
axioms

Article

On the Solvability of Nonlinear Third-Order
Two-Point Boundary Value Problems

Ravi P. Agarwal 1,*, Petio S. Kelevedjiev 2 and Todor Z. Todorov 2

1 Department of Mathematics, Texas A and M University-Kingsville, Kingsville, TX 78363-8202, USA
2 Department of Mathematics, Technical University of Sliven, 8800 Sliven, Bulgaria; pskeleved@abv.bg (P.S.K.);

tjtodorov@abv.bg (T.Z.T.)
* Correspondence: agarwal@tamuk.edu

Received: 21 April 2020; Accepted: 23 May 2020; Published: 31 May 2020
����������
�������

Abstract: Under barrier strips type assumptions we study the existence of C3[0, 1]—solutions to
various two-point boundary value problems for the equation x′′′ = f (t, x, x′, x′′). We give also some
results guaranteeing positive or non-negative, monotone, convex or concave solutions.
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1. Introduction

In this paper, we study the solvability of boundary value problems (BVPs) for the differential
equation

x′′′ = f (t, x, x′, x′′), t ∈ (0, 1), (1)

with some of the boundary conditions

x(0) = A, x′(1) = B, x′′(1) = C, (2)

x(0) = A, x′(0) = B, x′′(1) = C, (3)

x(0) = A, x(1) = B, x′′(1) = C, (4)

x(0) = A, x′(0) = B, x′(1) = C, (5)

x(1) = A, x′(0) = B, x′(1) = C, (6)

where f : [0, 1]× Dx × Dp × Dq → R, Dx, Dp, Dq ⊆ R, and A, B, C ∈ R.
The solvability of BVPs for third-order differential equations has been investigated by many

authors. Here, we will cite papers devoted to two-point BVPs which are mostly with some of the above
boundary conditions; in each of these works A, B, C = 0. Such problems for equations of the form

x′′′ = f (t, x), t ∈ (0, 1),

have been studied by H. Li et al. [1], S. Li [2] (the problem may be singular at t = 0 and/or t = 1),
Z. Liu et al. [3,4], X. Lin and Z. Zhao [5], S. Smirnov [6], Q. Yao and Y. Feng [7]. Moreover, the boundary
conditions in References [2,3] are (3), in Reference [4] they are (4), in References [1,5,7] they are (5), and
in Reference [6] are

x(0) = x(1) = 0, x′(0) = C.
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Y. Feng [8] and Y. Feng and S. Liu [9] have considered the equation

x′′′ = f (t, x, x′), t ∈ (0, 1),

with (6) and (5), respectively. Y. Feng [10] and R. Ma and Y. Lu [11] have studied the equations

f (t, x, x′, x′′′) = 0 and x′′′ + Mx′′ + f (t, x) = 0, t ∈ (0, 1).

with (5). BVPs for the equation
x′′′ = f (t, x, x′, x′′), t ∈ (0, 1),

have been investigated by A. Granas et al. [12], B. Hopkins and N. Kosmatov [13], Y. Li and Y. Li [14];
the boundary conditions in [12] are (5), these in Reference [13] are (2) and (3), and in Reference [14]—(2).

Results guaranteeing positive or non-negative solutions can be found in References [2–4,7–11,13,14],
and results that guarantee negative or non-positive ones in References [7,9,10]. The existence of
monotone solutions has been studied in References [3,7,9].

As a rule, the main nonlinearity is defined and continuous on a set such that each dependent
variable changes in a left- and/or a right-unbounded set; in Reference [13] it is a Carathéodory
function on an unbounded set. Besides, the main nonlinearity is monotone with respect to some of
the variables in References [1,5], does not change its sign in References [2–4,14] and satisfies Nagumo
type growth conditions in Reference [14]. Maximum principles have been used in References [8,10],
Green’s functions in References [1,2,4,5], and upper and lower solutions in References [1,7–11].

