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1. Introduction

In nonassociative algebra, noncommutative geometry, field theory, and topological algebra there
frequently appear binary systems, which are nonassociative generalizations of groups and are related
to loops, quasi-groups, and Moufang loops, etc. (see [1–6]). A particular class of quasi-groups known as
gyrogroups Gy arise as a skew product of a group Ay and its automorphism group Aut(Ay). Relations
between (ab)c and a(bc) for each a, b and c in Gy are provided with the help of the automorphism ψ of
Ay acting on c, where ψ : G2

y → Aut(Ay), ψ = ψa,b may depend only on two parameters a and b in Gy.
They found applications in physics for studying Thomas precession with the help of the Lorentz group
and its automorphism group [7]. It was investigated and proved in the 20th century that a nontrivial
geometry exists if and only if there exists a corresponding unital quasi-group (loop) [2,4].

A very important role in mathematics and quantum field theory play octonions and generalized
Cayley–Dickson algebras [8–10]. A multiplicative law of their canonical bases is nonassociative and
leads to a more general notion of a metagroup instead of a group [11]. They are used not only in algebra
and geometry, but also in noncommutative analysis and PDEs, particle physics, and mathematical
physics [9,10,12–26]. The preposition meta is used to emphasize that such an algebraic object has
properties milder than those of a group. By their axiomatic metagroups are loops (that is, satisfy the
conditions of Equations (1)–(3)) with additional weak relations (10). Metagroups were used in [11] to
investigate of automorphisms and derivations of nonassociative algebras, as well as cohomologies of
nonassociative algebras [27]. Constructions of metagroups from groups or other metagroups with the
help of smashed and twisted wreath products, of certain nonassociative algebras and examples were
given in [11,27,28].

This article is devoted to the structure of topological metagroups. Specific algebraic and
topological features of metagroups are studied in Lemmas 1–4, Theorem 2, and Propositions 1 and 2.
Relations between topological and algebraic properties of metagroups are scrutinized. A quotient of a
metagroup by its central subgroup is investigated in Theorem 1. A uniform continuity of maps on
topological metagroups is studied in Theorem 3 and Corollary 2.

Smashed products of topological metagroups are investigated in Section 3. It is proved in
Theorems 4 and 5 and Corollaries 3–5 that there are abundant families of topological metagroups.

All main results of this paper are obtained for the first time.
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2. Structure of Topological Metagroups

To avoid misunderstandings, we provide the necessary definition. A reader familiar with [2,11,27]
can skip Definition 1.

Definition 1. Let G be a set with a single-valued binary operation (multiplication) G2 3 (a, b) 7→ ab ∈ G
defined on G satisfying the conditions:

For each a and b in G there is a unique x ∈ G with

ax = b (1)

and a unique y ∈ G exists satisfying
ya = b (2)

which are denoted by x = a \ b = Divl(a, b) and y = b/a = Divr(a, b) correspondingly,
there exists a neutral (i.e., unit) element eG = e ∈ G:

eg = ge = g (3)

for each g ∈ G.
The set of all elements h ∈ G commuting and associating with G:

Com(G) := {a ∈ G : ∀b ∈ G, ab = ba} (4)

Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)} (5)

Nm(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ba)c = b(ac)} (6)

Nr(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)} (7)

N(G) := Nl(G) ∩ Nm(G) ∩ Nr(G) (8)

C(G) := Com(G) ∩ N(G) (9)

is called the center C(G) of G.

We call G a metagroup if a set G possesses a single-valued binary operation and satisfies the
conditions of Equations (1)–(3) and

(ab)c = t(a, b, c)a(bc) (10)

for each a, b and c in G, where t(a, b, c) = tG(a, b, c) ∈ C(G).
Then G is called a central metagroup if in addition to (10) it satisfies the condition:

ab = t2(a, b)ba (11)

for each a and b in G, where t2(a, b) ∈ C(G).
Let τ be a topology on G such that the multiplication G2 3 (a, b) 7→ ab ∈ G, the operations

Divl(a, b) and Divr(a, b) are jointly continuous relative to τ, then (G, τ) will be called a topological
metagroup. Henceforth, it will be assumed that τ is the T1 ∩ T3.5 topology, maps and functions on
metagroups are supposed to be single-valued, if something other will not be specified.

