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Abstract: In the present paper, we propose a common fixed point theorem for three
commuting mappings via a new contractive condition which generalizes fixed point theorems
of Darbo, Hajji and Aghajani et al. An application is also given to illustrate our main result.
Moreover, several consequences are derived, which are generalizations of Darbo’s fixed point
theorem and a Hajji’s result.
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1. Introduction and Preliminaries

Schauder’s fixed point theorem [1] plays a crucial role in nonlinear analysis.
Namely, Schauder [1] has proved that if a self-mapping T is continuous on compact and convex subset
of Banach spaces, then T has at least one fixed point. In 1955, Darbo [2] has generalized the classical
Schauder’s fixed point theorem for α-set contraction that is, such that

α(T(A)) ≤ kα(A), with k ∈ [0, 1),

on a closed, bounded and convex subsets of Banach spaces. Since then, many interesting works have
appeared. For example, in 1967, Sadovskii [3] proved the fixed point property for condensing functions
on a closed, bounded and convex subset of Banach spaces, that is, those satisfying

α(T(A)) < α(A), with α(A) 6= 0.

It should be noted that any α-set contraction is a condensing function, but the converse is not true
in general (see Reference [4]). In 2007, Hajji and Hanebaly [5] have extended the above contractive
conditions and show the existence of a common fixed point for commuting mappings satisfying

α(T(A)) ≤ k sup
i∈I

(α(Si(A))), α(T(A)) < k sup
i∈I

(α(Si(A)), α(A)),

on a closed, bounded and convex subset Ω of a locally convex space. Here, Si and T are continuous
functions from Ω into itself, with Si are affine or linear. In 2013, Hajji [6] established a common fixed
point theorems for commuting mappings verifying

α(ST(A)) ≤ kα(A), α(ST(A)) < α(A),

which generalize Darbo’s and Sadovskii’s fixed point theorems. Furthermore, as examples and
applications, he studied the existence of common solutions of equations in Banach spaces using the
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measure of noncompactness. Recently, in Reference [7], we made use of some axioms of measure of
noncompactness to establish the following contractive condition

σ(H(A)) ≤ ϕ(S(A))− ϕ(S(conv(T(A)))),

giving rise to common fixed point theorem for three commuting and continuous mappings
H, S and T on a closed, bounded and convex subset of Banach spaces, with H and S are affine.
Here, σ satisfies some properties of the measure of noncompactness while the conditions on ϕ are
not needed. For particular choices of ϕ, σ, H and S Darbo’s fixed point theorem can be obtained.
As illustration, we have provided a concrete example for which both the classical Darbo’s theorem and
its generalization due to Hajji [6] are not applicable.

The aim of this paper is to prove the existence of a common fixed point for three mappings H,
S and T satisfying the following new contraction

ξ(σ(H(A))) ≤ ϕ(A)− ϕ(conv(ST(A))).

Our result generalizes the theorems of Darbo [2], Hajji [6], and Aghajani et al. [8].
As an application, we study the existence of common solutions of the following equations

(1) u(t) = f (t, Su(t)),
(2) u(t) = f (t, u(t)),
(3) u(t) = Hu(t),
(4) u(t) = λHu(t) + (1− λ) f (t, Su(t)), λ ∈ [0, 1],

under appropriate assumptions on functions S, H, f and ξ. Motivated by contractive conditions
investigated in b-metric spaces [9–11] and using a measure of noncompactness, we derive from our
main theorem some consequences, which are generalizations of Darbo’s fixed point theorem [2] and
a Hajji’s result [6].

The paper is outlined as follows. Section 2 presents the main result with its proof. An application
is provided in Section 3. Finally, several consequences on fixed point results are given in Section 4.

We conclude this introductory section by fixing some notations and recalling basic definitions
that will be needed in the sequel. Denote by N the set of nonnegative integers and put R+ = [0,+∞).
Let (X, ‖.‖) be a given Banach space. The symbols A and conv(A) stand for the closure and the
convex hull of A, respectively. Moreover, we denote by MX the family of all nonempty and bounded
subsets of X and by NX its subfamily consisting of all relatively compact sets.

