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1. Introduction

The theory of fuzzy set, intuitionistic fuzzy sets, soft set, and more other theories were introduced
to deal with uncertainty. In [1], Zadeh introduced the concept of a fuzzy subset of a set. Later on, a
number of generalizations of this fundamental notion have been studied by many authors in different
directions. The notion of an intuitionistic fuzzy set defined in [2] is a generalization of a fuzzy set.
It gives more opportunity to be accurate when dealing with uncertain objects. Soft set theory was
initially suggested by Molodstov in [3], then Maji et al. in [4] combined the soft set theory and the
intuitionistic fuzzy set theory, and introduced the notion intuitionistic fuzzy soft sets.

Algebra is the language in which combinatorics are usually expressed. Combinatorics is the study
of discrete structures that arise not only in areas of pure mathematics, but in other areas of science,
for example, computer science, statistical physics and genetics. From ancient beginnings, this subject
truly rose to prominence from the mid-20th century, when scientific discoveries (most notably of DNA)
showed that combinatorics is key to understanding the world around us, whilst many of the great
advances in computing were built on combinatorial foundations. These concepts were widely studied
over different classes of logical algebras as the essential classes of BCK/BCI-algebras presented by
Iseki [5]. The concepts intuitionistic fuzzy ideals of BCK-algebras were studied in [6]. Bej et al. [7]
declared the concept of doubt intuitionistic fuzzy subalgebra and doubt intuitionistic fuzzy ideal in
BCK/BCI-algebras. Muhiuddin et al. studied various concepts on fuzzy sets and applied them to
BCK/BCI-algebras, and other related notions (see for e.g., [8–18]). Also, some new generalizations of
fuzzy sets and other related concepts in different algebras have been studied in (see for e.g., [6,19–35]).
Additionally, Balamurugan et al. [36] introduced the concepts of intuitionistic fuzzy soft subalgebras,
intuitionistic fuzzy soft ideals, and intuitionistic fuzzy soft a-ideals of B-algebra and studied several
properties of these notions.
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In the present paper, we introduce the notion of anti-intuitionistic fuzzy soft a-ideals
in BCI-algebras. The results of present paper are organized, as follows: Section 2 summarizes some
basic definitions and properties that are needed to develop our main results while in Section 3,
we introduce the notion of anti-intuitionistic fuzzy soft a-ideals of BCI-algebras and investigate
related properties. In Section 4, we give characterizations of anti-intuitionistic fuzzy soft a-ideals
of BCI-algebras while using the concept of a soft level set.

2. Preliminaries

In this section, we recall basic definitions and results that are related to the subject of the paper.

Definition 1. [5] An algebra (Ω;�, 0) of type (2, 0) is called a BCI-algebra if it satisfies
the following conditions:

(1) ((l �m)� (l � n))� (n�m) = 0,
(2) (l � (l �m))�m = 0,
(3) l � l = 0;
(4) l �m = 0 and m� l = 0⇒ l = m, for all l, m, n ∈ Ω.

Any BCI-algebra Ω, satisfies the following axioms:

(I) l � 0 = l,
(II) l ≤ m⇒ l � n ≤ m� n and n�m ≤ n� l,
(III) (l � n)� (m� n) ≤ l �m,
(IV) 0� (0� (l �m)) = (0�m)� (0� l),
(V) (l �m)� n = (l � n)�m,

where l ≤ m⇔ l �m = 0, for any l, m, n ∈ Ω.
A non-empty subset ∆ of a BCK-algebra Ω is called an ideal of Ω if it satisfies

(1) 0 ∈ ∆,
(1) ∀ l, m ∈ Ω, l ∗m ∈ ∆, m ∈ ∆⇒ l ∈ ∆.

A non-empty subset ∆ of a BCK-algebra Ω is called an a-ideal of Ω if it satisfies (1) and
(3) ∀ l, m ∈ Ω, (l � n)� (0�m) ∈ ∆, n ∈ ∆⇒ m� l ∈ ∆.

For an initial set Ω and a set of parameters ∆, a pair (Υ, ∆) is said to be a soft set over Ω⇔ ∃ Υ :
∆ → ℘(Ω), where ℘(Ω) is a family of subsets of Ω. (see [30] for more details on soft set theory).

Definition 2. [4] Let Π be a collection of parameters and let Υ(Ω) indicate the collection of all fuzzy sets in Ω.
Then (Υ, ∆) is called a fuzzy soft set over Ω, where ∆ ⊆ Π and Υ : ∆→ Υ(Ω).

Definition 3. [36] Let (Υ, ∆) be a fuzzy soft set (abbr. FSS). Then (Υ, ∆) is an anti-fuzzy soft ideal (abbr.
AFSID) of Ω if Υ[v] = {(ξΥ[v](l)) : l ∈ Ω and v ∈ ∆} is an AFID of Ω satisfies the following assertions:

(i) ξΥ[v](0) ≤ ξΥ[v](l),

(ii) ξΥ[v](l) ≤ ξΥ[v](l �m) ∨ ξΥ[v](m),

for all l, m, n ∈ Ω and v ∈ ∆.

Definition 4. [36] Let (Υ, ∆) be a fuzzy soft set (abbr. FSS). Then (Υ, ∆) is an anti-fuzzy soft a-ideal (abbr.
AFSID) of Ω if Υ[v] = {(ξΥ[v](l)) : l ∈ Ω and v ∈ ∆} is an AFID of Ω satisfies the following assertions:

(i) ξΥ[v](0) ≤ ξΥ[v](l),
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(ii) ξΥ[v](m� l) ≤ ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n),

for all l, m, n ∈ Ω and v ∈ ∆.