A neighborhood U of the unit element e is called left (right) symmetric, if U = Invl(U)

(or U = Invr(U) respectively), where Invl(a) = Divl(a, e) is a left inversion, Invr(a) = Divr(a, e)
is a right inversion. If a neighborhood U is left and right symmetric, then it will be called symmetric.

Elements of a metagroup G will be denoted by small letters, subsets of G will be denoted by capital
letters. If A and B are subsets in G, then A− B means the difference of them A− B = {a ∈ A : a /∈ B}.
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Lemma 1. If G is a metagroup, then for each a and b ∈ G the following identities are fulfilled:

b \ e = (e/b)t(e/b, b, b \ e) (12)

(a \ e)b = (a \ b)t(e/a, a, a \ e)/t(e/a, a, a \ b) (13)

b(e/a) = (b/a)t(b/a, a, a \ e)/t(e/a, a, a \ e) (14)

Proof. The conditions of Equations (1)–(3) imply that

b(b \ a) = a, b \ (ba) = a (15)

(a/b)b = a, (ab)/b = a (16)

for each a and b in G. Using Equation (10) and the identities of Equations (15) and (16) we deduce that
e/b = (e/b)(b(b \ e)) = (b \ e)/t(e/b, b, b \ e)

which leads to Equation (12).
Let c = a \ b, then from the identities of Equations (12) and (15) it follows that
(a \ e)b = (e/a)t(e/a, a, a \ e)(ac)
= ((e/a)a)(a \ b)t(e/a, a, a \ e)/t(e/a, a, a \ b),

which provides Equation (13).
Let now d = b/a, then the identities of Equations (12) and (16) imply that
b(e/a) = (da)(a \ e)/t(e/a, a, a \ e) = (b/a)t(b/a, a, a \ e)/t(e/a, a, a \ e)

which demonstrates (14).

Lemma 2. Assume that G is a metagroup. Then for every a, a1, a2, a3 in G and p1, p2, p3 in C(G):

t(p1a1, p2a2, p3a3) = t(a1, a2, a3) (17)

t(a, a \ e, a)t(a \ e, a, e/a) = e (18)

Proof. Since (a1a2)a3 = t(a1, a2, a3)a1(a2a3) and t(a1, a2, a3) ∈ C(G) for every a1, a2, a3 in G, then

t(a1, a2, a3) = ((a1a2)a3)/(a1(a2a3)) (19)

Therefore, for every a1, a2, a3 in G and p1, p2, p3 in C(G) we infer that
t(p1a1, p2a2, p3a3) = (((p1a1)(p2a2))(p3a3))/((p1a1)((p2a2)(p3a3)))

= ((p1 p2 p3)((a1a2)a3))/((p1 p2 p3)(a1(a2a3))) = ((a1a2)a3)/(a1(a2a3)), since

b/(pa) = p−1b/a, b/p = p \ b = bp−1 (20)

for each p ∈ C(G), a and b in G, because C(G) is the commutative group. Thus t(p1a1, p2a2, p3a3) =

t(a1, a2, a3).
From the condition of Equation (10), Lemma 1 and the identity in Equation (17) it follows that
t(a, a \ e, a) = ((a(a \ e))a)/(a((a \ e)a)) = a/[at(e/a, a, a \ e)]
= e/t(a \ e, a, e/a)

for each a ∈ G implying Equation (18).

Lemma 3. If (G, τ) is a topological metagroup, then the function t(a1, a2, a3) is jointly continuous in a1, a2,
a3 in G.

Proof. This follows immediately from Equation (19) and Definition 1.
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Lemma 4. Assume that (G, τ) is a topological metagroup and U is an open subsets in G, then for each b ∈ G
the sets Ub and bU are open in G.

Proof. Take any c ∈ Ub and consider the equation

xb = c (21)

Then from Equation (2) it follows that

x = c/b (22)

Thus x = ψb(c), where ψb(c) = c/b is a continuous bijective function in the variable c by
Equation (14) and Lemma 3. On the other hand, the right shift mapping

Rbu := ub (23)

from G into G is continuous and bijective in u (see Definition 1). Moreover, ψb ◦ Rbu = u and
Rb ◦ ψb(c) = c for each fixed b ∈ G and all u ∈ G and c ∈ G by (16). Thus Rb and ψb are open
mappings, consequently, Ub is open.