Definition 1 ([12]). A mapping µ : MX → R+ is called a measure of noncompactness in X if it satisfies the
following conditions:
(i) The family kerµ = {A ∈MX : µ(A) = 0} is nonempty and ker µ ⊆ NX .
(ii) A ⊆ B⇒ µ(A) ≤ µ(B).
(iii) µ(A) = µ(A).
(iv) µ(conv(A)) = µ(A).
(v) µ(λA + (1− λ)B) ≤ λµ(A) + (1− λ)µ(B), for any λ ∈ [0, 1].
(vi) If (An)n is a sequence of closed sets from MX such that An+1 ⊆ An for n = 1, 2, · · · ,
and if lim

n→+∞
µ(An) = 0, then the set A∞ = ∩+∞

n=1 An is nonempty.

The family ker µ defined in axiom (i) is called the kernel of the measure of noncompactness.

Definition 2 ([13]). An operator S on a convex set A is said to be affine if it satisfies the identity

S(kx + (1− k)y) = kSx + (1− k)Sy,
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whenever 0 < k < 1, and x, y ∈ A.

2. Main Result

In this section, we present and prove our main result on a common fixed point for three commuting
operators. We also deduce from the obtained result a corollary which belongs to the classical metric
fixed point theory.

Theorem 1. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space X and let T, S and
H be three continuous and commuting mappings from Ω into itself. Assume that the following conditions
are satisfied
(a) H is affine.
(b) For any nonempty subset A of Ω, we have

ξ(σ(H(A))) ≤ ϕ(A)− ϕ(conv(ST(A))), (1)

where σ, ϕ : P(Ω) → R+ are mappings such that σ satisfies properties (i), (ii), (iii) and (vi) of Definition 1
and ξ : [0,+∞)→ [0,+∞) is lower semicontinuous function, ξ(0) = 0 and ξ(t) > 0 for all t > 0. Then
(1) If for any nonempty subset A of Ω, we have S(conv(A)) ⊆ conv(S(A)), then ST, S and H have a fixed
point in Ω.
(2) If S is affine, then T, S and H have a common fixed point in Ω.

Proof. (1) Consider the sequence {Ωn} defined as{
Ω0 = Ω,

Ωn = conv(ST(Ωn−1)), n = 1, 2, · · · .

Define ωn = ϕ(Ωn). From inequality (1), we have

ϕ(Ωn)− ϕ(conv(ST(Ωn))) ≥ 0, for all n ∈ N.

It implies that

ωn+1 = ϕ(Ωn+1) = ϕ(conv(ST(Ωn))) ≤ ϕ(Ωn) = ωn, for all n ∈ N.

Hence, {ωn} is a non-increasing sequence of positive real numbers, so it converges to some ω ≥ 0 as n
tends to +infinity. Using inequality (1) again, we get

ξ(σ(H(Ωn))) ≤ ϕ(Ωn)− ϕ(conv(ST(Ωn))) = ωn −ωn+1.

This yields
lim sup
n→+∞

ωn+1 ≤ lim sup
n→+∞

ωn − lim inf
n→+∞

ξ(σ(H(Ωn))). (2)

The rest of the proof needs to show that the sequence {Ωn} is nested. Indeed,
for n = 1, we have Ω1 ⊆ Ω0. Suppose that Ωn ⊆ Ωn−1 is true for some n ≥ 1. Then,

Ωn+1 = conv(ST(Ωn)) ⊆ conv(ST(Ωn−1)) = Ωn.

By induction, we get Ωn ⊆ Ωn−1 for every n ≥ 1. It follows that H(Ωn) ⊆ H(Ωn−1) for every n ≥ 1.
In view of (ii) in Definition 1, {σ(H(Ωn))} is a positive non-increasing sequence of real numbers,
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we deduce that σ(H(Ωn)) → r when n tends to +infinity, where r ≥ 0. Then, from inequality (2),
we get

ω ≤ ω− ξ(r).

Therefore ξ(r) = 0 and so lim
n→+∞

σ(H(Ωn)) = r = 0. Now, if we set Ω′n = H(Ωn), we can make use of

(iii) of Definition 1, to show
σ(Ω′n) = σ(H(Ωn)) = σ(H(Ωn)),

which implies that lim
n→+∞

σ(Ω′n) = 0. Since the sequence {Ωn} is nested, we have Ω′n+1 ⊆ Ω′n for

all n ∈ N. Consequently, by the axiom (vi) of Definition 1 Ω′∞ = ∩+∞
n=1Ω′n is nonempty. In addition,

from (ii) of Definition 1, we obtain

σ(Ω′∞) ≤ σ(Ω′n), for all n ∈ N.

