourier transform of these functions allows us to easily derive properties of the resulting
function. Compute, using Plancherel’s Lemma,

[W−1,2 ?W0,1](t) ≡
∫ ∞

−∞
W−1,2(u) · W0,1(u + t) du

=
∫ ∞

−∞
e−iωtF [W−1,2](ω) · F [W0,1](ω) dω . (130)

Now, to simplify the integrand in (130), we use the Fourier transforms from [25,32] respectively,
to write:

F [W−1,2](ω) · F [W0,1](ω) =
iµ3

q√
2π ω θ(q; iω)

×
2(µq2)3

√
2π θ(q2; ω2)

=
i (µq · µq2)3

π
× 1

ω θ(q; iω) θ(q2; ω2)

=
(µ2

q · µq2)2

π
× 1

(−iω) θ(q;−iω) θ2(q; iω)
. (131)

The equality in (131) follows from the fact that θ(q2; ω2) = θ(q; iω) θ(q;−iω) and uses the
definition of the Jacobi theta function in Equation (8). The consequence is that there are simple poles
when ω = −iqk for k ∈ Z, but double poles at ω = iqk. Computing the integral in (130) using residue
theory, requires a careful consideration of the position of these poles off the real axis.

For t ≥ 0 the contour for ω must traverse the lower-half plane, encompassing the simple poles
ω = −iqk. Consequently, residue theory and Equation (9) gives

[W−1,2 ?W0,1](t) = Cq

∞

∑
k=−∞

(−1)k e−qkt

q3k(k+1)/2
= Cq · f−1,2/3(t) ,

which solves the eigen-MADE
f (3)−1,2/3(t) = f−1,2/3(qt) .

6. Expanded Table of Fourier Transforms

In this final section we establish a short table of Fourier transforms for solutions of MADEs and
their relations to Jacobi theta functions. Included are well-established results, along with new functions.
The positive constants K1 and K2 are generic, but estimates are not presented here.

The introduction of new functions are as follows: For K(t) see [32] for decay constants K1 and
K2 in Table 1; The functions qCos(t) and qSin(t) are closely related to C̃q(t) and S̃q(t), respectively,
introducted in [25], where constants K3 and K4 are obtained; The q-Bessel functions, related to J (t),
were introduced in [33], along with decay constants K5 and K6; Flat wavelets F(t) have Fourier
transforms that are averages of theta functions, first derived in [29], along with constants K7 and K8.
The functions K ∗ C̃q(t) andWµ,λ(t), have Fourier transforms that involve theta functions, which can
be used to obtain decay parameters K9 and K10.

Note that similar tables for Laplace transforms are quite extensive, since applications only require
control of function growth on R+. Here we are concerned with globally defined functions on R for
which a Fourier transform can be defined.
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Table 1. Table of Fourier transforms with solutions of ODEs and MADEs.

Global
Function Property Differential Equation f (0)

f (±∞)
decay Rate

Fourier Transf.
(Modulo Coef.)

f (t) = e−t2/2 Entire
Schwartz − f ′′(t) + t2 f (t) = f (t) 1 Gaussian e−x2/2

f (t) = e−|t|
C0 ∩ Lp

1 ≤ p ≤ ∞ f ′(t) + f (t) = −2δ(t) 1 exponential (1 + x2)−1

ei(x−x0) t =
exp[i(x− x0) t] C0 ∩ L∞

∂t exp[i(x− x0) t] =
i(x− x0) exp[i(x− x0) t] 1 undefined δ0(x− x0) = δx0 (x)

j0(t) =
sin(t)

t

C∞ ∩ Lp

1 < p ≤ ∞ j ′′0 (t) + 2
t j ′0(t) = −j0(t) 1 1/|t| χ[−1,1](x)

Ai(t) =∫ ∞
0 cos( u3

3 + ut) du
C∞ ∩ Lp

4 < p ≤ ∞ Ai ′′(t) = t · Ai(t)
Ai(0)

smooth 1/|t|1/4 ei kx3/3

cos(t)
sin(t) C0 ∩ L∞

cos′′(t) + cos(t) = 0
sin′′(t) + sin(t) = 0 1 undefined δ1(x)± δ−1(x)

K(t) ≡ F−1,2(t)
Schwartz
wavelet K′(t) = K(qt)

0
flat |t|−K1 ln |t|+K2

1
ixθ(q; ix)

C̃q(t) =

f0,1(
|t|√

q )/ f0,1(0)
Schwartz
wavelet C̃ ′′q (t) + C̃q(qt) = 0

1
smooth |t|−K3 ln |t|+K4

1
θ(q2; q x2)