Similarly for the equation
by = c (24)

the unique solution is
y = b \ c (25)

by the condition of Equation (1).
Therefore, y = θb(c), where θb(c) = b \ c is a continuous bijective function in c according to

Lemma 3 and Equation (13). Next we consider the left shift mapping

Lbu = bu (26)

for each fixed b ∈ G and any u ∈ G. This mapping Lb is continuous, since the multiplication on G is
continuous. Then Lb ◦ θb(c) = c and θb ◦ Lbu = u for every fixed b ∈ G and all u ∈ G and c ∈ G by
Equation (15). Therefore θb and Lb are open mappings. Thus the subset bU is open in G.

Proposition 1. Let (G, τ) be a topological metagroup and let U and V be subsets in G such that either U or V
is open, then UV is open in G.

Proof. In view of Lemma 4 either Ub is open in G for each b ∈ V or aV is open in G for each a ∈ U
respectively, consequently, UV = {x = uv : u ∈ U, v ∈ V} = ⋃

b∈V Ub =
⋃

a∈U aV is open in G.

Theorem 1. If G is a T1 topological metagroup and C0 is a closed subgroup in a center C(G) such that
t(a, b, c) ∈ C0 for each a, b and c in G, then its quotient G/C0 is a T1 ∩ T3.5 topological group.

Proof. Let τ be a T1 topology on G relative to which G is a topological metagroup. Then each point
x in G is closed, since G is the T1 topological space (see Section 1.5 in [29]). From the continuity of
multiplication and the left inversion and right inversion it follows that the center C(G) is closed in G.
Therefore the subgroup C0 is closed in G. As is tradition, the notation:

AB = {x = ab : a ∈ A, b ∈ B} (27)

Invl(A) = {x = a \ e : a ∈ A} (28)

Invr(A) = {x = e/a : a ∈ A} (29)
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is used for subsets A and B in G. Then from Equations (4)–(8) it follows that for each a, b, c in G the
identities take place.

((aC0)(bC0))(cC0) = (aC0)((bC0)(cC0)) and aC0 = C0a. Evidently eC0 = C0. In view of Lemmas 1
and 2 (aC0) \ e = e/(aC0), consequently, for each aC0 ∈ G/C0 a unique inverse (aC0)

−1 exists. Thus the
quotient G/C0 of G by C0 is a group. Since the topology τ on G is T1 and C0 is closed in G, then the
quotient topology τq on G/C0 is also T1. By virtue of Theorem 8.4 in [30] this implies that τq is a
T1 ∩ T3.5 topology on G/C0.

We remind reader of the following.

Definition 2. Let G be a topological metagroup. For a subset U in G it is put:

LU,G := {(x, y) ∈ G× G : x \ y ∈ U} (30)

RU,G := {(x, y) ∈ G× G : y/x ∈ U} (31)

The family of all subsets LU,G (orRU,G) with U being an open neighborhood of e will be called a left (right
correspondingly) uniform structure on G and denoted by LG (respectivelyRG).

Theorem 2. Assume that G is a T1 topological metagroup and a function t on G is defined by Equation (10).
Then for each compact subset S in G and each open neighborhood V of e there exists an open symmetric
neighborhood U of e in G such that

t((u1a)v1, (u2b)v2, (u3c)v3)/t(a, b, c) ∈ V (32)

for every a, b, c in S and uj, vj in U for each j ∈ {1, 2, 3}.

Proof. Let θ : G → G/C denote the quotient map of G on the quotient group G/C =: Q provided by
Theorem 1, where C = C(G). That is aC = θ(a) for each a ∈ G. From Lemma 2 it follows that t on G
induces a continuous map t̂ on Q with values in C, where t̂(θ(a), θ(b), θ(c)) = t(a, b, c) for each a, b, c
in G.

Since S is compact in G and θ is continuous from (G, τ) into (Q, τq), then θ(S) =: Ŝ is compact in
Q by Theorem 3.1.10 in [29]. Therefore,

t̂(Ŝ, Ŝ, Ŝ) := {y = t̂(â, b̂, ĉ) : â ∈ Ŝ, b̂ ∈ Ŝ, ĉ ∈ Ŝ}
is a compact subset in C, where C is supplied with the topology inherited from G. In view of
Proposition 1 if U is an open symmetric neighborhood of e in G, then Û = θ(U) is an open symmetric
neighborhood of the unit element eQ in Q. The group C is commutative, hence Equation (32) is
equivalent to

t̂(û1 âv̂1, û2b̂v̂2, û3 ĉv̂3) ∈ t̂(â, b̂, ĉ)(V ∩ C) (33)