Here, we use a different tool—barrier strips which allow the right side of the equation to be
defined and continuous on a bounded subset of its domain and to change its sign.

To prove our existence results we apply a basic existence theorem whose formulation requires the
introduction of the BVP

x′′′ + a(t)x′′ + b(t)x′ + c(t)x = f (t, x, x′, x′′), t ∈ (0, 1), (7)

Vi(x) = ri, i = 1, 2, 3(i = 1, 3 for short), (8)

where a, b, c ∈ C([0, 1],R), f : [0, 1]× Dx × Dp × Dq → R,

Vi(x) =
2

∑
j=0

[aijx(j)(0) + bijx(j)(1)], i = 1, 3,

with constants aij and bij such that ∑2
j=0(a2

ij + b2
ij) > 0, i = 1, 3, and ri ∈ R, i = 1, 3. Next, consider the

family of BVPs for

x′′′ + a(t)x′′ + b(t)x′ + c(t)x = g(t, x, x′, x′′, λ), t ∈ (0, 1), λ ∈ [0, 1] (7)λ

with boundary conditions (8), where g is a scalar function defined [0, 1]× Dx × Dp × Dq × [0, 1], and
a, b, c are as above. Finally, BC denotes the set of functions satisfying boundary conditions (8), and
BC0 denotes the set of functions satisfying the homogeneous boundary conditions Vi(x) = 0, i = 1, 3.
Besides, let C3

BC[0, 1] = C3[0, 1] ∩ BC and C3
BC0

[0, 1] = C3[0, 1] ∩ BC0.
The proofs of our existence results are based on the following theorem. It is a variant of Reference [12]

(Chapter I, Theorem 5.1 and Chapter V, Theorem 1.2). Its proof can be found in Reference [15]; see also
the similar result in Reference [16] (Theorem 4).

Lemma 1. Suppose:
(i) Problem (7)0, (8) has a unique solution x0 ∈ C3[0, 1].
(ii) Problems (7), (8) and (7)1, (8) are equivalent.



Axioms 2020, 9, 62 3 of 9

(iii) The map Lh : C3
BC0

[0, 1]→ C[0, 1] is one-to-one: here,

Lhx = x′′′ + a(t)x′′ + b(t)x′ + c(t)x.

(iv) Each solution x ∈ C3[0, 1] to family (7)λ, (8) satisfies the bounds

mi ≤ x(i) ≤ Mi for t ∈ [0, 1], i = 0, 3,

where the constants −∞ < mi, Mi < ∞, i = 0, 3, are independent of λ and x.
(v) There is a sufficiently small σ > 0 such that

[m0 − σ, M0 + σ] ⊆ Dx, [m1 − σ, M1 + σ] ⊆ Dp, [m2 − σ, M2 + σ] ⊆ Dq,

and g(t, x, p, q, λ) is continuous for (t, x, p, q, λ) ∈ [0, 1]× J × [0, 1] where J = [m0 − σ, M0 + σ]× [m1 −
σ, M1 + σ]× [m2 − σ, M2 + σ]; mi, Mi, i = 0, 3, are as in (iv).

Then boundary value problem (7), (8) has at least one solution in C3[0, 1].

For us, the equation from (7)λ has the form

x′′′ = λ f (t, x, x′, x′′). (1)λ

Preparing the application of Lemma 1, we impose conditions which ensure the a priori bounds
from (iv) for the eventual C3[0, 1] - solutions of the families of BVPs for (7)λ, λ ∈ [0, 1], with one of the
boundary conditions (k), k = 2, 6.