S̃q(t) =
∫ t

0 C̃q(u)du Schwartz
wavelet S̃ ′′q (t) + q−1S̃q(qt) = 0

0
smooth |t|−K3 ln |t|+K4

−iq3x

θ(q2; q3x2)

CiSq(t) =
C̃q(t) + i S̃q(t)

Schwartz
wavelet ∂2

t CiSq(t) = −CiSq(q t)
1

smooth |t|−K3 ln |t|+K4

1
θ(q2; qx2) +

q3x

θ(q2; q3x2)

J (t) = S̃q(t)
t Schwartz J ′′(t) + 2

tJ ′(t) = −J (qt) 1/q |t|−K5 ln |t|+K6
∫ x
−∞

ω dω
θ(q2;q3ω2)

F(t) =
F2M+1,2N(t)

Schwartz
wavelet

a = N + 1
b = (N + 2M + 1)/2
F′(t) = (−1)aqbF(qN t)

0
flat |t|−K7 ln |t|+K8

(−zj)
N = −ix

−i
xN ∑N

j=1
zM+1

j

θ(q1/N ; zj)

M1(t) =
[K ∗ C̃q](t)

Schwartz
wavelet M ′′′

1 (t) = −q−1 M1(qt)
0

smooth |t|−K9 ln |t|+K10

1
ix θ(q; ix) θ(q2; qx2)

M2(t) =
W1,2/3(t)

Schwartz
wavelet M ′′′

2 (t) = q3 M2(qt)
0

smooth |t|−K9 ln |t|+K10

x2

θ(q3;−ix3)

Aiq(t) =∫ ∞
0 C̃q(

u3

3 + ut) du Schwartz
Aiq ′′(t) =

q−1/3t · Aiq(q2/3t)
Aiq(0)
smooth |t|−K3 ln |t|+K4

∫ ∞
0

e i x3/(3k2)

θ(q2; qk2) dk
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Appendix A. Normalization in Terms of Theta Functions

The normalization for C̃q(t) in Equation (4) involves a theta function, so that

1
Nq
≡

∞

∑
k=−∞

(−1)k

qk2 =
∞

∑
k=−∞

(−1/q)k

(q2)k(k−1)/2
= θ

(
q2 ;
−1
q

)
. (A1)

The last expression in Equation (A1) does not vanish for q > 1 due to the product formula in
Equation (8). Similarly, we can show that Aiq(0) 6= 0. Indeed, from the definition, note that using the
change of variables w = q(k−1/2)/3u,

Aiq(0) =
1
π

∫ ∞

0
C̃q(u3) du

=
Nq

π

∫ ∞

0

∞

∑
k=−∞

(−1)k

qk2 e−qku3/
√

q du

=
Nq

π

∞

∑
k=−∞

(−1)kq1/6

qk2 qk/3

∫ ∞

0
e−w3

dw

=
q1/6Nq

π
·
∫ ∞

0
e−w3

dw ·
∞

∑
k=−∞

(−1/q1/3)k

(q2)k2/2

=
q1/6

π
·
∫ ∞

0
e−w3

dw ·
[

θ(q2;−1/q4/3)

θ(q2;−1/q)

]
,

and the final expression clearly does not vanish for any q > 1.

Appendix B. Establishing the q-Airy Hypothesis for q > 1

To compute A0(q) explicitly, we will find the Fourier transform of Aiq(t) and then find its value
at the origin. This requires a careful change of variables. To begin, we combine definition Equation (25)
and the inverse Fourier transform of formula in Equation (7) giving

Aiq(x) =
2(µq2)3Nq

2π π
·
∫ ∞

0

∫ ∞

−∞

exp
(
ik(t3/3 + xt)

)
θ(q2; q k2)

dk dt .

To handle the double integral note that the odd power of both the k and the t variables allows the
following rearrangement

∫ ∞

0

∫ ∞

0

exp
(
ik(t3/3 + xt)

)
+ exp

(
i(−k)(t3/3 + xt)

)
θ(q2; q k2)

dk dt =
∫ ∞

0

∫ ∞

−∞

exp
(
ik(t3/3 + xt)

)
θ(q2; q k2)

dt dk .

We can now obtain the Fourier transform

F [Aiq(x)](ω) =
2(µq2)3Nq

(2π)3/2 π
·
∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
e−ix(ω−kt) ·

exp
(
ik(t3/3)

)
θ(q2; q k2)

dt dk dx

=
2(µq2)3Nq√

2π π
·
∫ ∞

0

exp
(

i ω3/(3k2)
)

θ(q2; q k2)
dk .