for every â, b̂, ĉ in Ŝ and ûj, v̂j in Û for each j ∈ {1, 2, 3}, where â = θ(a) for each a ∈ G.
Naturally Q⊗3 = Q⊗ Q⊗ Q is a topological group as the direct product of three copies of the

topological group Q (see Theorem 6.2 in [30]). Since Ŝ× Ŝ× Ŝ is compact in the topological group Q⊗3,
then t̂ is uniformly continuous on Ŝ× Ŝ× Ŝ relative to the uniformities LQ⊗3 andRQ⊗3 ; consequently,
there exists an open symmetric neighborhood W of eQ in Q such that Equation (33) is satisfied for
every â, b̂, ĉ in Ŝ and ûj, v̂j in W for each j ∈ {1, 2, 3}. Take an open symmetric neighborhood U of e in
G such that U ⊆ θ−1(W). With this U Equation (32) is fulfilled.

Proposition 2. Suppose that (G, τ) is a topological metagroup, S is a compact subset in G, q is a fixed element
in G, V is an open neighborhood of the unit element e. Then there are elements b1, ..., bm in G and an open
symmetric neighborhood U of e such that

U ⊂ V (34)
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and
{b1 \ (qU), ..., bm \ (qU)} (35)

is an open covering of S, and

bk(bk \ (qU)) ⊂ qV (36)

for each k = 1,...,m.

Proof. Since the left Invl and right Invr inversions are homeomorphisms of G onto itself as the
topological space, then for each open neighborhood W of e the intersection

W ∩ Invl(W) ∩ Invr(W) (37)

is an open symmetric neighborhood of e, since Invl ◦ Invr(b) = b and Invr ◦ Invl(b) = b for each b in
G. The multiplication is continuous on G, hence the left shift mapping Lb(x) = bx is continuous on G
in the variable x. On the other hand, the left inversion Invl is continuous on G.

In view of Lemmas 1, 4 and the compactness of S for each open symmetric neighborhood
U of e in G there are b1, ..., bm in G such that {b1 \ (qU), ..., bm \ (qU)} is an open covering of S.
Then Equation (15) and inclusion (34) imply inclusion (36).

Corollary 1. Let G be a topological metagroup. Then for each open neighborhood W of e in G there exists an
open symmetric neighborhood U of e such that

(∀x∀y((x ∈ G)&(y ∈ G)&(x \ y ∈ U)))⇒ (y ∈ xW) (38)

and
(∀x∀y((x ∈ G)&(y ∈ G)&(y/x ∈ U)))⇒ (y ∈Wx) (39)

Proof. This follows from property (37), Equations (15) and (16).

Theorem 3. Let G and H be topological metagroups and let f : G → H be a continuous map so that for each
open neighborhood V of a unit element eH in H a compact subset KV in G exists such that f (G− KV) ⊂ V.
Then f is uniformly (LG,LH) continuous and uniformly (RG,RH) continuous.

Proof. Since each open neighborhood of eH in H contains an open symmetric neighborhood according
to property (37), then it suffices to consider an open symmetric neighborhood V of eH in H. Let V1

be an open symmetric neighborhood of eH in H such that V2
1 ⊂ V, where AB = {c ∈ H : c = ab,

a ∈ A, b ∈ B}, A2 = AA for subsets A and B in H. By the conditions of this theorem, a compact subset
KV1 in G exists such that f (G− KV1) ⊂ V1.

For a subset A of the metagroup G let

P(A) = (P0(A) ∪ {e})(P0(A) ∪ {e}) (40)

where P0(A) = A∪ Invl(A)∪ Invr(A), hence A ⊂ P0(A) and P0(A)∪ {e} ⊂ P(A). Then S1 = P(KV1)

is a compact subset in G, since the left Invl and right Invr inversions and multiplication are continuous
on G (see Theorems 3.1.10, 8.3.13–8.3.15 in [29]), hence R1 = P( f (S1)) is compact in H.
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Since the multiplication in H is continuous, then for each open neighborhood Y of eH there
exists an open neighborhood X of eH such that X2 ⊂ Y. By virtue of Theorem 2 there exists an open
symmetric neighborhood V2 of eH in H such that

[tH((V2a)V2, (V2b)V2, (V2c)V2)V2/tH(a, b, c)]2 ⊂ V1 (41)

for every a, b, c in R1. For V2 there exists a compact subset KV2 in G such that f (G − KV2) ⊂ V2

by the conditions of this theorem. If A and B are compact subsets in G, then their union A ∪ B
is also compact. Therefore it is possible to choose KV2 such that KV1 ⊂ KV2 , since V2 ⊂ V1 and
(G− A)− B = G− (A ∪ B) ⊂ G− A. We take S2 = P(KV2) by Equation (40), consequently, S1 ⊂ S2,
since KV1 ⊂ KV2 .

