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Abstract: Various types of topological and closure operators are significantly used in fuzzy
theory and applications. Although they are different operators, in some cases it is possible to
transform an operator of one type into another. This in turn makes it possible to transform
results relating to an operator of one type into results relating to another operator. In the paper
relationships among 15 categories of modifications of topological L-valued operators, including
Čech closure or interior L-valued operators, L-fuzzy pretopological and L-fuzzy co-pretopological
operators, L-valued fuzzy relations, upper and lower F-transforms and spaces with fuzzy partitions
are investigated. The common feature of these categories is that their morphisms are various
L-fuzzy relations and not only maps. We prove the existence of 23 functors among these categories,
which represent transformation processes of one operator into another operator, and we show how
these transformation processes can be mutually combined.

Keywords: categories with relational morphisms; topological and pre-topological structures; functors

1. Introduction

In fuzzy set theory many structures are used, which are based on various modifications of
topological operators. These structures include variants of fuzzy topological spaces, fuzzy rough sets,
fuzzy approximation spaces, fuzzy closure operators, fuzzy pretopological operators and their dual
terms, such as fuzzy interior operators. For examples of these structures see, e.g., [1–8]. Although
these structures are generally based on the common basis of different topological spaces and their
modifications, the tools and language they use are often very different and it is difficult to identify
deeper relationships between the different types of these structures.

One way to effectively identify and describe the relationships among these objects is to use
category theory methods. Description of transformation processes between objects of one type using
the category theory language ensure morphisms and functors. The significance of morphisms and
functors in categories is that morphisms between objects and functors between categories actually
represent the processes of transforming objects of one type into objects of another type, whereby these
transformations define not only how to create an object of one type from another type, but also how to
transform relationships between objects of one type into relationships between objects of the other type.

In the paper [9], the relationships among some categories of fuzzy structures related to topological
operators were discussed. The common feature of these categories was that the morphisms in these
categories were based on mappings between the underlying sets of corresponding objects.

Recently, however, a number of results have emerged in the theory of fuzzy sets, which are based
on the application of fuzzy relations as morphisms in suitable categories. A typical example of that
use of fuzzy relations is the category of sets as objects and L-valued fuzzy relations between sets as
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morphisms. This category is frequently used in approximation functors, which represent various
approximations of fuzzy sets. The approximation defined by a fuzzy relation, which can be described
as a functor between appropriate categories, was defined for the first time by Goguen [10], when he
introduced the notion of the image of a fuzzy set under a fuzzy relation. Many examples using
explicitly or implicitly approximation functors defined by various types of fuzzy relations can be found
in rough fuzzy sets theory and many others (see, e.g., [5,11–13]).

In this paper we want to significantly expand the information on the relationships between
categories of topological L-operators expressing the concept of “proximity” in different ways, while in
accordance with the current trend of using L-fuzzy relations, the morphisms in these categories are L-fuzzy
relations with various properties.

In detail, we consider 15 categories and some of their subcategories of Čech closure or interior
L-valued operators, categories of L-fuzzy pretopological and L-fuzzy co-pretopological operators, the
category of L-valued fuzzy relations, categories of upper and lower F-transforms and the category
of spaces with fuzzy partitions, where L is a complete residuated lattice or MV-algebra, and where
morphisms in all of these categories are L-valued fuzzy relations.

The main results of this paper are Theorems 1 and 2, which prove the existence of 23 functors
among these categories, including how these functors combine with each other. It follows from
these theorems that the key category between the above categories is the category of spaces with
fuzzy partitions with special fuzzy relations as morphisms. As follows from the commutative
diagrams in both Theorems, any space with a fuzzy partition can be transformed into an L-fuzzy
relation, Čech closure or interior operator, L-fuzzy pretopological or co-pretopological operators or
strong-Alexandroff variants of these operators.

The structure of the paper is as follows. In Section 1 we repeat basic properties of residuated
lattices and we recall definitions of principal structures representing various concepts of proximity.

In Section 2, which represents the principal content of the paper, we introduce 15 new categories,
whose objects are various types of proximity structures and whose morphisms are various types of
relations between these structures. The main result are then two theorems identifying functors among
these categories, which in fact represent the transformation processes among the individual structures.

2. Preliminaries

In this section we repeat basic properties of residuated lattices and recall definitions of principal
structures representing various concepts of proximity, which are frequently used in L-valued fuzzy
set theory, including interior and closure operators, pretopologies and co-pretopologies, and fuzzy
partitions, sometimes with additional special properties.

We refer to [14,15] for additional details regarding residuated lattices.

Definition 1. A residuated lattice L is an algebra L = (L,∧,∨,⊗,→, 0, 1) such that:

1. (L,∧,∨, 0, 1) is a bounded lattice with the least element 0 and the greatest element 1;
2. (L,⊗, 1) is a commutative monoid, and
3. ∀a, b, c ∈ L, a⊗ b ≤ c ⇐⇒ a ≤ b→ c.

A residuated lattice (L,∧,∨,⊗,→, 0, 1) is complete if it is complete as a lattice.
The following is the derived unary operation of negation ¬:

¬a = a→ 0,

A residuated lattice L is called an MV-algebra if it satisfies (a→ b)→ b = a ∨ b. In a MV-algebra
the following identities hold:

¬¬a = a, ¬ ∨ ai = ∧¬ai, a⊗ b = ¬(a→ ¬b).
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Unless otherwise stated, throughout this paper, a complete residuated lattice L = (L,∧,∨,⊗,→
, 0, 1) will be fixed and for simplicity, instead of L we use only L.