Finally, computing at ω = 0 gives the final result

A0(q) = F [Aiq(t)](0) =
∫ ∞

−∞
Aiq(t) dt =

2(µq2)3Nq√
2π π

√
q
·
∫ ∞

0

dk
θ(q2; k2)

> 0 ,

which is clearly a finite, positive, non-zero quantity, for each q > 1.
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Appendix C. Mollifier Argument for Airy PDE Initial Profile

Let us first make clear the importance of normalization. Indeed, observe that if A0(q) 6= 0, then
the change of variables u = y/ 3

√
t for t > 0, gives

lim
t→0+

1
3
√

tA0(q)

∫ ∞

−∞
Aiq

(
y
3
√

t

)
dy = lim

t→0+

1
A0(q)

∫ ∞

−∞
Aiq (u) du =

A0(q)
A0(q)

= 1 .

Thus, explicitly, for each fixed q > 1 and x ∈ R, and φq(x, t) as in Equation (34)

|φq(x, 0) − f (x)| =

∣∣∣∣∣ lim
t→0+

1
3
√

tA0(q)

∫ ∞

−∞
Aiq

(
y
3
√

t

)
· ( f (x− y)− f (x)) dy

∣∣∣∣∣
≤ lim

t→0+

1
|A0(q)|

∫ ∞

−∞
|Aiq (u) | ·

∣∣∣ f (x− u 3
√

t
)
− f (x)

∣∣∣ du . (A2)

At this point we use the Schwartz property of Aiq(u), along with the integrability and continuity
of f (x), to argue that the expression above is arbitrarily close to 0. This will be done in two parts.

Given ε > 0, choose Rε > 0 so that∫
|u|≥Rε

|Aiq (u) | du ≤ |A0(q)|
4 ‖ f ‖∞

· ε .

Note that this estimate is independent of t > 0, so with q > 1 and x ∈ R fixed, the choice of Rε

will determine a bound that is needed on t, near 0.
Now, consider the region |u| ≤ Rε. Since f ∈ C1(R), f (x) is continuous, so given ε > 0 and

x ∈ R, ∃ δε,x > 0 so that

|x − y| < δε,x =⇒ | f (x)− f (y)| < ε

2
·
(
|A0(q)|
‖Aiq‖1

)
.

Thus, we require |u 3
√

t| ≤ Rε
3
√

t < δε,x so that

t ∈ (0, (δε,x/Rε)
3) =⇒ |φq(x, 0) − f (x)| < ε , (A3)

which establishes pointwise convergence. However, if f ∈ C1 ∩ L1 and f ′ ∈ L∞, returning to
Equation (A2) for t > 0, we obtain uniform convergence as follows:

1
|A0(q)|

∫ Rε

−Rε

|Aiq (u) | ·

∣∣∣ f (x− u 3
√

t
)
− f (x)

∣∣∣
|u 3
√

t|
· |u 3
√

t| du ≤ Rε 3
√

t
|A0(q)|

· ‖ f ′‖∞ ·
∫ Rε

−Rε

|Aiq (u) | du

Now, clearly, the condition in Equation (A3) can be achieved.
Thus, we verified that the solution to the q-advanced PDE in Equation (34) has the property

that a continuous, bounded and integrable initial profile f (x) is recovered at t = 0, as indicated in
Equation (41).

Appendix D. Derivation of Inhomogeneous MADE

Using the characteristic function χS(t), and delta function centered at the origin δ0(t), express the
function in Equation (57) as

η̃(t) = C−q ·
( bN∗c

∑
k=−∞

(−1)k e−qkt − 1
q3k(k−1)/2

)
· χ(t∗ , 0)(t) + C+q ·

(
∞

∑
k=−∞

(−1)ke−qkt

q3k(k−1)/2

)
· χ[0, ∞)(t) ,
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for N∗ = N∗(q, t∗) fixed. Note that C+q is defined in Equation (54), and C−q is defined in Equation (78),
so that η̃(0+) = η̃(0−) = 0, and η̃′(0+) = η̃′(0−) = 1. Thus, the first derivative is continuous, and the
second derivative is bounded. However, the third derivative results in the appearance of a distribution,

η̃ ′′′(t) = q3 η̃(qt) +

[
q3 C−q ·

( bN∗c
∑

k=−∞
(−1)k · q2k

q3k(k−1)/2

)
· χ(t∗ , 0)(t)

− C−q ·
( bN∗c

∑
k=−∞

(−1)kq2k

q3k(k−1)/2

)
· δ0(t) + C+q ·

(
∞

∑
k=−∞

(−1)kq2k

q3k(k−1)/2

)
· δ0(t)

]
= q3 η̃(qt) +

[
f̃∗(t)

]
,

which is an inhomogeneous MADE for all t > t∗, and which defines f̃∗(t), by inspection of the quantity
in the square brackets. The last three terms on the right hand side vanish as q→ 1+, where N∗ → ∞ in
a manner described after the proof of Proposition 3.
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