From the continuity of the map f and Lemma 4 it follows that for each x ∈ G open symmetric
neighborhoods Wx,l and Wx,r of e in G exist such that

f (xW2
x,l) ⊂ ( f (x)V2) and f (W2

x,rx) ⊂ (V2 f (x)); consequently,

f (xW2
x ) ⊂ ( f (x)V2), f (W2

x x) ⊂ (V2 f (x)) (42)

for an open symmetric neighborhood Wx = Wx,l ∩Wx,r of e in G. The compactness of S2 implies
that coverings {xWx : x ∈ S2} and {Wyy : y ∈ S2} of S2 have finite subcoverings {xjWxj : xj ∈ S2,
j = 1, ..., n} and {Wyi yi : yi ∈ S2, i = 1, ..., m}. Hence

W =
n⋂

j=1

Wxj ∩
m⋂

i=1

Wyi (43)

is a symmetric open neighborhood of e in G. Therefore, according to Theorem 2, there exists an open
symmetric neighborhood U of the unit element e in G such that

[tG((Ua)U, (Ub)U, (Uc)U)U/tG(a, b, c)]2 ⊂W0 (44)

for every a, b, c in S2, where W0 is an open symmetric neighborhood of e in G such that W2
0 ⊂W.

Let x and y in G be such that x \ y ∈ U. Then Equation (15) implies that

y ∈ xU (45)

There are several options. Consider first the case x ∈ KV2 . From Equation (43), Inclusions (44),
(45) and Corollary 1 it follows that there exists j ∈ {1, ..., n} such that x ∈ xjWxj and y ∈ xjW2

xj
.

Therefore, Inclusions (41) and (42) imply that f (x) \ f (y) ∈ V.
From x \ y ∈ U and Equation (15) it follows that y = xu for a unique u ∈ U. Hence

x = y(e/u)t(e/u, u, u \ e)/t(y/u, u, u \ e) (46)

according to Equations (14) and (16).
If y ∈ KV2 , then similarly from Equations (43), (46), inclusions (44), (45) and Corollary 1 it follows

that there exists k ∈ {1, ..., n} such that y ∈ xkWxk and x ∈ xkW2
xk

, since an open neighborhood U of e is
symmetric and t(a, b, e) = t(a, e, b) = t(e, a, b) = e for each a and b in G. Therefore, f (x) \ f (y) ∈ V by
Inclusions (41) and (42), since the considered neighborhoods of eH in H and e = eG in G are symmetric
and S2 = P(KV2) (see Equation (40)).

It remains the case x ∈ G − KV2 and y ∈ G − KV2 . Therefore, f (x) ∈ V2 and f (y) ∈ V2.
According to the choice of R1 we have eH ∈ R1. The open neighborhoods V, V1, V2 of eH in
H are symmetric. From Inclusion (41), Equation (15) and the inclusion V2

1 ⊂ V, it follows
that f (x) \ f (y) ∈ V. Taking into account the inclusion KV1 ⊂ KV2 we get that f is uniformly
(LG,LH) continuous.
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The uniform (RG,RH) continuity is proved analogously using the finite subcovering
{Wyi yi : yi ∈ S2, i = 1, ..., m} and Corollary 1.

Corollary 2. Let G be a locally compact metagroup, let f ∈ C0(G) and let H = (C,+) be the
complex field C considered as an additive group. Then f is uniformly (LG,LH) continuous and uniformly
(RG,RH) continuous.

This corollary follows from Theorem 3 as its particular case.

3. Products of Topological Metagroups

In this section, we demonstrate that there are abundant families of topological metagroups besides
those described in the introduction.

Theorem 4. Let (Gj, τj) be a family of topological metagroups (see Definition 1), where j ∈ J, J is a set.
Then their direct product G = ∏j∈J Gj relative to the Tychonoff product topology τ is a topological metagroup and

C(G) = ∏
j∈J
C(Gj) (47)

Proof. The direct product of topological loops is a topological loop (see [2,3]). Thus Conditions (1)–(3)
are satisfied.