Let X be a nonempty set and LX a set of all L-fuzzy sets (=L-valued functions) of X. For all α ∈ L,
α(x) = α is a constant L-fuzzy set on X. For all u ∈ LX, the core(u) is a set of all elements x ∈ X,
such that u(x) = 1. An L-fuzzy set u ∈ LX is called normal, if core(u) 6= ∅. An L-fuzzy set χX

{y} ∈ LX

is a singleton of y ∈ X, if it has the following form:

∀x ∈ X, χX
{y}(x) =

{
1, if x = y,

0, otherwise.

In the next definitions we repeat basic definitions of the L-valued operators that were mentioned
above. These operators are very useful tools in several areas of mathematical structures with direct
applications, both mathematical (e.g., topology, logic) and outside of mathematics (e.g., data mining,
knowledge representation). In fuzzy set theory, several particular cases as well as general theory
of interior and closure operators, which operate with fuzzy sets (so-called fuzzy interior or closure
operators), are studied. The original notions of a Kuratowski closure and interior operators were
introduced in several papers, see [1–3,16,17]. In this paper we use a more general form of these
operators, called Čech operators or preclosure operators, where the idempotence of operators is
not required.

Definition 2. The map i : LX → LX is called a Čech (L-fuzzy) interior operator, if for every α, u, v ∈ LX,
it fulfils:

1. i(α) = α,
2. i(u) ≤ u,
3. i(u ∧ v) = i(u) ∧ i(v).

A Čech interior operator i : LX → LX is said to be a strong Čech–Alexandroff interior operator, if:

i(α→ u) = α→ i(u) and i(
∧
j∈J

uj) =
∧
j∈J

i(uj),

and is said to be a Kuratowski interior operator if ii(u) = i(u).

Definition 3. The map c : LX → LX is called a Čech (L-fuzzy) closure operator, if for every α, u, v ∈ LX,
it fulfils:

1. c(α) = α,
2. c(u) ≥ u,
3. c(u ∨ v) = c(u) ∨ c(v).

A Čech closure operator c : LX → LX is said to be a strong Čech–Alexandroff closure operator, if

c(α⊗ u) = α⊗ c(u) and c(
∨
j∈J

uj) =
∨
j∈J

c(uj),

and is said to be a Kuratowski closure operator if cc(u) = c(u).

We recall the notion of an L-fuzzy pretopological space and L-fuzzy co-pretopological space as it
has been introduced in [8].

Definition 4. An L-fuzzy pretopology on X is a set of functions τ = {px ∈ LLX
: x ∈ X}, such that for all

u, v ∈ LX , α ∈ L and x ∈ X,
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1. px(α) = α,
2. px(u) ≤ u(x),
3. px(u ∧ v) = px(u) ∧ px(v).

An L-fuzzy pretopological space (X, τ) is said to be a strong Čech–Alexandroff L-fuzzy pretopological
space, if:

px(α→ u) = α→ px(u) and px(
∧
j∈J

uj) =
∧
j∈J

px(uj).

Definition 5. An L-fuzzy co-pretopology on X is a set of functions η = {px ∈ LLX
: x ∈ X}, such that for all

u, v ∈ LX , α ∈ L and x ∈ X,

1. px(α) = α,
2. px(u) ≥ u(x),
3. px(u ∨ v) = px(u) ∨ px(v).

An L-fuzzy co-pretopological space (X, τ) is said to be a strong Čech–Alexandroff L-fuzzy co-pretopological
space, if:

px(α⊗ u) = α⊗ px(u) and px(
∨
j∈J

uj) =
∨
j∈J

px(uj).

Finally, we recall the notion of an L-fuzzy partition (see [18,19]).

Definition 6. A set A of normal fuzzy sets {Aα : α ∈ Λ} in X is an L-fuzzy partition of X, if:

1. The corresponding set of ordinary subsets {core(Aα) : α ∈ Λ} is a partition of X, and
2. Core(Aα) = core(Aβ) implies Aα = Aβ.

Instead of the index set Λ from A we use |A|.
We use the notion of powerset maps defined by a fuzzy relation, which was first defined in [10].

If R : X × Y → L is an L-fuzzy relation, then the powerset maps R→ : LX → LY and R← : LY → LX

are defined by:

t ∈ LX , y ∈ Y, R→(t)(y) =
∨

x∈X
t(x)⊗ R(x, y),

s ∈ LY, x ∈ X, R←(s)(x) =
∧

y∈Y
R(x, y)→ s(y).

3. Relational Categories of L-Valued Topological Objects and Functors among Them

As we mentioned in the Introduction, in the paper [9], several functors among categories based
on fuzzy topological structures were discussed, whose common feature was that morphisms in
these categories were mappings between corresponding underlying sets. In this section we want to
significantly expand the information on the relationships between categories of topological L-operators
expressing the concept of “proximity”, while in accordance with the current trend of using L-fuzzy
relations, the morphisms in these categories are L-fuzzy relations with various properties.

The categories we will deal with have the objects defined in Section 2. Instead of classical maps
between sets we use special fuzzy relations as morphisms.
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Definition 7. In what follows, we denote sets by X, Y, and by the composition of morphisms from the standard
category Set.

1. The category RCInt is defined by:

(a) Objects are pairs (X, i), where i : LX → LX is a Čech L-fuzzy interior operator (Definition 2),
(b) R : (X, i)→ (Y, j) is a morphism, if R : X×Y → L is an L-fuzzy relation and

i.R← ≥ R←.j.