Passing to the limit, we get σ(Ω′∞) = 0, which together with property (i) of Definition 1 imply that
Ω′∞ = Ω′∞ is compact and convex since H is affine. Note also that ST(Ωn) ⊆ Ωn. Indeed,

ST(Ωn) ⊆ conv(ST(Ωn)) ⊆ conv(ST(Ωn−1)) = Ωn, n = 1, 2, · · · .

For n = 1, we have

S(Ω1) = S(conv(ST(Ω0))) ⊆ conv(ST(S(Ω0))) ⊆ conv(ST(Ω0)) = Ω1.

Assuming now that S(Ωn) ⊆ Ωn is true for some n ≥ 1. Then

S(Ωn+1) = S(conv(ST(Ωn))) ⊆ conv(ST(S(Ωn))) ⊆ conv(ST(Ωn)) = Ωn+1.

By induction, we obtain S(Ωn) ⊆ Ωn. Similarly as for S, we can prove H(Ωn) ⊆ Ωn. So we get

ST(Ω′n) = ST(H(Ωn)) ⊆ ST(H(Ωn)) ⊆ H(ST(Ωn)) ⊆ H(Ωn) = Ω′n,

S(Ω′n) = S(H(Ωn)) ⊆ H(S(Ωn)) ⊆ H(Ωn) = Ω′n,

and
H(Ω′n) = H(H(Ωn)) ⊆ H(H(Ωn)) ⊆ H(Ωn) = Ω′n, for all n ∈ N.

Therefore, ST(Ω′∞) ⊆ Ω′∞, S(Ω′∞) ⊆ Ω′∞ and H(Ω′∞) ⊆ Ω′∞. Thus, applying Schauder’s fixed point
theorem leads us to conclude that ST, S and H have a fixed point.
(2) By the same argument as in part (3) of the proof of Theorem 2.1 [7], we see that E = {x ∈ Ω :
H(x) = x} is convex, closed and bounded subset of Ω, S(E) ⊆ E and H(E) ⊆ E. Furthermore, from
inequality (1), we have

ξ(σ(H(A))) ≤ ϕ(A)− ϕ(conv(ST(A))), for every A ⊆ E.

Then by part (1), the mapping S has a fixed point in E and therefore S and H have a common fixed
point. In a similar way, we can show that T has a fixed point in F = {x ∈ Ω : S(x) = H(x) = x}.
Thus, S, H and T have a common fixed point.

Remark 1. By letting H and ξ be the identity mappings, and taking σ = µ and ϕ = ( 1
1−k )µ, where µ is

a measure of nonocompactness and k ∈ [0, 1), one can deduce Hajji’s fixed point theorem [6] and when we take
furthermore S the identity mapping, we obtain Darbo’s fixed point theorem [2].

Taking H and S the identity mappings, σ = µ and ϕ = ψ◦µ, in Theorem 1, we obtain the following
result due to Aghajani et al. [8].
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Theorem 2. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space X and let T : Ω→ Ω
be a continuous mapping such that

ψ(µ(T(A))) ≤ ψ(µ(A))− ξ(µ(A)),

for any nonempty subset A of Ω, where µ is an arbitrary measure of noncompactness and ξ, ψ : R+ → R+ are
given functions such that ξ is lower semicontinuous and ψ is continuous. Moreover, ξ(0) = 0 and ξ(t) > 0 for
t > 0. Then, T has at least one fixed point in Ω.

Now, let us pay attention to the following corollary from the Theorem 1.

Corollary 1. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space X and let T, S and H
be commuting and continuous mappings from Ω into itself such that
(a) H and S are affine.
(b) For all u, v ∈ Ω, we have

ξ(‖H(u)− H(v)‖) ≤ α(u, v)− α(ST(u), ST(v)), (3)

where α : Ω × Ω → R+ is a mapping and ξ : [0,+∞) → [0,+∞) is lower semicontinuou and bounded
function such that ξ(0) = 0 and ξ(t) > 0 for all t > 0. Then, the set {u ∈ Ω : T(u) = S(u) = H(u) = u} is
nonempty.