Definition 5. [4] Let Π be a collection of parameters and let IΥ(Ω) indicate the collection of all intuitionistic
fuzzy sets in Ω. Subsequently, (Υ, ∆) is called an intuitionistic fuzzy soft set over Ω, where ∆ ⊆ Π and
Υ : ∆→ IΥ(Ω).

3. Anti-Intuitionistic Fuzzy Soft a-Ideal

In what follows, we write Ω to denote a BCI-algebra (Ω;�, 0) and IFSs for intuitionistic fuzzy
sets and we will introduce an abbreviation for the notions in the following definitions to be used in the
rest of the paper.

Definition 6. Let (Υ, ∆) be an intuitionistic fuzzy soft set (abbr. IFSS). Afterwards, (Υ, ∆) is an
anti-intuitionistic fuzzy soft ideal (abbr. AIFSID) of Ω if Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) : l ∈ Ω and
v ∈ ∆} is an AIFID of Ω satisfies the following assertions:

(i) ξΥ[v](0) ≤ ξΥ[v](l) and ζΥ[v](0) ≥ ζΥ[v](l),

(ii) ξΥ[v](l) ≤ ξΥ[v](l �m) ∨ ξΥ[v](m),

(iii) ζΥ[v](l) ≥ ζΥ[v](l �m) ∧ ζΥ[v](m),

for all l, m, n ∈ Ω and v ∈ ∆.

Definition 7. An IFSS (Υ, ∆) is called an anti-intuitionistic fuzzy soft a-ideal (abbr. AIFSAID) of Ω
if Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) : l ∈ Ω and v ∈ ∆} is an AIFAID of Ω satisfies the following assertions:

(i) ξΥ[v](0) ≤ ξΥ[v](l) and ζΥ[v](0) ≥ ζΥ[v](l),

(ii) ξΥ[v](m� l) ≤ ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n),

(iii) ζΥ[v](m� l) ≥ ζΥ[v]((l � n)� (0�m)) ∧ ζΥ[v](n),

for all l, m, n ∈ Ω and v ∈ ∆.

Example 1. Suppose that there are four patients in the initial universe set Ω = {p1, p2, p3, p4} given by

� p1 p2 p3 p4
p1 p1 p2 p3 p4
p2 p2 p1 p4 p3
p3 p3 p4 p1 p2
p4 p4 p3 p2 p1

Afterwards, (Ω;�, p1) is a BCI-algebra.
Let a set of parameters, we consider ∆ = { f , s, n} be a status of patients, in which

f stands for the parameter "fever" can be treated by antibiotic,
s stands for the parameter "sneezing" can be treated by antiallergic,
n stands for the parameter "nosal block" can be treated by nosal drops.

Subsequently, Υ[ f ], Υ[s], and Υ[n] are IFSs over Ω represented by:

Υ p1 p2 p3 p4
f [0.1, 0.8] [0.1, 0.8] [0.2, 0.6] [0.2, 0.6]
s [0.0, 0.9] [0.0, 0.9] [0.3, 0.7] [0.3, 0.7]
n [0.2, 0.7] [0.2, 0.7] [0.4, 0.6] [0.4, 0.6]

Therefore, Υ[ f ], Υ[s], and Υ[n] are an AIFAID of Ω with respect to f , s, and n, respectively.
Hence, (Υ, ∆) is an AIFSAID of Ω.
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Proposition 1. For any AIFSAID (Υ, ∆) of Ω, the following inequalities hold:
ξΥ[v](m� l) ≤ ξΥ[v](l � (0�m)) and ζΥ[v](m� l) ≥ ζΥ[v](l � (0�m)), for any v ∈ ∆ and l, m ∈ Ω.

Proof. Let (Υ, ∆) be an AIFSAID of Ω.
Subsequently, Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) : l ∈ Ω and v ∈ ∆} is an AIFAID of Ω.
Thus, for every l, m, n ∈ Ω and v ∈ ∆,

ξΥ[v](m� l) ≤ ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n)
and

ζΥ[v](m� l) ≥ ζΥ[v]((l � n)� (0�m)) ∧ ζΥ[v](n).
By substituting n = 0, we get,

ξΥ[v](m� l) ≤ ξΥ[v]((l � 0)� (0�m)) ∨ ξΥ[v](0)
= ξΥ[v](l � (0�m)) ∨ ξΥ[v](0)

ξΥ[v](m� l) ≤ ξΥ[v](l � (0�m))

and
ζΥ[v](m� l) ≥ ζΥ[v]((l � 0)� (0�m)) ∧ ζΥ[v](0)

= ζΥ[v](l � (0�m)) ∧ ζΥ[v](0)
ζΥ[v](m� l) ≥ ζΥ[v](l � (0�m)).

Theorem 1. Over Ω, any AIFSAID is an AIFSID.

Proof. Let (Υ, ∆) be an AIFSAID of Ω.
Subsequently, Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) : l ∈ Ω and v ∈ ∆} is an AIFAID of Ω.
Thus, for every l, m, n ∈ Ω and v ∈ ∆,

ξΥ[v](m� l) ≤ ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n)
and

ζΥ[v](m� l) ≥ ζΥ[v]((l � n)� (0�m)) ∧ ζΥ[v](n).
By substituting l = 0 we obtain,

ξΥ[v](m� 0) ≤ ξΥ[v]((0� n)� (0�m)) ∨ ξΥ[v](n)
and

ζΥ[v](m� 0) ≥ ζΥ[v]((0� n)� (0�m)) ∧ ζΥ[v](n).
Because we know that (0� n)� (0�m) ≤ m� n, therefore

ξΥ[v]((0� n)� (0�m)) ≤ ξΥ[v](m� n)
and

ζΥ[v]((0� n)� (0�m)) ≥ ζΥ[v](m� n).
Thus,

ξΥ[v](m) ≤ ξΥ[v]((0� n)� (0�m)) ∨ ξΥ[v](n) ≤ ξΥ[v](m� n) ∨ ξΥ[v](n)
and

ζΥ[v](m) ≥ ζΥ[v]((0� n)� (0�m)) ∧ ζΥ[v](n) ≥ ζΥ[v](m� n) ∧ ζΥ[v](n),
i.e., Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) : l ∈ Ω and v ∈ ∆} is an AIFID of Ω.