2. The category RCClo is defined by:

(a) Objects are pairs (X, c), where c : LX → LX is a Čech L-fuzzy closure operator (Definition 3),
(b) R : (X, c)→ (Y, d) is a morphism, if R : X×Y → L is an L-fuzzy relation, and

R→.c ≤ d.R→.

3. The category RFPreTop is defined by:

(a) Objects are L-fuzzy pretopological spaces (X, τ) (Definition 4),
(b) R : (X, τ)→ (Y, σ) is a morphism, where τ = {px ∈ LLX

: x ∈ X}, σ = {qy ∈ LLY
: y ∈ Y},

if R : X×Y → L is an L-fuzzy relation, and for all x ∈ X,∧
z∈Y

(R(x, z)→ qz) ≤ px.R←.

4. The category RFcoPreTop is defined by:

(a) Objects are L-fuzzy co-pretopological spaces (X, τ) (Definition 5),
(b) R : (X, τ)→ (Y, σ) is a morphism, where τ = {px ∈ LLX

: x ∈ X}, σ = {qy ∈ LLY
: y ∈ Y},

if R : X×Y → L is an L-fuzzy relation, and for all x ∈ X, y ∈ Y,

qy.R→ ≥ px ⊗ R(x, y).

5. The category RFRel is defined by:

(a) Objects are pairs (X, r), where r is a reflexive L-fuzzy relation on X,
(b) R : (X, r)→ (Y, s) is a morphism, if R : X×Y → L is an L-fuzzy relation, and

s ◦ R ≥ R ◦ r,

where ◦ is the composition of L-fuzzy relations.

6. The category RSFP is defined by:

(a) Objects are sets with an L-fuzzy partition (X,A), (Definition 6),
(b) (R, Σ) : (X,A)→ (Y,B) is a morphism if R : X×Y → L and Σ : |A| × |B| → L are L-fuzzy

relations such that

i. For each α ∈ |A|, β ∈ |B|, t ∈ core(Aα), z ∈ core(Bβ),

Σ(α, β) = R(t, z),
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ii. For each α ∈ |A|, β ∈ |B|, x ∈ X, y ∈ Y,

Aα(x)⊗ Σ(α, β) ≤ Bβ(y)⊗ R(x, y), (1)

Aα(x)⊗ R(x, y) ≤ Bβ(y)⊗ Σ(α, β). (2)

7. The category RFTrans↑ is defined by:

(a) Objects are upper F-transforms F↑X,A : LX → L|A|, where (X,A) are sets with L-fuzzy partitions

and F↑X,A(u)(α) =
∨

x∈X u(x)⊗ Aα(x), where u ∈ LX , α ∈ |A|,
(b) (R, Σ) : F↑X,A → F↑Y,B is a morphism if R : X × Y → L and Σ : |A| × |B| → L are L-fuzzy

relations and for each α ∈ |A|, β ∈ |B|, t ∈ core(Aα), z ∈ core(Bβ),

Σ(α, β) = R(t, z),

Σ→.F↑X,A ≤ F↑Y,B .R→.

hold.

8. The category RFTrans↓ is defined by:

(a) Objects are lower F-transforms F↓X,A : LX → L|A|, where (X,A) are sets with L-fuzzy partitions,

where F↓X,A(u)(α) =
∧

x∈X Aα(x)→ u(x), for u ∈ LX , α ∈ |A|,
(b) (R, Σ) : F↓X,A → F↓Y,B is a morphism if R : X × Y → L and Σ : |A| × |B| → L are L-fuzzy

relations and and for each α ∈ |A|, β ∈ |B|, t ∈ core(Aα), z ∈ core(Bβ),

Σ(α, β) = R(t, z),

Σ←.F↓Y,B ≤ F↓X,A.R←.

hold.

In the next theorems we will use the following subcategories of categories from Definition 7.

Definition 8. The following full subcategories of categories from Definiton 7 will be used:

1. The full subcategory RTFRel of RFRel with transitive L-fuzzy relations as objects,
2. The full subcategory RsACClo of RCClo with strong Čech–Alexandroff L-fuzzy closure operators

as objects,
3. The full subcategory RKsACClo of RCClo with Kuratowski strong Čech–Alexandroff L-fuzzy

closure operators,
4. The full subcategory RsACInt of RCInt with strong Čech–Alexandroff L-fuzzy interior operators

as objects,
5. The full subcategory RKsACInt of RCInt with Kuratowski strong Čech–Alexandroff L-fuzzy

interior operators,
6. The full subcategory RsAFPreTop of RFPreTop with strong Čech–

Alexandroff L-fuzzy pretopological spaces as objects,
7. The full subcategory RsAFcoPreTop of RFcoPreTop with strong Čech–Alexandroff L-fuzzy

co-pretopological spaces.

The main results of the paper are the following two theorems, in which we will define 23 functors
to describe relationships between pairs of categories and some of their subcategories from Definitions 7
and 8.
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Theorem 1. Let L be a complete residuated lattice. There exist functors such that the following diagram of
these functors commutes,

RFcoPreTop
F
>

<
F−1 RCClo

RFTrans↑
Q↑
> RsAFcoPreTop

∪

∧
F1>

<
F−1

1 RsACClo
∪

∧

< ⊃ RKsACClo

RSFP

W
∧

T
>

U↑
<

RFRel

M
∧

M−1

∨
< ⊃ RTFRel

K
∧

K−1

∨

RFTrans↓
Q↓
>

U↓

<
RsAFPreTop

V
∨ H1>

<
H−1

1

RsACInt

RFPreTop
∨

∩

H
>

<
H−1

RCInt
∨

∩

where (F, F−1), (F1, F−1
1 ), (M, M−1) and (K, K−1) are pairs of inverse functors.