Proof. Let σ : MX → [0,+∞) be a set quantity defined by the formula

σ(A) = diam(A),

where diam(A) = sup{‖u− v‖ : u, v ∈ A} stands for the diameter of A. It is easily seen that σ is
a measure of noncompactness in X. Thus, in view of (3), we have

inf
u,v∈A

α(ST(u), ST(v)) ≤ inf
u,v∈A

α(u, v)− sup
u,v∈A

ξ(‖H(u)− H(v)‖).

This yields that

ξ( sup
u,v∈A

‖H(u)− H(v)‖) ≤ inf
u,v∈A

α(u, v)− inf
u,v∈A

α(ST(u), ST(v)).

Set ϕ(A) = infu,v∈A α(u, v). Hence,

ξ(diam(H(A))) ≤ ϕ(A)− ϕ(ST(A))

and therefore
ξ(σ(H(A))) ≤ ϕ(A)− ϕ(ST(A)).

Thus, the desired result is obtained by Theorem 1.

3. Application

This section is concerned with the existence problem of common solutions
for the following equations:

(1) u(t) = f (t, Su(t)),
(2) u(t) = f (t, u(t)),
(3) u(t) = Hu(t),
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(4) u(t) = λHu(t) + (1− λ) f (t, Su(t)), λ ∈ [0, 1],

under some appropriate assumptions on the functions f , S and H. Let (E, ‖.‖) be a Banach space
and B be a convex, closed and bounded subset of E. Denote by C([0, b], B) the space of all continuous
functions from [0, b]; b > 0, into B endowed with the norm ‖u‖∞ = supt∈[0,b] ‖u(t)‖.
Assume that
(a) S, H : B→ B are linear continuous functions.
(b) f : [0, b]× B→ B is continuous function such that

‖Ha− Hb‖ ≤ γ(a, b)− γ(S( f (t, a)), S( f (t, b))), (4)

for all a, b ∈ B and t ∈ [0, b], where γ : B× B→ R+ is a mapping.
(c) For any (t, a) ∈ [0, b]× B

S( f (t, a)) = f (t, S(a)) and H( f (t, a)) = f (t, H(a)).

Theorem 3. Under hypotheses (a), (b), and (c), equations (1), (2), (3), and (4) have at least one common solution
in C([0, b], B).

Proof. It is clear that C([0, b], B) is a closed, bounded and convex subset of C([0, b], X). On the other
hand, by considering Tu(t) = f (t, u(t)), for u ∈ C([0, b], B), we obtain that

‖Hu(t)− Hv(t)‖ ≤ γ
(
u(t), v(t)

)
− γ

(
STu(t), STv(t)

)
.

It follows that

inf
t∈[0,b]

γ
(
STu(t), STv(t)

)
≤ inf

t∈[0,b]
γ
(
u(t), v(t)

)
− sup

t∈[0,b]
‖Hu(t)− Hv(t)‖.

Define α(u, v) = inft∈[0,b] γ
(
u(t), v(t)

)
. Then,

‖H(u)− H(v)‖∞ ≤ α
(
u, v
)
− α
(
ST(u), ST(v)

)
.

So by taking ξ the identity function, we get

ξ(‖H(u)− H(v)‖∞) ≤ α
(
u, v
)
− α
(
ST(u), ST(v)

)
,

for any u, v ∈ C([0, b], B). Finally, since T, S and H commute, we conclude from Corollary 1
that T, S and H have a common fixed point in C([0, b], B). Therefore, equations (1), (2), (3), and (4)
have at least one common solution in C([0, b], B).

4. Consequences

In this section, we establish several consequences of our main result.

Corollary 2. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space X and T, S : Ω→ Ω
are continuous mappings satisfying:
(a) S is affine.
(b) TS = ST.
(c) For any nonempty subset A of Ω, we have

µ(ST(A)) ≤ η(µ(A)), (5)
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where µ is a measure of noncompactness defined in X and η : [0,+∞)→ [0,+∞) is function such that η(t) < t
for each t > 0 and η(t)

t is non-decreasing. Then, the set {u ∈ Ω : T(u) = S(u) = u} is nonempty.