Hence (Υ, ∆) is an AIFSID of Ω.

The converse of Theorem 1 is not true in general i.e., an AIFSID might not be an AIFSAID,
as shown in the next example and we will give in the latter theorem a condition for this converse to
be true.

Example 2. Let Ω = {0, p, q, r, s} with Cayley table:
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� 0 p q r s
0 0 0 s r q
p p 0 s r q
q q q 0 s r
r r r q 0 s
s s s r q 0

Subsequently, (Ω;�, 0) is a BCI-algebra.
Let ∆ = {θ, ϑ, κ} be a set of parameters and consider the IFSS (Υ, ∆) over Ω. Then Υ[θ], Υ[ϑ], and Υ[κ] are
IFSs over Ω represented by:

Υ 0 p q r s
θ [0.1, 0.9] [0.4, 0.4] [0.3, 0.6] [0.2, 0.8] [0.5, 0.1]
ϑ [0, 0.9] [0.1, 0.7] [0.4, 0.4] [0.3, 0.5] [0.2, 0.6]
κ [0, 1] [0.2, 0.6] [0.3, 0.5] [0.4, 0.3] [0.1, 0.7]

Afterwards, (Υ, ∆) is an AIFSID of Ω, but since
ξΥ[ϑ](p� s) = ξΥ[ϑ](q) = 0.4 6≤ 0.2 = ξΥ[ϑ]((s � 0)� (0 � p)) ∨ ξΥ[ϑ](0)
and
ζΥ[ϑ](p� s) = ζΥ[ϑ](q) = 0.4 6≥ 0.6 = ζΥ[ϑ]((s � 0) � (0 � p)) ∧ ζΥ[ϑ](0),
i.e., Υ[ϑ] = {(ξΥ[ϑ](l), ζΥ[ϑ](l)) : l ∈ Ω and ϑ ∈ ∆} is not an AIFAID of Ω.
Therefore (Υ, ∆) is not an AIFSAID of Ω with respect to ϑ.
Hence (Υ, ∆) is not an AIFSAID of Ω.

Theorem 2. Let (Υ, ∆) be an AIFSID over Ω. If for any v ∈ ∆ and l, m ∈ Ω, ξΥ[v](m� l) ≤ ξΥ[v](l �
(0�m)) and ζΥ[v](m� l) ≥ ζΥ[v](l � (0�m)), then (Υ, ∆) is an AIFSAID over Ω.

Proof. Let (Υ, ∆) be an AIFSID over Ω.
Therefore, Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) : l ∈ Ω and v ∈ ∆} is an AIFID of Ω.
Thus, for any v ∈ ∆ and l, m, n ∈ Ω,
ξΥ[v](m� l) ≤ ξΥ[v](l � (0�m))

≤ ξΥ[v]((l � (0�m))� n) ∨ ξΥ[v](n)
ξΥ[v](m� l) ≤ ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n)
and
ζΥ[v](m� l) ≥ ζΥ[v](l � (0�m))

≥ ζΥ[v]((l � (0�m))� n) ∧ ζΥ[v](n)
ζΥ[v](m� l) ≥ ζΥ[v]((l � n)� (0�m)) ∧ ζΥ[v](n)
Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) : l ∈ Ω and v ∈ ∆} is an AIFAID of Ω.
Hence (Υ, ∆) is an AIFSAID over Ω.

Theorem 3. If (Υ, ∆) is an AIFSAID of Ω, then for any parameter v ∈ ∆ and l, m, n ∈ Ω, ξΥ[v]((l � n)�
(0�m)) ≤ ξΥ[v](l � (n�m)) and ζΥ[v]((l � n)� (0�m)) ≥ ζΥ[v](l � (n�m)).

Proof. Let (Υ, ∆) be an AIFSAID of Ω.
Because (l � n)� (0�m) = (l � n)� ((n�m)� n) ≤ l � (n�m).
Therefore, (l � n)� (0�m)� (l � (n�m)) = 0.
By Theorem 1, (Υ, ∆) is an AIFSID of Ω.
Thus,Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) : l ∈ Ω and v ∈ ∆} is an AIFID of Ω.
Thus, for every l, m, n ∈ Ω and v ∈ ∆,
ξΥ[v]((l � n) � (0 � m)) ≤ ξΥ[v](((l � n) � (0 � m)) � (l � (n � m))) ∨ ξΥ[v](l � (n � m))

= ξΥ[v](0) ∨ ξΥ[v](l � (n�m))

≤ ξΥ[v](l � (n�m))



Axioms 2020, 9, 79 6 of 13

and
ζΥ[v]((l � n)� (0�m)) ≥ ζΥ[v](((l � n)� (0�m))� (l � (n�m))) ∧ ζΥ[v](l � (n�m))

= ζΥ[v](0) ∧ ζΥ[v](l � (n�m))

≥ ζΥ[v](l � (n�m)).