So, we will say that for some of the BVPs (1), (k), k = 2, 6, the conditions (H1) and (H2) hold for a
K ∈ R (it will be specified later for each problem) if:

(H1) There are constants F′i , L′i, i = 1, 2, such that

F′2 < F′1 ≤ K ≤ L′1 < L′2, [F′2, L′2] ⊆ Dq,

f (t, x, p, q) ≥ 0 for (t, x, p, q) ∈ [0, 1]× Dx × Dp × [L′1, L′2], (9)

f (t, x, p, q) ≤ 0 for (t, x, p, q) ∈ [0, 1]× Dx × Dp × [F′2, F′1]. (10)

(H2) There are constants Fi, Li, i = 1, 2, such that

F2 < F1 ≤ K ≤ L1 < L2, [F2, L2] ⊆ Dq,

f (t, x, p, q) ≤ 0 for (t, x, p, q) ∈ [0, 1]× Dx × Dp × [L1, L2],

f (t, x, p, q) ≥ 0 for (t, x, p, q) ∈ [0, 1]× Dx × Dp × [F2, F1].

Besides, we will say that for some of the BVPs (1), (k), k = 2, 6, the condition (H3) holds for
constants mi ≤ Mi, i = 0, 2, (they also will be specified later for each problem) if:

(H3) [m0 − σ, M0 + σ] ⊆ Dx, [m1 − σ, M1 + σ] ⊆ Dp, [m2 − σ, M2 + σ] ⊆ Dq and f (t, x, p, q) is
continuous on the set [0, 1]× J, where J is as in (v) of Lemma 1, and σ > 0 is sufficiently small.

In fact, the present paper supplements P. Kelevedjiev and T. Todorov [15] where only conditions
(H2) and (H3) have been used for studying the solvability of various BVPs for (1) with other boundary
conditions. Here, (H1) is also needed. Now, only (H1) guarantees the a priori bounds for x′′(t), x′(t)
and x(t), in this order, for each eventual solution x ∈ C3[0, 1] to the families (1)λ, (k), k = 2, 4, and (H1)
and (H2) together guarantee these bounds for the families (1)λ, (k), k = 5, 6. As in Reference [15], (H3)
gives the bounds for x′′′(t).
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The auxiliary results which guarantee a priori bounds are given in Section 2, and the existence
theorems are in Section 3. The ability to use (H1) and (H2) for studying the existence of solutions with
important properties is shown in Appendix A. Examples are given in Section 4.

2. Auxiliary Results

This part ensures a priori bounds for the eventual C3[0, 1]-solutions of each family (1)λ, (k), k =

2, 6, that is, it ensures the constants mi, Mi, i = 0, 2, from (iv) of Lemma 1 and (H3).

Lemma 2. Let x ∈ C3[a, b] be a solution to (1)λ. Suppose (H1) holds with [0, 1] replaced by [a, b] and
K = x′′(b). Then

F′1 ≤ x′′(t) ≤ L′1 on [a, b].

Proof. By contradiction, assume that x′′(t) > L′1 for some t ∈ [a, b). This means that the set

S+ = {t ∈ [a, b] : L′1 < x′′(t) ≤ L′2}

is not empty because x′′(t) is continuous on [a, b] and x′′(b) ≤ L′1. Besides, there is a γ ∈ S+ such that

x′′′(γ) < 0.

As x(t) is a C3[a, b]—solution to (1)λ,

x′′′(γ) = λ f (γ, x(γ), x′(γ), x′′(γ)).

But, (γ, x(γ), x′(γ), x′′(γ)) ∈ S+ × Dx × Dp × (L′1, L′2] and (9) imply

x′′′(γ) ≥ 0,

a contradiction. Consequently,
x′′(t) ≤ L′1 for t ∈ [a, b].

Along similar lines, assuming on the contrary that the set

S− = {t ∈ [a, b] : F′2 ≤ x′′(t) < F′1}

is not empty and using (10), we achieve a contradiction which implies that

F′1 ≤ x′′(t) for t ∈ [a, b].

The proof of the next assertion is virtually the same as that of Lemma 2 and is omitted; it can be
found in [15].