Proof. (1) Let R : (X, τ) → (Y, σ) be a morphisms in RFcoPrTop, where τ = {px ∈ LLX
: x ∈ X},

σ = {qy ∈ LLY
: y ∈ Y}. The functor F : RFcoPrTop→ RCClo is defined by:

F(X, τ) = (X, c), ∀u ∈ LX , x ∈ X, c(u)(x) = px(u),

F(Y, σ) = (Y, d), ∀v ∈ LY, y ∈ Y, d(v)(y) = qy(v), F(R) = R.

According to [5], (X, c) is an object of RCClo. For arbitrary u ∈ LX , y ∈ Y, we have:

R→.c(u)(y) =
∨

x∈X
c(u)(x)⊗ R(x, y) =

∨
x∈X

px(u)⊗ R(x, y) ≤
∨

x∈X
qy(R→(u)) =

qy(R→(u)) = d.R→(u)(y).

Therefore, F is defined correctly and R is a morphism (X, c)→ (Y, d) in RCClo.
(2) Let R : (X, c) → (Y, d) be a morphisms in RCClo. According to the same reference [5],

the object function F−1 : RCClo→ RFcoPreTop such that:

F−1(X, c) = (X, τ), τ = {px : x ∈ X}, px(u) = c(u)(x),

for u ∈ LX , x ∈ X, is defined correctly. We set F−1(R) = R. Then we obtain:

qy.R→(u) = d.R→(u)(y) ≥ R→.c(u)(y) =
∨

z∈X
c(u)(z)⊗ R(z, y) =

∨
z∈X

pz(u)⊗ R(z, y) ≥ px(u)⊗ R(x, y).

Hence, R is a morphism in RFcoPreTop and F−1 is a functor. It is clear that F and F−1 are
inverse functors.
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(3) Let R : (X, r) → (Y, s) be a morphism in the category RFRel and let the object function
M : RFRel→ RsACClo be defined by:

M(X, r) = (X, c), ∀u ∈ LX , x ∈ X, c(u)(x) = R→(u)(x),

M(Y, s) = (Y, d), ∀v ∈ LY, y ∈ Y, d(v)(y) = s↑(v)(y).

According to results from [6] and many others, (X, c) ∈ sACClo and the object function is defined
correctly. For M(R) = R we obtain:

R→.c(u)(y) =
∨

x∈X
c(u)(x)⊗ R(x, y) =

∨
x∈X

∨
z∈X

u(z)⊗ r(z, x)⊗ R(x, y) =

∨
z∈X

(R ◦ r)(z, y)⊗ u(z) ≤
∨

z∈X
(s ◦ R)(z, y)⊗ u(z) =

∨
z∈X

∨
t∈Y

R(z, t)⊗ s(t, y)⊗ u(z) =
∨
t∈Y

R→(u)(t)⊗ s(t, y) = s↑.R→(u)(y) =

d.R→(u)(y).

Hence, R is a morphism in RsACClo and M is a functor.
(4) In the proof we use the following identity, which was proven in [20], and which allows to

express a general L-fuzzy set u ∈ LX in the following form:

u =
∨

x∈X
u(x)⊗ χX

{x}, (3)

where α ∈ LX is the constant function with the value α.
Let R : (X, c)→ (Y, d) be a morphism in RsACClo and let the object function M−1 : RsACClo→

RFRel be defined by:

M−1(X, c) = (X, r), ∀x, x′ ∈ X, r(x, x′) = c(χX
{x})(x′),

M−1(Y, d) = (Y, s), ∀y, y′ ∈ Y, s(y, y′) = d(χY
{y})(y

′).

It is clear that r and s are reflective fuzzy relations.
We set M−1(R) = R. Then, for x ∈ X, y ∈ Y we obtain:

R ◦ r(x, y) =
∨

x′∈X

r(x, x′)⊗ R(x′, y) =
∨

x′∈X

c(χX
{x})(x′)⊗ R(x′, y) =

R→.c(χX
{x})(y) ≤ d.R→(χX

{x})(y) = d(
∨

y′∈Y

R→(χX
{x})(y

′)⊗ χY
{y′})(y) =∨

y′∈Y

R→(χX
{x})(y

′)⊗ d(χY
{y′})(y) =∨

y′∈Y

∨
x′∈X

χX
{x}(x′)⊗ R(x′, y)⊗ d(χY

{y′})(y) =∨
y∈Y

R(x, y′)⊗ d(χY
{y′})(y) =

∨
y′∈Y

R(x, y′)⊗ s(y′, y) = s ◦ R(x, y),

which follows from the fact that d is a strong Čech–Alexandroff closure. Hence, M−1(R) is a morphism
in the category RFRel and M−1 is a functor. We prove that M and M−1 are inverse functors.
Let (X, r) ∈ RFRel. Then M−1.M(X, r) = (X, r′), where

r′(x, x′) = c(χX
{x})(x′) = R→(χX

{x})(x′) =
∨

z∈X
χX
{x}(z)⊗ r(z, x) = r(x, x′).
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On the other hand, M.M−1(X, c) = (X, c′), where M−1(X, c) = (X, r), r(z, x) = c(χX
{z})(x),

and we obtain:

c′(u)(x) = R→(u)(x) =
∨

z∈X
u(z)⊗ r(z, x) =

∨
z∈X

u(z)⊗ c(χX
{z})(x) =

c(
∨

z∈X
u(z)⊗ χX

{x})(x) = c(u)(x).