Definition 8. Let (Υ, ∆) and (Γ, Ψ) be two IFSSs over Ω. Then (Υ, ∆) “AND” (Γ, Ψ) written as
(Υ, ∆)∧̃(Γ, Ψ) is (Π, ∆×Ψ) of Ω, where Π[v, ω] = Υ[v] ∩ Γ[ω] for all (v, ω) ∈ ∆×Ψ.

Theorem 4. If (Υ, ∆) and (Γ, Ψ) are two AIFSAIDs of Ω, then (Π, ∆×Ψ) is also an AIFSAID of Ω.

Proof. By definition, (Υ, ∆)∧̃(Γ, Ψ) = (Π, ∆×Ψ), where
Π[v, ω] = Υ[v] ∩ Γ[ω] = {(ξΥ[v]∩Γ[ω](l), ζΥ[v]∩Γ[ω](l)) : l ∈ Ω and (v, ω) ∈ ∆×Ψ}
For any l ∈ Ω and (v, ω) ∈ ∆×Ψ,

ξΠ[v,ω](0) = ξΥ[v]∩Γ[ω](0)
= ξΥ[v](0) ∨ ξΓ[ω](0)
≤ ξΥ[v](l) ∨ ξΓ[ω](l)
= ξΥ[v]∩Γ[ω](l)

ξΠ[v,ω](0) ≤ ξΠ[v,ω](l)
and

ζΠ[v,ω](0) = ζΥ[v]∩Γ[ω](0)
= ζΥ[v](0) ∧ ζΓ[ω](0)
≥ ςΥ[v](l) ∧ ζΓ[ω](l)
= ζΥ[v]∩Γ[ω](l)

ζΠ[v,ω](0) ≥ ζΠ[v,ω](l).
For any l, m, n ∈ Ω, and (v, ω) ∈ ∆×Ψ,
ξΠ[v,ω](m� l) = ξΥ[v]∩Γ[ω](m� l) = ξΥ[v](m� l) ∨ ξΓ[ω](m� l)
≤ (ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n)) ∨ (ξΓ[ω]((l � n)� (0�m)) ∨ ξΓ[ω](n))
= (ξΥ[v]((l � n)� (0�m)) ∨ ξΓ[ω]((l � n)� (0�m))) ∨ (ξΥ[v](n) ∨ ξΓ[ω](n))
= (ξΥ[v]∩Γ[ω]((l � n)� (0�m))) ∨ (ξΥ[v]∩Γ[ω](n))
and
ζΠ[v,ω](m� l) = ζΥ[v]∩Γ[ω](m� l) = ζΥ[v](m� l) ∧ ςΓ[ω](m� l)
≥ (ζΥ[v]((l � n)� (0�m)) ∧ ζΥ[v](n)) ∧ (ζΓ[ω]((l � n)� (0�m)) ∧ ζΓ[ω](n))
= (ζΥ[v]((l � n)� (0�m)) ∧ ζΓ[ω]((l � n)� (0�m))) ∧ (ζΥ[v](n) ∧ ζΓ[ω](n))
= (ζΥ[v]∩Γ[ω]((l � n)� (0�m))) ∧ (ζΥ[v]∩Γ[ω](n)).
Thus, Π[v, ω] = Υ[v] ∩ Γ[ω] is an AIFAID of Ω for any (v, ω) ∈ ∆×Ψ.
Hence (Π, ∆×Ψ) is an AIFSAID of Ω for any (v, ω) ∈ ∆×Ψ.

Definition 9. The "extended intersection" of two IFSSs (Υ, ∆) and (Γ, Ψ) denoted by (Υ, ∆) uE (Γ, Ψ)

is (Π, Θ), where Θ = ∆ ∪Ψ and for every v ∈ Θ,

Π(v) =


Υ[v], v ∈ ∆−Ψ,
Γ[v], v ∈ Ψ− ∆,

Υ[v] ∩ Γ[v], v ∈ ∆ ∩Ψ.

Theorem 5. If (Υ, ∆) and (Γ, Ψ) are AIFSAIDs of Ω, then (Υ, ∆) uE (Γ, Ψ) is an AIFSAID of Ω.

Proof. We know that (Υ, ∆) uE (Γ, Ψ) = (Π, Θ), where Θ = ∆ ∪Ψ and for every v ∈ Θ,

Π(v) =


Υ[v], v ∈ ∆−Ψ,
Γ[v], v ∈ Ψ− ∆,

Υ[v] ∩ Γ[v], v ∈ ∆ ∩Ψ.
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For any v ∈ Θ, if v ∈ ∆−Ψ, then Π(v) = Υ(v) is an AIFAID of Ω.
Likewise, if v ∈ Ψ− ∆, Π(v) = Γ(v), which is an AIFAID of Ω.
Moreover if v ∈ Θ, such that v ∈ ∆ ∩Ψ, then Π(v) = Υ[v] ∩ Γ[v] is also an AIFAID of Ω.
Therefore, Π(v) is an AIFAID of Ω.
Hence, (Π, Θ) is an AIFSAID of Ω.

We deduce the following Corollary.

Corollary 1. The “restricted intersection” of two AIFSAIDs is an AIFSAID.

Definition 10. Let (Υ, ∆) and (Γ, Ψ) be two IFSSs over Ω. Subsequently, the "union" denoted by
(Υ, ∆)∪̃(Γ, Ψ) is (Π, Θ), where Θ = ∆ ∪Ψ and for every v ∈ Θ,

Π(v) =


Υ[v], v ∈ ∆−Ψ,
Γ[v], v ∈ Ψ− ∆,

Υ[v] ∪ Γ[v], v ∈ ∆ ∩Ψ.