Each element a ∈ G is written as a = {aj : ∀j ∈ J, aj ∈ Gj}. From Equations(4)–(7) we infer that

Com(G) := {a ∈ G : ∀b ∈ G, ab = ba} = {a ∈ G : a = {aj : ∀j ∈ J, aj ∈ Gj}; ∀b ∈ G,
b = {bj : ∀j ∈ J, bj ∈ Gj}; ∀j ∈ J, ajbj = bjaj} = ∏j∈J Com(Gj)

(48)

Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)} = {a ∈ G : a = {aj : ∀j ∈ J, aj ∈ Gj}; ∀b ∈ G,
b = {bj : ∀j ∈ J, bj ∈ Gj}; ∀c ∈ G, c = {cj : ∀j ∈ J, cj ∈ Gj}; ∀j ∈ J, (ajbj)cj = aj(bjcj)} = ∏j∈J Nl(Gj)

(49)

and similarly
Nm(G) = ∏

j∈J
Nm(Gj) (50)

and
Nr(G) = ∏

j∈J
Nr(Gj) (51)

This and Equation (8) imply that
N(G) = ∏

j∈J
N(Gj) (52)

Thus
C(G) := Com(G) ∩ N(G) = ∏

j∈J
C(Gj) (53)

Let a, b and c be in G, then

(ab)c = {(ajbj)cj : ∀j ∈ J, aj ∈ Gj, bj ∈ Gj, cj ∈ Gj} = {tGj(aj, bj, cj)aj(bjcj) :
∀j ∈ J, aj ∈ Gj, bj ∈ Gj, cj ∈ Gj} = tG(a, b, c)a(bc)

(54)

where
tG(a, b, c) = {tGj(aj, bj, cj) : ∀j ∈ J, aj ∈ Gj, bj ∈ Gj, cj ∈ Gj} .
Therefore, Equations (53) and (54) imply that Condition (10) also is satisfied. Thus G is a

topological metagroup.
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Remark 1. Let A and B be metagroups and let C be a commutative group such that

Cm(A) ↪→ C, Cm(B) ↪→ C, C ↪→ C(A) and C ↪→ C(B) (55)

where Cm(A) denotes a minimal subgroup in C(A) containing tA(a, b, c) for every a, b and c in A.

Using direct products it is always possible to extend either A or B to get such a case. In particular,
either A or B may be a group. On A× B an equivalence relation Ξ is considered such that

(γv, b)Ξ(v, γb) and (γv, b)Ξγ(v, b) and (γv, b)Ξ(v, b)γ (56)

for every v in A, b in B and γ in C.

Let φ : A→ A(B) be a single-valued mapping, (57)

where A(B) denotes a family of all bijective surjective single-valued mappings of B onto B subjected
to the conditions given below. If a ∈ A and b ∈ B, then it will be written shortly ba instead of φ(a)b,
where φ(a) : B→ B. Let also

ηφ : A× A× B→ C, κφ : A× B× B→ C
and ξφ : ((A× B)/Ξ)× ((A× B)/Ξ)→ C

be single-valued mappings written shortly as η, κ and ξ correspondingly such that

(bu)v = bvuη(v, u, b), eu = e, be = b; (58)

η(v, u, γb) = η(v, u, b); (59)

(cb)u = cubuκ(u, c, b); (60)

κ(u, γc, b) = κ(u, c, γb) = κ(u, c, b) and

κ(u, γ, b) = κ(u, b, γ) = e; (61)

ξ((γu, c), (v, b)) = ξ((u, c), (γv, b)) = ξ((u, c), (v, b)) (62)

and ξ((γ, e), (v, b)) = e and ξ((u, c), (γ, e)) = e for every u and v in A, b and c in B, γ in C, where e
denotes the neutral element in C and in A and B.

We put
(a1, b1)(a2, b2) = (a1a2, ξ((a1, b1), (a2, b2))b1ba1

2 ) (63)

for each a1, a2 in A, b1 and b2 in B.
The Cartesian product A × B supplied with such a binary operation (63) will be denoted by

A
⊗φ,η,κ,ξ B.

Theorem 5. Let the conditions of Remark 1 be satisfied. Then the Cartesian product A× B supplied with a
binary operation of Equation (63) is a metagroup.

For the proof of this theorem see Theorem 9 in [27].

Definition 3. The metagroup A
⊗φ,η,κ,ξ B of Theorem 5 is called a smashed product of metagroups A and B

with smashing factors φ, η, κ and ξ.