Therefore, M and M−1 are inverse functors.
(5) Let R : (X, r) → (Y, s) be a morphism in the category RTFRel. The functor K : RTFRel →

RKsACClo is defined by:
K(X, r) = M(X, r), K(R) = M(R).

We prove that this definition is correct, i.e., M(X, r) = (X, c) and c is a Kuratowski closure
operator. In fact, for u ∈ LX , x ∈ X we have:

cc(u)(x) = R→(R→(u))(x) =
∨

y,z∈X
u(z)⊗ r(z, y)⊗ r(y, x) ≤

∨
y,z∈X

u(z)⊗ r(z, x) = R→(u)(x) = c(u)(x),

and the definition of K is correct.
(6) Let R : (X, c)→ (Y, d) be a morphism in RKsACClo and let the functor K−1 : RKsACClo→

RTFRel be defined by:

K−1(X, c) = M−1(X, c) = (X, r), K−1(R) = M−1(R).

We prove that this definition is correct. In fact, for arbitrary u ∈ LX , according to (3), we obtain:

c(u)(x) = c(
∨

z∈X
u(z)⊗ χX

{z})(x) =
∨

z∈X
u(z)⊗ c(χX

{z})(x) =

∨
z∈x

u(z)⊗ r(z, x) = R→(u)(x).

Hence, for arbitrary y ∈ X and u = χX
{y}, we obtain:

cc(χX
{y})(x) = R→(R→(χX

{y}))(x) =
∨

z∈X
χX
{y}(z)⊗

∨
t∈X

r(z, t)⊗ r(t, y) =

∨
t∈X

r(y, t)⊗ r(t, x),

c(χX
{y})(x) = R→(χX

{y})(x) = r(y, x).

Because cc = c, it follows that r(y, x) ≥ r(y, t)⊗ r(t, x). Therefore, r is a transitive relation.
(7) Let (R, Σ) : (X,A)→ (Y,B) be a morphism in RSFP and let the object function W : RSFP→

RsAFcoPreTop be defined by:

W(X,A) = (X, {px ∈ LLX
: x ∈ X}), px(u) =

∨
t∈X

u(t)⊗ AwA(t)(x),

W(Y,B) = (Y, {qy ∈ LLY
: y ∈ Y}), qy(v) =

∨
s∈Y

v(s)⊗ BwB(s)(y),
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where wA(x) ∈ |A| is the unique index such that x ∈ core(AwA(x)). It is easy to see that the object
function W is defined correctly. We set W(R, Σ) = R. For arbitrary x ∈ X, y ∈ Y and u ∈ LX , from the
inequalitiy (2) we obtain:

qy.R→(u) =
∨

z∈Y
R→(u)(z)⊗ BwB(z)(y) =

∨
z∈Y

∨
t∈X

u(t)⊗ R(t, z)⊗ BwB(z)(y) =∨
z∈Y

∨
t∈X

u(t)⊗ Σ(wA(t), wB(z))⊗ BwB(z)(y) ≥
∨

t∈X
u(t)⊗ AwA(t)(x)⊗ R(x, y)

≥ px(u)⊗ R(x, y)

as follows from the identity
Σ(wA(x), wB(y)) = R(x, y).

Hence, R is a morphisms in RsAFcoPreTop and W is a functor.
(8) Let U↑ : RSFP→ RFTrans↑ be defined by U↑(X,A) = F↑X,A, U↑(R, Σ) = (R, Σ). By a simple

computation it can be proven that the definition of U↑ is correct and U↑ is a functor.
(9) Let (R, Σ) : (X,A) → (Y,B) be a morphism in the category RSFP. We define T : RSFP →

RFRel by:

T(X,A) = (X, r), r(x, x′) = AwA(x)(x′),

T(Y,B) = (Y, s), s(y, y′) = BwB(y)(y
′),

T(R, Σ) = R.

We prove that R is a morphism in the category RFRel. In fact, let x ∈ X, y ∈ Y. Then, according to
Inequality (2),

(R ◦ r)(x, y) =
∨

z∈X
r(x, z)⊗ R(z, y) =

∨
z∈X

AwA(x)(z)⊗ R(z, y) ≤

∨
t∈Y

Σ(wA(x), wB(t))⊗ BwB(t)(y) =
∨
t∈Y

R(x, t)⊗ s(t, y) = s ◦ R(x, y).

Hence, T is a functor.
(10) The functor Q↑ : RFTrans↑ → RsAFcoPreTop can be simply defined by:

Q↑(F↑X,A) = W(X,A), Q↑(R, Σ) = R.

(11) The functors F1 and F−1
1 are restrictions of the functors F and F−1. It can be proven simply

that these functors are mutually inverse.
(12) Let (R, Σ) : (X,A) → (Y,B) be a morphism in RSFP. We define V : RSFP →

RsAFPreTop by:

V(X,A) = (X, {px ∈ LLX
: x ∈ X}), px(u) = F↓X,A(u)(wA(x)),

V(Y,B) = (Y, {qy ∈ LLY
: y ∈ Y}), qx(v) = F↓Y,B(v)(wB(y)),

V(R, Σ) = R.
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It can be proven by a simple computation that the object function of V is defined correctly.
We show that R is a morphism. In fact, for arbitrary v ∈ LY, using Inequality (2), we obtain for x ∈ X
and arbitrary y ∈ Y:

px.R←(v) =
∧

z∈X
AwA(x)(z)→ R←(v)(z) =

∧
z∈X

AwA(x)(z)→ (
∧
t∈Y

R(z, t)→ v(t)) =

∧
z∈X

∧
t∈Y

(AwA(x)(z)→ (R(z, t)→ v(t))) =
∧

z∈X

∧
t∈Y

AwA(x)(z)⊗ R(z, t)→ v(t) ≥

∧
t∈Y

BwB(y)(t)⊗ Σ(wA(x), wB(y))→ v(t) =
∧
t∈Y

BwB(y)(t)⊗ R(x, y)→ v(t) =

∧
t∈Y

R(x, y)→ (BwB(y)(t)→ v(t)) = R(x, y)→ (
∧
t∈Y

BwB(y)(t)→ v(t)) =

R(x, y)→ qy(v) ≥
∧

y∈Y
R(x, y)→ qy(v).