The union of two AIFSAIDs is not necessarily an AIFSAID, as shown in the next example.

Example 3. Let Ω = {0, p, q, r, s} with Cayley table given by:

� 0 p q r s
0 0 0 q r s
p p 0 q r s
q q q 0 s r
r r r s 0 q
s s s r q 0

Subsequently, (Ω;�, 0) is a BCI-algebra.
Let ∆ = {θ, ϑ, κ, δ} and Ψ = {κ, δ, η} be two collections of parameters and consider the IFSS (Υ, ∆) over Ω.
Afterwards, Υ[θ], Υ[ϑ], Υ[κ] and Υ[δ] are IFSs over Ω given by:

Υ 0 p q r s
θ [0, 0.9] [0, 0.9] [0.3, 0.4] [0.1, 0.4] [0.3, 0.4]
ϑ [0.2, 0.6] [0.2, 0.6] [0.4, 0.3] [0.4, 0.3] [0.3, 0.5]
κ [0.1, 0.8] [0.1, 0.8] [0.5, 0.2] [0.3, 0.5] [0.5, 0.2]
δ [0.2, 0.7] [0.2, 0.7] [0.3, 0.5] [0.5, 0.3] [0.5, 0.3]

Then Υ[v] is an AIFAID of Ω with respect to θ, ϑ, κ, and δ.
Thus (Υ, ∆) is an AIFSAID of Ω.
Now let (Γ, Ψ) be an IFSS over Ω. Then Γ[κ], Γ[δ] and Γ[η] are IFSs over Ω given by:

Γ 0 p q r s
κ [0, 0.7] [0, 0.7] [0.3, 0.5] [0.5, 0.2] [0.5, 0.2]
δ [0.2, 0.6] [0.2, 0.6] [0.5, 0.2] [0.5, 0.2] [0.3, 0.4]
η [0, 0.9] [0, 0.9] [0.3, 0.4] [0.1, 0.6] [0.3, 0.4]

Subsequently, Γ[v] is an AIFAID of Ω with respect to κ, δ, and η.
Thus, (Γ, Ψ) is an AIFSAID of Ω.
Note that (Υ, ∆)∪̃(Γ, Ψ) = (Π, Θ) is not an AIFSAID of Ω based on κ ∈ ∆ ∩ Ψ. If ∆ ∩ Ψ = ∅, then
the union is an AIFSAID of Ω proved in the next theorem.

Theorem 6. Let (Υ, ∆) and (Γ, Ψ) be two AIFSAIDs of Ω. If ∆ ∩ Ψ = ∅, then (Υ, ∆)∪̃(Γ, Ψ) = (Π, Θ)

is an AIFSAID of Ω.
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Proof. We know that (Υ, ∆)∪̃(Γ, Ψ) = (Π, Θ), where Θ = ∆ ∪Ψ and for every v ∈ Θ,

Π(v) =


Υ[v], v ∈ ∆−Ψ,
Γ[v], v ∈ Ψ− ∆,

Υ[v] ∪ Γ[v], v ∈ ∆ ∩Ψ.

Because ∆ ∩Ψ = ∅, then either v ∈ ∆−Ψ or v ∈ Ψ− ∆ for all v ∈ Θ.
If v ∈ ∆−Ψ, then Π(v) = Υ(v), which is an AIFAID of Ω.
Thus, (Υ, ∆) is an AIFSAID of Ω.
Similarly v ∈ Ψ− ∆, then Π(v) = Γ(v) is an AIFAID of Ω.
Thus, (Γ, Ψ) is an AIFSAID of Ω.
Hence, (Υ, ∆)∪̃(Γ, Ψ) is an AIFSAID of Ω.

Definition 11. Let (Υ, ∆) be an anti-soft BCI-algebra (abbr. ASBCI A) over Ω. An IFSS (Γ, Ψ) over Ω is
an AIFSID of (Υ, ∆), written as (Γ, Ψ)Ñ(Υ, ∆), if Ψ ⊂ ∆ and for any v ∈ Ψ,

Γ[v] = {(ξΓ[v](l), ζΓ[v](l)) : l ∈ Ω}NΥ[v].

Definition 12. Let (Υ, ∆) be an ASBCI A over Ω. An IFSS (Γ, Ψ) over Ω is an AIFSAID of (Υ, ∆), denoted
by (Γ, Ψ)Ña(Υ, ∆), if Ψ ⊂ ∆ and for any v ∈ Ψ,

Γ[v] = {(ξΓ[v](l), ζΓ[v](l)) : l ∈ Ω}NaΥ[v].

Example 4. Let Ω = {0, p, q, r, s} with Cayley table:

� 0 p q r s
0 0 0 q r s
p p 0 q r s
q q q 0 s r
r r r s 0 q
s s s r q 0

Subsequently, (Ω;�, 0) is a BCI-algebra.
Let ∆ = {θ, ϑ, κ} be a set of parameters and let (Υ, ∆) be a soft set over Ω and so let Υ[θ] = Υ[ϑ] = {0, q, r, s},
Υ[κ] = {0, q}, that are all sub-algebras of Ω.
Hence, (Υ, ∆) is an ASBCI A over Ω.
Let (Γ, Ψ) be an IFSS over Ω, where Ψ = {θ, ϑ} ⊂ ∆. Afterwards, Γ[θ] and Γ[ϑ] are IFSs in Ω defined by:

Γ 0 p q r s
θ [0.2, 0.7] [0.2, 0.7] [0.2, 0.7] [0.4, 0.1] [0.4, 0.1]
ϑ [0.3, 0.7] [0.3, 0.7] [0.3, 0.7] [0.5, 0.4] [0.5, 0.4]

Afterwards, Γ[θ] = {(ξΓ[θ](l), ζΓ[θ](l)) : l ∈ Ω} and Γ[ϑ] = {(ξΓ[ϑ](l), ζΓ[ϑ](l)) : l ∈ Ω} are
AIFAIDs of Ω related to Γ[θ] and Γ[ϑ], respectively.
Hence, (Γ, Ψ)Ña(Υ, ∆).