Proof. Taking H and ξ as the identity functions and ϕ(A) = µ(A)

1− η(µ(A))
µ(A)

, if µ(A) 6= 0 and ϕ(A) = 0,

otherwise. Then (5) schows that
First case, if µ(A) 6= 0, we have

µ(ST(A)) ≤ µ(A)−
[

1− η(µ(A))

µ(A)

)]
µ(A).

It implies that
µ(ST(A))

1− η(µ(A))
µ(A)

≤ µ(A)

1− η(µ(A))
µ(A)

− µ(A).

Since η(t)
t is non-decreasing and µ(ST(A)) < µ(A), we have to distinguish two subcases

(a) If µ(ST(A)) 6= 0, then
µ(ST(A))

1− η(µ(ST(A)))
µ(ST(A))

≤ µ(A)

1− η(µ(A))
µ(A)

− µ(A),

so
ξ(µ(H(A))) ≤ ϕ(A)− ϕ(ST(A)).

(b) If µ(ST(A)) = 0, we have ϕ(ST(A)) = µ(ST(A)) = 0. On the other hand, we see that

1− η(µ(A))

µ(A)
≤ 1.

It means that
1 ≤ 1

1− η(µ(A))
µ(A)

,

and so

µ(A) ≤ µ(A)

1− η(µ(A))
µ(A)

,

Consequently, we get
ξ(µ(H(A))) ≤ ϕ(A)− ϕ(ST(A)).

Now, if µ(A) = 0, from assertions (i), (ii) and the fact that T and S are continuous, we have
µ(ST(A)) = 0, so

ξ(µ(H(A))) ≤ ϕ(A)− ϕ(ST(A)).

Then, by Theorem 1, T has a fixed point in Ω.

Remark 2. 1. Note that taking S the identity function and η(t) = kt for all t ∈ [0,+∞) with k ∈ [0, 1) gives
Darbo’s fixed point theorem.
2. Taking η(t) = kt for all t ∈ [0,+∞) with k ∈ [0, 1), then Corollary 2 is a generalization of the Theorem 3.1
due to Hajji [6].

The above result gives rise to two corollaries, which are also generalizations of the both theorems
due to Darbo [2] and Hajji [6].

Corollary 3. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space X and let T, S : Ω→
Ω are continuous mappings such that
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(a) S is affine
(b) TS = ST.
(c) For any nonempty subset A of Ω, we have

µ(ST(A)) ≤ µ(A)− θ(µ(A)), (6)

where µ is a measure of noncompactness defined in X and θ : (0,+∞)→ (0,+∞) is function such that θ(t)
t is

non-increasing. Then the set {u ∈ Ω : T(u) = S(u) = u} is nonempty.

Proof. Let η(t) = t − θ(t), for each t > 0. Then η(t) < t, for each t > 0 and η(t)
t = 1 − θ(t)

t is
non-decreasing. Thus, the result is obtained by making use of Corollary 2.

Remark 3. 1. For S being the identity function and θ(t) = (1 − k)t for all t > 0 with k ∈ [0, 1),
a generalization of Darbo’s fixed point theorem, is obtained.
2. By letting θ(t) = (1− k)t for all t > 0 with k ∈ [0, 1), we recover the Theorem 3.1 due to Hajji [6].

Corollary 4. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space X and T, S : Ω→ Ω
are continuous operators such that
(a) S is affine.
(b) TS = ST.
(c) For any nonempty subset A of Ω, we have

µ(ST(A)) ≤ φ(µ(A))µ(A), (7)

where µ is a measure of noncompactness defined in X and φ : [0,+∞)→ [0, 1) is a non-decreasing function.
Then, the set {u ∈ Ω : T(u) = S(u) = u} is nonempty.

Proof. Let η(t) = φ(t)t for all t > 0. Then η(t) < t for all t > 0 and η(t)
t = φ(t) is non-decreasing.

Therefore by Corollary 2, T has a fixed point.

Remark 4. 1. By taking S the identity function and φ(t) = k for all t ∈ [0,+∞) with k ∈ [0, 1), it not hard
to see that the Corollary 4 is a generalization of Darbo’s fixed point theorem.
2. For the specific function φ(t) = k for all t ∈ [0,+∞) with k ∈ [0, 1), we obtain the Theorem 3.1 due to Hajji [6].
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mappings. Vojnotehnički Glasnik 2017, 65, 331–345. [CrossRef]
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