Therefore, R is a morphisms and V is a functor.
(13) Let (R, Σ) : (X,A)→ (Y,B) be a morphism in RSFP. We define U↓ : RSFP→ RFTRans↓ by:

U↓(X,A) = F↓X,A, U↓(R, Σ) = R.

It is clear that the object function U↓ is defined correctly. We show that R is a morphism,
i.e., Σ←.F↓Y,B ≤ F↓X,A.R← holds. In fact, for v ∈ LY, α ∈ |A|, we have:

F↓X,A.R←(v)(α) =
∧

x∈X
Aα(x)→ (

∧
t∈Y

R(x, t)→ v(t)) =

∧
x∈X

∧
t∈Y

Aα(x)⊗ R(x, t)→ v(t) ≥

∧
β∈|B|

∧
t∈Y

Bβ(t)⊗ Σ(α, β)→ v(t) =
∧

β∈|B|
Σ(α, β)→ (

∧
t∈Y

Bβ(t)→ v(t)) =

Σ←.F↓Y,B(v)(α).

Therefore, U↓ is a functor.
(14) The functor Q↓ : RFTrans↓ → RsAFPreTop can be defined simply by:

Q↓(F↓X,A) = V(X,A), Q↓(R, Σ) = R.

(15) Let R : (X, τ) → (Y, σ) be a morphism in RFPreTop, where τ = {px : x ∈ X},
σ = {qy : y ∈ Y}. We define H : RFPreTop→ RCInt by:

H(X, τ) = (X, i), i(u)(x) = px(u),

H(Y, σ) = (Y, j), j(v)(y) = qy(v),

H(R) = R.

By a simple verification we can see that H(X, τ) is an object of RCInt. We prove that R
is a morphism in RCInt. Using the properties of morphisms from RFPreTop, for arbitrary
v ∈ LY, x ∈ X, y ∈ Y, we obtain:

i.R←(v)(x) = px(R←(v)) ≥
∧
t∈Y

R(x, t)→ qt(v) = R←(j(v))(x).
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Hence, R is a morphism and H is a functor. The inverse functor H−1 is defined symmetrically,
i.e., H−1(X, i) = (X, τ), τ = {px : x ∈ X}, px(u) = i(u)(x). It is clear that H−1 is a functor and H, H−1

are mutually inverse.
(16) The functors H1 and H−1

1 are restrictions of functors H and H−1.
It can be verified easily that the diagram of functors commutes.

For the proof of the next theorem we use the following lemma, which was proven in [21].

Lemma 1. Let L be a complete MV-algebra and f ∈ LX. For α ∈ L, let α ∈ LX be a constant function with
the constant value α. Then for each f ∈ LX we have:

¬ f =
∧

x∈X
f (x)→ ¬χX

{x}.

Theorem 2. Let L be a complete MV-algebra. Then the following diagram of functors from Theorem 1 and
new functors commutes, where (H, H−1), (N, N−1) and (P, P−1) are inverse pairs of functors.

RFcoPreTop
F
>

<
F−1 RCClo

RFTrans↑
Q↑
> RsAFcoPreTop

∪

∧
G
>

<
G−1 RsACClo

∪

∧

< ⊃ RKsACClo

RSFP

W
∧

T
>

U↑
<

RFRel

M
∧

M−1

∨
< ⊃ RTFRel

K
∧

K−1

∨

RFTrans↓
Q↓
>

U↓

<
RsAFPreTop

V
∨ H

>

<
H−1 RsACInt

N
∧

N−1

∨
< ⊃ RKsACInt

P
∧

P−1

∨

RFPreTop
∨

∩

H
>

<
H−1

RCInt
∨

∩

Proof. (1) Let (R : (X, i)→ (Y, j) be a morphism in RsACInt. We define N by:

N(X, i) = (X, r), r(x, x′) = ¬i(¬χX
{x′})(x),

N(Y, j) = (Y, s), s(y, y′) = ¬j(¬χY
{y′})(y), N(R) = R.

The definition of objects is correct, because r is a reflexive relation. In fact, if r(x, x) =

¬i(¬χX
{x})(x) = α, then ¬α = i(χX

{x})(x) ≤ ¬χX
{x}(x) = 0 and it follows that α = 1. Let x ∈ X, y ∈ Y,

then we have:

R←(j(¬χY
{y}))(x) =

∧
t∈Y

R(x, t)→ j(¬χY
{y})(t) =

¬
∨
t∈Y
¬(R(x, t)→ j(¬χY

{y})(t)) = ¬
∨
t∈Y

R(x, t)⊗¬j(¬χY
{y})(t) = ¬s ◦ R(x, y).