Any AIFSAID (Γ, Ψ) of an ASBCI A (Υ, ∆) is an AIFSID of (Υ, ∆), but the converse is not true,
as proved by the next example.

Example 5. Let Ω = {0, p, q, r, s} with Cayley table.
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� 0 p q r s
0 0 0 0 0 0
p p 0 0 0 0
q q q 0 q 0
r r r r 0 0
s s s r q 0

Subsequently, (Ω;�, 0) is a “BCK-algebra” and, thus, a “BCI-algebra”.
Let ∆ = {θ, ϑ, κ, δ, η} be a set of parameters.
Let (Υ, ∆) be a soft set over Ω and so we let Υ[θ] = Ω, Υ[ϑ] = Υ[κ] = {0, q, r, s} and Υ[δ] = Υ[η] = {0, q},
that are all subalgebras of Ω.
Hence, (Υ, ∆) is a ASBCI A over Ω.
Suppose that (Γ, Ψ) is an IFSS over Ω, where Ψ = {κ, δ, η} ⊂ ∆. Afterwards, Γ[κ], Γ[δ] and Γ[η] are an IFSs
in Ω represented by:

Γ 0 p q r s
κ [0, 0.7] [0.1, 0.6] [0.2, 0.5] [0.3, 0.3] [0.3, 0.3]
δ [0.1, 0.8] [0.2, 0.7] [0.3, 0.6] [0.4, 0.4] [0.4, 0.4]
η [0.1, 0.5] [0.2, 0.4] [0.3, 0.3] [0.4, 0.1] [0.4, 0.1]

Subsequently, (Γ, Ψ) is an AIFSID of (Υ, ∆), but since
ξΥ[κ](r� q) = ξΥ[κ](r) = 0.3 6≤ 0.2 = ξΥ[κ]((q� 0)� (0� r)) ∨ ξΥ[v](0)
and
ζΥ[κ](r� q) = ζΥ[κ](r) = 0.3 6≥ 0.5 = ξΥ[κ]((q� 0)� (0� r)) ∧ ζΥ[v](0).
i.e., Γ[κ] = {(ξΓ[κ](l), ζΓ[κ](l)) : l ∈ Ω} is not an AIFAID of Ω related to Υ[κ].
Therefore (Γ, Ψ) is not an AIFSAID of ASBCI A (Υ, ∆).

Theorem 7. Let (Υ, ∆) be an ASBCI A over Ω. If (Γ, Ψ) and (Π, Λ) are AIFSAIDs of (Υ, ∆), then the
“extended intersection" of (Γ, Ψ) and (Π, Λ) is an AIFSAIDs of (Υ, ∆).

Proof. We know that (Γ, Ψ) uE (Π, Λ) = (Ξ, Θ), where Θ = Ψ ∪Λ ⊂ ∆ and for every v ∈ Θ,

Ξ(v) =


Γ[v], v ∈ Ψ−Λ,
Π[v], v ∈ Λ−Ψ,

Γ[v] ∩Π[v], v ∈ Ψ ∩Λ.

For any v ∈ Θ, if v ∈ Ψ − Λ, then Ξ[v] = Γ[v] = {(ξΓ[v](l), ζΓ[v](l)) : l ∈ Ω}NaΥ[v], since
(Γ, Ψ)Ña(Υ, ∆).
Likewise, if v ∈ Λ − Ψ, then Ξ[v] = Π[v] = {(ξΠ[v](l), ζΠ[v](l)) : l ∈ Ω}NaΥ[v], since
(Π, Λ)Ña(Υ, ∆).
Moreover if v ∈ Θ, such that v ∈ Ψ∩Λ, then Ξ(v) = Γ[v]∩Π[v] = {(ξΓ[v](l)∨ ξΠ[v](l)), (ζΓ[v](l)∧
ζΠ[v](l))}NaΥ[v].
Therefore, Ξ(v)NaΥ[v] for any v ∈ Θ.
Hence, (Ξ, Θ) = (Γ, Ψ) uE (Π, Λ)Ña(Υ, ∆).

Next corollary follows directly.

Corollary 2. Let (Γ, Ψ) and (Π, Λ) be two AIFSAIDs of an ASBCI A (Υ, ∆). If Ψ∩Λ = ∅, then the “union”
(Γ, Ψ)∪̃(Π, Λ) is an AIFSAID of (Υ, ∆).
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4. Characterization of Anti-Intuitionistic Fuzzy Soft a-Ideals

In this section, we give characterizations of an AIFSAID (Υ, ∆) over Ω while using the idea of
a soft (γ, ν)-level set, L(Υ[v]; γ; ν) = {l ∈ Ω | ξΥ[v](l) ≤ γ and ζΥ[v](l) ≥ ν}, for any v ∈ ∆ and
γ, ν ∈ [0, 1].

Theorem 8. An AIFSS (Υ, ∆) over Ω is an AIFSAID over Ω ⇐⇒ the non-empty soft (γ, ν)-level set,
L(Υ[v]; γ; ν) = {l ∈ Ω | ξΥ[v](l) ≤ γ and ζΥ[v](l) ≥ ν} is an a-ideal of Ω, for any v ∈ ∆ and γ, ν ∈ [0, 1].