Lemma 3. Let x ∈ C3[a, b] be a solution to (1)λ. Suppose (H2) holds with [0, 1] replaced by [a, b] and
K = x′′(a). Then

F1 ≤ x′′(t) ≤ L1 on [a, b].

Let us recall, conditions of type (H1) and (H2) are called barrier strips, see P. Kelevedjiev [17].
As can we see from Lemmas 2 and 3 they control the behavior of x′′(t) on [a, b], depending on the sign of
f (t, x, x′, x′′) the curve of x′′(t) on [a, b] crosses the strips [a, b]× [L′1, L′2], [a, b]× [L1, L2], [a, b]× [F′2, F′1]
and [a, b]× [F2, F1] not more than once. This property ensures the a priori bounds for x′′(t).
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Lemma 4. Let (H1) hold for K = C. Then every solution x ∈ C3[0, 1] to (1)λ, (2) or (1)λ, (3) satisfies
the bounds

|x(t)| ≤ |A|+ |B|+ max{|F′1|, |L′1|}, t ∈ [0, 1],

|x′(t)| ≤ |B|+ max{|F′1|, |L′1|}, t ∈ [0, 1],

F′1 ≤ x′′(t) ≤ L′1, t ∈ [0, 1]. (11)

Proof. Let first x(t) be a solution to (1)λ, (2). Using Lemma 2 we conclude that (11) is true. Then,
according to the mean value theorem, for each t ∈ [0, 1) there is a ξ ∈ (t, 1) such that

x′(1)− x′(t) = x′′(ξ)(1− t),

which together with (11) gives the bound for |x′(t)|. Again from the mean value theorem for each
t ∈ (0, 1] there is an η ∈ (0, t) with the property

x(t)− x(0) = x′(η)t,

which yields the bound for |x(t)|. The assertion follows similarly for (1)λ, (3).

Lemma 5. Let (H1) hold for K = C. Then every solution x ∈ C3[0, 1] to (1)λ, (4) satisfies the bounds

|x(t)| ≤ |A|+ |B− A|+ max{|F′1|, |L′1|}, t ∈ [0, 1],

|x′(t)| ≤ |B− A|+ max{|F′1|, |L′1|}, t ∈ [0, 1],

F′1 ≤ x′′(t) ≤ L′1, t ∈ [0, 1].

Proof. By Lemma 2, F′1 ≤ x′′(t) ≤ L′1 on [0, 1]. Clearly, there is a µ ∈ (0, 1) for which x′(µ) = B− A.
Further, for each t ∈ [0, µ) there is a ξ ∈ (t, µ) such that

x′(µ)− x′(t) = x′′(ξ)(µ− t),

from where, using the obtained bounds for x′′(t), we get

|x′(t)| ≤ |B− A|+ max{|F′1|, |L′1|}, t ∈ [0, µ].

We can proceed analogously to see that the same bound is valid for t ∈ [µ, 1]. Finally, for each
t ∈ (0, 1] there is an η ∈ (0, t) such that

x(t)− x(0) = x′(η)t,

which together with the obtained bound for|x′(t)| yields the bound for |x(t)|.

Lemma 6. Let (H1) and (H2) hold for K = C− B. Then every solution x ∈ C3[0, 1] to (1)λ, (5) or (1)λ, (6)
satisfies the bounds

|x(t)| ≤ |A|+ |B|+ max{|F1|, |L1|, |F′1|, |L′1|}, t ∈ [0, 1],

|x′(t)| ≤ |B|+ max{|F1|, |L1|, |F′1|, |L′1|}, t ∈ [0, 1],

min{F1, F′1} ≤ x′′(t) ≤ max{L1, L′1}, t ∈ [0, 1].
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Proof. Let x(t) be a solution to (1)λ, (5); the proof is similar for (1)λ, (6). We know there is a ν ∈ (0, 1)
for which x′′(ν) = C− B. Then, applying Lemmas 2 and 3 on the intervals [0, ν] and [ν, 1], respectively,
we get

F′1 ≤ x′′(t) ≤ L′1 on [0, ν] and F1 ≤ x′′(t) ≤ L1 on [ν, 1]

and so the bounds for x′′(t) follow. Further, as in the proof of Lemma 4 we establish consecutively the
bounds for |x′(t)| and |x(t)|.