Particularly, it is possible to consider the topological metagroup fulfilling the condition:
there exists a compact subgroup C0 = C0(G) in C(G) such that

tG(a, b, c) ∈ C0 for every a, b and c in G (64)
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Corollary 3. (i). Assume that conditions of Theorem 4 are satisfied and for each j ∈ J a metagroup Gj satisfies
Condition (64). Then the product metagroup G satisfies Condition (64).

(ii). Moreover, if Gj is compact for all j ∈ J0 and locally compact for each j ∈ J \ J0, where J0 ⊂ J and
J \ J0 is a finite set, then G is locally compact.

Proof. (i). Using Equation (54) it is sufficient to take C0(G) = ∏j∈J C0(Gj), since the direct product of
compact commutative groups C0(Gj) is a compact commutative group C0(G) (see [29,30]).

The last assertion (ii) follows from the known fact that G as a topological space is locally compact
under the imposed above conditions by Theorem 3.3.13 in [29].

Corollary 4. Suppose that the conditions of Remark 1 are fulfilled and A and B are topological metagroups
and smashing factors φ, η, κ, ξ are jointly continuous by their variables. Suppose also that A

⊗φ,η,κ,ξ B is
supplied with a topology induced from the Tychonoff product topology on A × B. Then A

⊗φ,η,κ,ξ B is a
topological metagroup.

Corollary 5. If the conditions of Corollary 4 are satisfied and metagroups A and B are locally compact, then
A

⊗φ,η,κ,ξ B is locally compact. Moreover, if A and B satisfy Condition (64) and ranges of η, κ, ξ are contained
in C0(A)C0(B), then A

⊗φ,η,κ,ξ B satisfies Condition (64).

Proof. Corollaries 4 and 5 follow from Theorems 2.3.11, 3.2.4, 3.3.13 in [29], Lemma 3 and Theorems 1,
2, 5, since

C0(A)C0(B) ⊆ C ⊆ C(A) ∩ C(B) and C0(A)C0(B) is a compact subgroup in A
⊗φ,η,κ,ξ B.

Example 1. Assume that X is a T1 ∩ T3.5 topological space, G is a T1 ∩ T3.5 topological metagroup (not a group).
We consider the space C(X, G) of all continuous maps f : X → G supplied with the compact-open topology and
the point-wise multiplication ( f g)(x) = f (x)g(x) for each f , g in C(X, G) and x ∈ X. Then this constriction
and Definition 1 imply that there exist ( f \ g)(x) = f (x) \ g(x), ( f /g)(x) = f (x)/g(x), eC(X,G)(x) = eG
and tC(X,G)( f , g, h)(x) = tG( f (x), g(x), h(x)) for each f , g and h in C(X, G) and x ∈ X. It can be easily
seen that C(X, G) is the topological metagroup (not a group). Generally C(X, G) may be nonlocally compact
metagroup for nontrivial X and G with the small inductive dimension ind(X) ≤ ind(G) and the topological
weight w(X) ≥ ℵ0, w(G) > 7.

Other metagroups are given in Examples 1–3 in [28]. In general they are nonassociative and hence
different from groups.

Example 2. Particularly, Hr := {ij,−ij, iji,−iji : j ∈ Λr} is the metagroup, where either Λr = {0, ..., 2r− 1}
with 3 ≤ r ∈ N or Λ∞ = {j : 0 ≤ j ∈ Z}, ij and iji with j ∈ Λ are the canonical generators of the complexified
Cayley–Dickson algebraAr,C such that iji = iij and i2 = −1; where ij with j ∈ Λr are the canonical generators
of the Cayley-Dickson algebra Ar,R over the real field R, i0 = 1 (for more details see Example 1 in [28]).
Therefore, relative to the discrete topology Hr is the compact nonassociative metagroup for each 3 ≤ r ∈ N;
while H∞ is the locally compact nonassociative metagroup and H∞ is not compact. Then we put