On the other hand, using Lemma 1, for f = ¬R←(¬χY
{y}) ∈ LX we obtain:

R←(¬χY
{y}) =

∧
z∈X
¬R←(¬χY

{y})(z)→ ¬χX
{z}.
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Because i and j are strong Čech–Alexandroff operators, we obtain:

i(R←(¬χY
{y}))(x) =

∧
z∈X
¬R←(¬χY

{y})(z)→ i(¬χX
{z})(x) =

∧
z∈X
¬(

∧
t∈Y

R(z, t)→ ¬χY
{y}(t))→ i(¬χX

{z})(x) =

∧
z∈X
¬(R(z, y)→ ¬χY

{y}(y))→ i(¬χX
{z})(x) =

∧
z∈X
¬¬R(z, y)→ i(¬χX

{z})(x) =
∧

z∈X
R(z, y)→ ¬¬i(¬χX

{z})(x) =

∧
z∈X

R(z, y)→ ¬r(x, z) =
∧

z∈X
¬(R(z, y)⊗ r(x, z)) =

¬
∨

z∈X
r(x, z)⊗ R(z, y) = ¬(r ◦ R)(x, y)

Therefore, we obtain:

¬(s ◦ R)(x, y) = R←(j(¬χY
{y}))(x) ≤ i(R←(¬χY

{y}))(x) = ¬(R ◦ r)(x, y),

and it follows s ◦ R(x, y) ≥ R ◦ r(x, y). Therefore, R is a morphism in RFRel.
(2) Let R : (X, r)→ (Y, s) be a morphism in RFRel. We define N−1 : RFRel→ RsACInt by:

N−1(X, r) = (X, i), i(u)(x) = R←(u)(x),

N−1(Y, s) = (Y, j), j(v)(y) = s↓(v)(y), N−1(R) = R.

It is clear that object function N−1 is defined correctly. We show that R is a morphism in RsACInt,
i.e., we need to prove that for arbitrary v ∈ LY, i.R←(v) ≥ R←.j(v) holds. Because both operators i.R←

and R←.j have properties of strong Čech–Alexandroff operators, according to Lemma 1, for arbitrary
v ∈ LY we obtain:

i.R←(v) = i.R←(
∧
t∈Y
¬v(t)→ ¬χY

{t}) =
∧
t∈Y
¬v(t)→ i.R←(¬χ{t}),

R←.j(v) = R←.j(
∧
t∈Y
¬v(t)→ ¬χY

{t}) =
∧
t∈Y
¬v(t)→ R←.j(¬χ{t}).

Therefore, we obtain the following equivalence:

i.R←(v) ≥ R←.j(v)⇔ i.R←(¬χY
{t}) ≥ R←.j(¬χY

{t})

for arbitrary t ∈ Y. Let t ∈ Y, x ∈ X. We have:

i(R←(¬χY
{t}))(x) =

∧
z∈X

r(x, z)→ R←(¬χY
{t})(z) =∧

z∈X
r(x, z)→ (

∧
u∈Y

R(z, u)→ ¬χY
{t}(u)) =

∧
z∈X

r(z, x)→ ¬R(z, t) =

∧
z∈X
¬(r(x, z)⊗ R(z, t)) = ¬

∨
z∈X

r(x, z)⊗ R(z, t) = ¬(R ◦ r)(x, t).
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On the other hand, we have:

R←.j(¬χY
{t})(x) =

∧
u∈Y

R(x, u)→ j(¬χY
{t})(u) =∧

u∈Y
R(x, u)→ (

∧
p∈Y

s(u, p)→ ¬χY
{t}(p)) =

∧
u∈Y

R(x, u)→ ¬s(u, t) =

∧
u∈Y
¬(R(x, u)⊗ s(u, t)) = ¬

∨
u∈Y

R(x, u)⊗ s(u, t) = ¬(s ◦ R)(x, y).

Therefore, we obtain:

R←.j(¬χY
{t}))(x) = ¬(s ◦ R)(x, t) ≤ ¬(R ◦ r)(x, t) = i.R←(¬χY

{t})(x),

and R is a morphism in RsACInt.
(3) We prove that N, N−1 are inverse functors. In fact, let (X, i) ∈ RsACInt. Then we have:

N−1.N(X, i) = N−1(X, r) = (X, j),

r(x, t) = ¬i(¬χX
t )(x),

j(u)(x) = R←(u)(x) =
∧

t∈X
r(x, t)→ u(t) =

∧
t∈X
¬i(¬χX

{t}(x)→ u(t) =

∧
t∈X
¬u(t)→ i(¬χ{t})

X(x) = i(
∧

t∈X
¬u(t)→ ¬χX

{t})(x) = i(u)(x),

as follows from Lemma 1. Hence, N−1.N(X, i) = (X, i). Conversely, for (X, r) ∈ RFRel, we obtain:

N.N−1(X, r) = N(X, i) = (X, s),

i(u)(x) = R←(u)(x),

s(x, t) = ¬i(¬χX
{t})(x) = ¬R←(¬χX

{t})(x) =

¬(
∧

t∈X
r(x, t)→ ¬χX

{t}(z)) = ¬¬r(x, t) = r(x, t).

Hence r = s and N, N−1 are inverse functors.
(4) Let R : (X, i)→ (Y, j) be a morphism in RKsACInt. We define P by:

P(X, i) = N(X, i) P(R) = N(R).