Proof. Let (Υ, ∆) be an AIFSAID over Ω.
Afterwards, Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) | l ∈ Ω} is an AIFAID of Ω, for any v ∈ ∆.
Let L(Υ[v]; γ; ν) = {l ∈ Ω | ξΥ[v](l) ≤ γ and ζΥ[v](l) ≥ ν} 6= ∅, for any v ∈ ∆ and γ, ν ∈ [0, 1].
Subsequently, for any l ∈ L(Υ[v]; γ; ν),
ξΥ[v](0) ≤ ξΥ[v](l) ≤ γ and ζΥ[v](0) ≥ ζΥ[v](l) ≥ ν,
i.e., 0 ∈ L(Υ[v]; γ; ν).
Now, let (l � n)� (0�m) ∈ L(Υ[v]; γ; ν) and n ∈ L(Υ[v]; γ; ν), for any l, m, n ∈ Ω.
Subsequently, ξΥ[v]((l � n)� (0�m)) ≤ γ, ξΥ[v](n) ≤ γ

and
ζΥ[v]((l � n)� (0�m)) ≥ ν, ζΥ[v](n) ≥ ν.
Thus, for any l, m, n ∈ Ω,
ξΥ[v](m� l) ≤ ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n) ≤ γ.
ζΥ[v](m� l) ≥ ζΥ[v]((l � n)� (0�m)) ∧ ζΥ[v](n) ≥ ν.
i.e., m� l ∈ L(Υ[v]; γ; ν).
Hence, L(Υ[v]; γ; ν) 6= ∅ is an a-ideal of Ω, for any v ∈ ∆ and γ, ν ∈ [0, 1].
Conversely assume that L(Υ[v]; γ; ν) is an a-ideal of Ω, for any v ∈ ∆ and γ, ν ∈ [0, 1].
If for some l0 ∈ Ω and v0 ∈ ∆, ξΥ[v0]

(0) > ξΥ[v0]
(l0) and ζΥ[v0]

(0) < ζΥ[v0]
(l0), then ξΥ[v0]

(0) > γ0 ≥
ξΥ[v0]

(l0) and ζΥ[v0]
(0) < ν0 ≤ ζΥ[v0]

(l0), for some γ0, ν0 ∈ [0, 1].
This implies that l0 ∈ L(Υ[v0]; γ0; ν0) and that 0 /∈ L(Υ[v0]; γ0; ν0), this contradicts the hypothesis that
L(Υ[v0]; γ0; ν0) is an a-ideal of Ω.
Thus ξΥ[v](0) ≤ ξΥ[v](l) and ζΥ[v](0) ≥ ζΥ[v](l), for any v ∈ ∆ and l ∈ Ω.
Moreover, if there are elements l0, m0, n0 ∈ Ω and v0 ∈ ∆, such that
ξΥ[v0]

(m0 � l0) > ξΥ[v0]
((l0 � n0)� (0�m0)) ∨ ξΥ[v0]

(n0)

and
ζΥ[v0]

(m0 � l0) < ζΥ[v0]
((l0 � n0)� (0�m0)) ∧ ζΥ[v](n0).

Afterwards, for some γ0, ν0 ∈ [0, 1],
ξΥ[v0]

(m0 � l0) > γ0 ≥ ξΥ[v0]
((l0 � n0)� (0�m0)) ∨ ξΥ[v0]

(n0)

and
ζΥ[v0]

(m0 � l0) < ν0 ≤ ζΥ[v0]
((l0 � n0)� (0�m0)) ∧ ζΥ[v](n0).

i.e., m0 � l0 /∈ L(Υ[v0]; γ0; ν0), again a contradiction.
Thus, for any l, m, n ∈ Ω and for any v ∈ ∆,
ξΥ[v](m� l) ≤ ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n)
and
ζΥ[v](m� l) ≥ ζΥ[v]((l � n)� (0�m)) ∧ ζΥ[v](n)
i.e., Υ[v] = {(ξΥ[v](l), ζΥ[v](l)) | l ∈ Ω} is an AIFAID of Ω, for any v ∈ ∆.
Hence, (Υ, ∆) is an AIFSAID over Ω.

From the above Theorem we get the following corollary.

Corollary 3. An AIFSS (Υ, ∆) over Ω is an AIFSAID over Ω ⇐⇒ the non-empty soft (γ, ν)-level set,
L(Υ[v]; γ; ν) = {l ∈ Ω | ξΥ[v](l) ≤ γ and ζΥ[v](l) ≥ ν}, is an a-ideal of Ω, for any v ∈ ∆ and γ, ν ∈
(1/2, 1].
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Theorem 9. A non-empty soft (γ, ν)-level set, L(Υ[v]; γ; ν) = {l ∈ Ω | ξΥ[v](l) ≤ γ and ζΥ[v](l) ≥ ν}, is
an a-ideal of Ω, for any v ∈ ∆ and γ, ν ∈ (1/2, 1]⇐⇒ the following conditions hold:

(i) (ξΥ[v](0) ∨ 1/2) ≤ ξΥ[v](l) and (ζΥ[v](0) ∨ 1/2) ≥ ζΥ[v](l),
(ii) (ξΥ[v](m� l) ∨ 1/2) ≤ ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n),
(iii) (ζΥ[v](m� l) ∨ 1/2) ≥ ζΥ[v]((l � n)� (0�m)) ∧ ζΥ[v](n),

for any v ∈ ∆ and l, m, n ∈ Ω.