3. Existence Results

Theorem 1. Let (H1) hold for K = C and (H3) hold for

M0 = |A|+ |B|+ max{|F′1|, |′L1|}, m0 = −M0,

M1 = |B|+ max{|F′1|, |L′1|}, m1 = −M1, m2 = F′1, M2 = L′1.

Then each of BVPs (1), (2) and (1), (3) has at least one solution in C3[0, 1].

Proof. We will establish that the assertion is true for problem (1), (2) after checking that the hypotheses
of Lemma 1 are fulfilled; it follows similarly and for (1), (3). We easily check that (i) holds for (1)0, (2).
Clearly, BVP (1), (2) is equivalent to BVP (1)1, (2) and so (ii) is satisfied. Since now Lh = x′′′, (iii) also
holds. Next, according to Lemma 4, for each solution x ∈ C3[0, 1] to (1)λ, (2) we have

mi ≤ x(i)(t) ≤ Mi, t ∈ [0, 1], i = 0, 1, 2.

Now use that f is continuous on [0, 1]× J to conclude that there are constants m3 and M3 such that

m3 ≤ λ f (t, x, p, q) ≤ M3 for λ ∈ [0, 1] and (t, x, p, q) ∈ [0, 1]× J,

which together with (x(t), x′(t), x′′(t)) ∈ J for t ∈ [0, 1] and Equation (1)λ implies

m3 ≤ x′′′(t) ≤ M3, t ∈ [0, 1].

These observations imply that (iv) holds, too. Finally, the continuity of f on the set J gives (v) and
so the assertion is true by Lemma 1.

Theorem 2. Let (H1) hold for K = C and (H3) hold for

M0 = |A|+ |B− A|+ max{|F′1|, |L′1|}, m0 = −M0,

M1 = |B− A|+ max{|F′1|, |L′1|}, m1 = −M1, m2 = F′1, M2 = L′1.

Then BVP (1), (4) has at least one solution in C3[0, 1].

Proof. It follows the lines of the proof of Theorem 1. Now the bounds

mi ≤ x(i)(t) ≤ Mi, t ∈ [0, 1], i = 0, 1, 2,

for each solution x ∈ C3[0, 1] to a (1)λ, (4) follow from Lemma 5.

Theorem 3. Let (H1) and (H2) hold for K = C− B and (H3) hold for

M0 = |A|+ |B|+ max{|F1|, |L1|, |F′1|, |L′1|}, m0 = −M0,

M1 = |B|+ max{|F1|, |L1|, |F′1|, |L′1|}, m1 = −M1,
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m2 = min{F1, F′1}, M2 = max{L1, L′1}.

Then each of BVPs (1), (5) and (1), (6) has at least one solution in C3[0, 1].

Proof. Arguments similar to those in the proof of Theorem 1 yield the assertion. Now the bounds

mi ≤ x(i)(t) ≤ Mi, t ∈ [0, 1], i = 0, 1, 2,

for each solution x ∈ C3[0, 1] to (1)λ, (5) and (1)λ, (6) follow from Lemma 6.

4. Examples

Through several examples we will illustrate the application of the obtained results.

Example 1. Consider the BVPs for the equation

x′′′(t) = exp(x′′ − 3) + 5x′′(x′2 + 1)− t sin x, t ∈ (0, 1),

with boundary conditions (2) or (3).

For F′2 = −|C| − 2, F′1 = −|C| − 1, L′1 = max{|C|, 3}+ 1, L′2 = max{|C|, 3} + 2 and σ = 0.1,
for example, each of these problems has a solution in C3[0, 1] by Theorem 1.