Hence, if P(X, i) = (X, r), then r(x, t) = i(¬χX
{t})(x). We need to prove only that r is a transitive

L-fuzzy relation. For arbitrary u ∈ LX we have:

R←(u)(x) =
∧

z∈X
r(x, z)→ u(z) =

∧
z∈X
¬i(¬χX

{z})(x)→ u(z) =

∧
z∈X
¬u(z)→ i(¬χX

{z})(x) = i(
∧

z∈X
¬u(z)→ ¬χX

{z})(x) = i(u)(x),

as follows from Lemma 1. Hence, for u = ¬χX
{t} we obtain:

R←(¬χX
{t})(x) =

∧
z∈X

r(x, z)→ ¬χX
{t}(z) = ¬r(x, t) = i(¬χX

{t})(x).
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Analogously we obtain:

ii(¬χX
{t})(x) = R←(R←(¬χ{t}))(x) =

∧
z∈X

r(x, z)→ R←(¬χX
{t})(z) =∧

z∈X
r(x, z)→ (

∧
y∈X

r(z, y)→ ¬χX
{t}(y)) =∧

z∈X

∧
y∈X

r(x, z)⊗ r(z, y)→ ¬χX
{t}(y) =

∧
z∈X
¬(r(x, z)⊗ r(z, t)).

Therefore, from ii = i we obtain r(x, t) ≥ r(x, z)⊗ r(z, t) and r is a transitive relation.
(5) Let R : (X, r)→ (Y, s) be a morphism in RTFRel. We define P−1 : RTFRel→ RKsACInt by:

P−1(X, r) = N−1(X, r), P−1(R) = R.

Hence, if P−1(X, r) = (X, i), then i(u)(x) = R←(u)(x). We need to prove only that i is a Kuratowski
interior operator. For arbitrary t ∈ X we have:

i(¬χX
{t})(x) =

∧
z∈X

r(x, z)→ ¬χ{t}(z) = ¬r(x, t).

Analogously, as in previous part (5), we prove that:

ii(¬χX
{t})(x) =

∧
z∈X
¬(r(x, z)⊗ r(z, t)) = ¬r(x, t) = i(¬χX

{t})(x).

Using Lemma 1, for arbitrary u ∈ LX we obtain:

ii(u)(x) = ii(
∧

z∈X
¬u(z)→ ¬χX

{z})(x) =
∧

z∈X
¬u(z)→ ii(¬χX

{z})(x) =

∧
z∈X
¬u(z)→ i(¬χX

{z})(x) = i(
∧

z∈X
¬u(z)→ ¬χ{z})(x) = i(u)(x).

For the illustration of previous functors we show how from one topological type structure another
structure can be defined.

Example 1. Let L be a complete residuated lattice. Using Theorem 1 we show how a strong Čech–Alexandroff
L-fuzzy closure operator c in a set X can be constructed from an equivalence relation σ in X. In fact, using σ we
can define a fuzzy partition A = {Aα : α ∈ X/σ}, where X/σ is the set of equivalence classes defined by σ and
Aα(x) = 1 iff x ∈ α; otherwise the value is 0. Using functors from the Theorem 1, the L-fuzzy closure operator
c in X can be defined by (X, c) = M.T(X,A), i.e., for arbitrary u ∈ LX , x ∈ X,

c(u)(x) =
∨

t∈X
u(t)⊗ AwA(x)(t) =

∨
t∈X,(t,x)∈σ

u(t).

Example 2. Let L be a complete MV-algebra. Using the Theorem 2 we show how from a strong
Čech–Alexandroff L-fuzzy pretopological space (X, τ), a strong Čech–Alexandroff L-fuzzy co-pretopological
space (X, ρ) can be defined. In fact, we can put (X, ρ) = G−1.M.N.H(X, τ). If τ = {px : x ∈ X} then
ρ = {px : x ∈ X} is defined by:

px(u) =
∨

t∈X
u(t)⊗¬px(¬χX

{x})(t),

as can be verified by a simple calculation.
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4. Conclusions

The article follows the paper [9], in which the issue of relationships between categories motivated
by topological structures was investigated. These structures include variants of fuzzy topological
spaces, fuzzy rough sets, fuzzy approximation spaces, fuzzy closure operators and fuzzy pretopological
operators, and their dual terms, such as fuzzy interior operators, are frequently used in fuzzy set theory
and applications. The common feature of these categories was that the morphisms in these categories
with topological objects were mappings among the supports of these structures. Recently, however,
a number of results have emerged in the theory of fuzzy sets, which are based on the application of
fuzzy relations as morphisms in suitable categories.

In this sequel, we looked at a more general situation where morphisms in these categories of
topological structures are not mappings, but L-fuzzy relations. In detail, we considered categories
and some of their subcategories of Čech closure or interior L-valued operators, categories of L-fuzzy
pretopological and L-fuzzy co-pretopological operators, the category of L-valued fuzzy relation,
categories of upper and lower F-transforms and the category of spaces with fuzzy partitions,
where morphisms between objects are based on L-valued relations. We investigated functors between
these categories with relational morphisms, which can thus represent transformation processes between
different types of topological structures.

As an interesting consequence of these relationships among relational categories, it follows that
the category of spaces with fuzzy partitions and relational morphisms plays the key role. From the
corresponding functor diagrams it follows that a space with a fuzzy partition can be used to create an
object of any of the above categories of topological structures. Moreover, from a relational variant of a
morphism between two spaces with fuzzy partitions we can derive a relational morphism between
corresponding transformed objects from these categories of topological structures.

This paper presents the first systematic contribution to the study of relationships between
categories of different variants of fuzzy topological structures, where the morphisms between structures
are L-valued fuzzy relations. Although there are isomorphic functors between some pairs of these
categories, it is not yet known which of the functors between the remaining pairs of categories are also
isomorphisms. It is also not known in all cases whether the special subcategories presented in this
paper constitute reflective subcategories, which would make it possible to extend the general forms of
a given topological structure to these special structures from these subcategories. These issues will be
the subject of further research.
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