Proof. Let the non-empty soft (γ, ν)-level set, L(Υ[v]; γ; ν) = {l ∈ Ω | ξΥ[v](l) ≤ γ and ζΥ[v](l) ≥ ν}
be an a-ideal of Ω, for any v ∈ ∆ and γ, ν ∈ (1/2, 1].
If for some l0 ∈ Ω and v0 ∈ ∆,
(ξΥ[v0]

(0) ∨ 1/2) > ξΥ[v0]
(l0) and (ξΥ[v0]

(0) ∨ 1/2) < ξΥ[v0]
(l0).

Then there are γ0, ν0 ∈ (1/2, 1], such that
(ξΥ[v0]

(0) ∨ 1/2) > γ0 ≥ ξΥ[v0]
(l0) and (ζΥ[v0]

(0) ∨ 1/2) < ν0 ≤ ζΥ[v0]
(l0).

This implies that ξΥ[v0]
(0) > γ0 ≥ ξΥ[v0]

(l0) and ζΥ[v0]
(0) < ν0 ≤ ζΥ[v0]

(l0).
i.e., l0 ∈ L(Υ[v0]; γ0; ν0) but 0 /∈ L(Υ[v0]; γ0; ν0), which gives a contradiction to the assumption that
L(Υ[v0]; γ0; ν0) is an a-ideal of Ω, for any v0 ∈ ∆ and γ0, ν0 ∈ (1/2, 1].
Thus, (i) is valid.
Moreover, if there are elements l0, m0, n0 ∈ Ω and v0 ∈ ∆, such that
(ξΥ[v0]

(m0 � l0) ∨ 1/2) > ξΥ[v0]
((l0 � n0)� (0�m0)) ∨ ξΥ[v0]

(n0)

and
(ζΥ[v0]

(m0 � l0) ∨ 1/2) < ζΥ[v0]
((l0 � n0)� (0�m0)) ∧ ζΥ[v](n0).

Subsequently, for some γ0, ν0 ∈ (1/2, 1],
(ξΥ[v0]

(m0 � l0) ∨ 1/2) > γ0 ≥ ξΥ[v0]
((l0 � n0)� (0�m0)) ∨ ξΥ[v0]

(n0)

and
(ζΥ[v0]

(m0 � l0) ∨ 1/2) < ν0 ≤ ζΥ[v0]
((l0 � n0)� (0�m0)) ∧ ζΥ[v](n0).

i.e., ξΥ[v0]
(m0 � l0) > γ0 ≥ ξΥ[v0]

((l0 � n0)� (0�m0)) ∨ ξΥ[v0]
(n0)

and
ζΥ[v0]

(m0 � l0) < ν0 ≤ ζΥ[v0]
((l0 � n0)� (0�m0)) ∧ ζΥ[v](n0).

i.e., ((l0� n0)� (0�m0)) ∈ L(Υ[v0]; γ0; ν0) and n0 ∈ L(Υ[v0]; γ0; ν0) but (m0� l0) /∈ L(Υ[v0]; γ0; ν0),
which—again—contradicts the assumption that L(Υ[v0]; γ0; ν0) is an a-ideal of Ω, for any v0 ∈ ∆ and
γ0, ν0 ∈ (1/2, 1].
Hence, (ii) and (iii) are valid.
Conversely, suppose that the conditions (i), (ii), and (iii) are valid.
Let L(Υ[v]; γ; ν) = {l ∈ Ω | ξΥ[v](l) ≤ γ and ζΥ[v](l) ≥ ν} 6= ∅, for any v ∈ ∆ and γ, ν ∈ (1/2, 1].
Subsequently, for any l ∈ L(Υ[v]; γ; ν),
(ξΥ[v](0) ∨ 1/2) ≤ ξΥ[v](l) ≤ γ and
(ζΥ[v](0) ∨ 1/2) ≥ ζΥ[v](l) ≥ ν

which implies ξΥ[v](0) ≤ γ and ζΥ[v](0) ≥ ν.
Thus, 0 ∈ L(Υ[v]; γ; ν).
Now let (l � n)� (0�m) ∈ L(Υ[v]; γ; ν) and n ∈ L(Υ[v]; γ; ν), for any l, m, n ∈ Ω.
Subsequently, ξΥ[v]((l � n)� (0�m)) ≤ γ, ξΥ[v](n) ≤ γ

and
ζΥ[v]((l � n)� (0�m)) ≥ ν, ζΥ[v](n) ≥ ν.
Thus, from (ii), we get,
(ξΥ[v](m� l) ∨ 1/2) ≤ ξΥ[v]((l � n)� (0�m)) ∨ ξΥ[v](n) ≤ γ

and
(ζΥ[v](m� l) ∨ 1/2) ≥ ζΥ[v]((l � n)� (0�m)) ∧ ζΥ[v](n) ≥ ν.
This implies, ξΥ[v](m� l) ≤ γ and ζΥ[v](m� l) ≥ ν.
Thus, m� l ∈ L(Υ[v]; γ; ν).
Therefore, L(Υ[v]; γ; ν) is an a-ideal of Ω, for any v ∈ ∆ and γ, ν ∈ (1/2, 1].
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5. Conclusions

The notion of anti-intuitionistic fuzzy soft a-ideal (abbr. AIFSAID) is introduced and studied
over a BCI-algebra Ω. We proved that any AIFSAID is an anti-intuitionistic fuzzy soft ideal
(abbr. AIFSID) of Ω and that the converse is not always true. We proved that the operations
“AND”, “extended intersection”, and “restricted intersection” between any two AIFSAIDs of Ω, is also
an AIFSAID of Ω whereas the “union” is not necessarily an AIFSAID. Moreover, characterizations
of AIFSAID using the concept of a soft level set were given.
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