Hα,µ,p := ∏
j∈α,µ(j)∈Ωp

Hµ(j), (65)

where α is a set, Ωp = {r ∈ N : 3 ≤ r ≤ p}, 3 ≤ p ≤ ∞, µ : α → Ωp is a map. We supply Hα,µ,p

with the Tychonoff product topology, hence Hα,µ,p is the topological nonassociative metagroup by Theorem 4.
If card(α) ≥ ℵ0, then Hα,µ,p is not discrete. For each 3 ≤ p ∈ N, each set α and every map µ : α → Ωp,
the metagroup Hα,µ,p is compact. If 1 ≤ card{j : µ(j) = ∞} < ℵ0, then Hα,µ,∞ is locally compact and
noncompact by Corollary 3. For each α and µ such that card{j : µ(j) = ∞} ≥ ℵ0 the metagroup Hα,µ,∞ is not
locally compact.
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Example 3. If A and B are topological metagroups and A has the positive small inductive dimension
ind(A) > 0, then ind(A× B) ≥ ind(A) > 0 according to Theorems 7.1.1 in [29] and 4 above. In particular,
A may be a group and B be the nonassociative metagroup, hence A × B is the nonassociative topological
metagroup with ind(A× B) > 0.

Example 4. Other examples follow from Remark 3 and Theorem 9 in [27], Remark 4 and Theorem 6 in [28],
Examples 1–3, Theorem 5 and Corollaries 4 and 5 above providing nonassociative topological metagroups
A

⊗φ,η,κ,ξ B, which may be either locally compact or nonlocally compact or (and) with ind(A
⊗φ,η,κ,ξ B) > 0.

Remark 2. From Theorems 4 and 5 and Corollaries 3–5, it follows that taking nontrivial η, κ, and ξ and
starting even from groups with nontrivial C(Gj) or C(A) it is possible to construct new metagroups with
nontrivial C0(G) and ranges tG(G, G, G) of tG may be infinite and nondiscrete. With suitable smashing factors
φ, η, κ and ξ and with nontrivial metagroups or groups A and B it is easy to get examples of metagroups in
which e/a 6= a \ e for an infinite family of elements a in A

⊗φ,η,κ,ξ B. The latter and Examples 1–3 above show
that there are a lot of metagroups G for which tG(a, b, c) depend nontrivially on all arguments a, b, and c in G.

In Theorem 5, instead of the family of all automorphisms of B, we used the family A(B)
(see Remark 1). In particular, φ(a) ∈ A(B) may be different from the automorphism of B for some
a ∈ A. Moreover multipliers tG in Definition 1, ξ, η, κ in Remark 1 and Theorem 5 provide left Lq or
right Rq shifts on G or A, or B respectively, where

q ∈ {tG(a, b, c); ξ((a1, b1), (a2, b2)); η(a1, a2, b1); κ(a1, b1, b2)}
with a, b and c in G, a1 and a2 in A; b1 and b2 in B; where Lqa1 = qa1 for each q ∈ A and a1 ∈ A,
Rpb1 = b1 p for each p ∈ B and b1 ∈ B, etc. The latter means that the maps Lq and Rq are bijective
(injective and surjective). Then Lq and Rq are different from automorphisms of G, A, B and of
A

⊗φ,η,κ,ξ B for each q 6= e, since each automorphism ψ of G satisfies the restrictions ψ(ab) = ψ(a)ψ(b),
ψ(a \ b) = ψ(a) \ ψ(b), ψ(a/b) = ψ(a)/ψ(b) for each a and b in G. Moreover, in the smashed twisted
wreath product of metagroup construction operators Ŝd, Th, Lwj(d,d1,v) on F are used which are generally
not automorphisms of F (see Theorem 6 in [28]). This implies that the class of metagroups is different
from the class of gyrogroups.

Example 2 means that A3,C is the complexified octonion algebra OC and A3,R is the octonion
algebra O over R. Thus the Cayley–Dickson algebras are metagroup algebras. The complexified
octonion algebra OC was used, for example, in physics and geometry in [16,31,32]. The metagroup
algebra Ar,C was used in [12,18,19,25] for solutions of PDEs.

4. Conclusions

The results of this article can be used for further studies of measures on homogeneous
spaces and noncommutative manifolds related with metagroups. They can be used in topological
algebra, harmonic analysis on nonassociative algebras and metagroups and loops, representation
theory, geometry, mathematical physics, quantum field theory, particle physics and PDEs, etc.
Besides them it is interesting to mention possible applications in mathematical coding theory, analysis
of information flows and distributed databases [33–36], because codes and databases are based on
topological-algebraic binary systems. Other very important applications include harmonic analysis,
mathematical physics, quantum field theory, gauge theory, quantum gravity, representation theory of
metagroups and nonassociative algebras, and noncommutative geometry [16,20–22,26,30,37,38].
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