Example 2. Consider the BVP

x′′′(t) = ϕ(t, x, x′)
(

lg
(
(x′′ + 50)(60− x′′)

)
− 3
)

, t ∈ (0, 1),

x(0) = 5, x′(0) = 10, x′(1) = 40,

where ϕ : [0, 1]×R2 → R is continuous and does not change its sign.

If ϕ(t, x, p) ≥ 0 on [0, 1]× R2, the assumptions of Theorem 3 are satisfied for F2 = −36, F1 =

−35, F′2 = −46, F′1 = −45, L′1 = 40, L′2 = 41, L1 = 55, L2 = 56 and σ = 0.01, for example, and
if ϕ(t, x, p) ≤ 0 on [0, 1] × R2, they are satisfied for F′2 = −36, F′1 = −35, F2 = −46, F1 = −45,
L1 = 40, L2 = 41, L′1 = 55, L′2 = 56 and σ = 0.01, for example; it is clear, K = 30. Thus, the considered
problem has at least one solution in C3[0, 1]. Let us note, here Dq = (−50, 60).

Example 3. Consider the BVP

x′′′(t) =
t(x′′ + 8)(x′′ + 3)

√
625− x′2√

900− x2
√

100− x′′2
, t ∈ (0, 1),

x(0) = 9, x(1) = 1, x′′(1) = −4.

For F′2 = −6, F′1 = −5, L′1 = −3, L′2 = −2 and σ = 0.1, for example, this problem has a positive,
decreasing, concave solution in C3[0, 1] by Theorem A1; notice, here Dx, Dp and Dq are bounded.
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version of the manuscript.
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Appendix A

In this part we show how the barrier strips can be used for studying the existence of positive
or non-negative, monotone, convex or concave C3[0, 1] - solutions. Here, we demonstrate this on
problem (1), (4) but it can be done for the rest of the BVPs considered in this paper. Similar results for
various other two-point boundary conditions can be found in R. Agarwal and P. Kelevedjiev [16] and
P. Kelevedjiev and T. Todorov [15].

Lemma A1. Let A, B ≥ 0, C ≤ 0. Suppose (H1) holds for K = C with L′1 ≤ 0. Then each solution x ∈ C3[0, 1]
to (1)λ, (4) satisfies the bounds

min{A, B} ≤ x(t) ≤ A + |B− A|+ |F′1|, t ∈ [0, 1],

B− A + F′1 ≤ x′(t) ≤ B− A− F′1, t ∈ [0, 1].

Proof. From Lemma 2 we know that F′1 ≤ x′′(t) ≤ L′1 for t ∈ [0, 1]. Besides, for some µ ∈ (0, 1) we
have x′(µ) = B− A. Then, ∫ µ

t
F′1ds ≤

∫ µ

t
x′′(s)ds ≤

∫ µ

t
L′1ds, t ∈ [0, µ),

gives
B− A ≤ x′(t) ≤ B− A− F′1, t ∈ [0, µ],

and ∫ t

µ
F′1ds ≤

∫ t

µ
x′′(s)ds ≤

∫ t

µ
L′1ds, t ∈ (µ, 1],

implies
B− A + F′1 ≤ x′(t) ≤ B− A, t ∈ [µ, 1].

As a result,
B− A + F′1 ≤ x′(t) ≤ B− A− F′1, t ∈ [0, 1].

Using Lemma 5, conclude

|x(t)| ≤ A + |B− A|+ |F′1| for t ∈ [0, 1].

From x′′(t) ≤ L′1 ≤ 0 for t ∈ [0, 1] it follows that x(t) is concave on [0, 1] and so, in view of
A, B ≥ 0, x(t) ≥ min{A, B} on [0, 1], which completes the proof.

Theorem A1. Let A ≥ B ≥ 0 and C ≤ 0 (A ≥ B > 0 and C < 0). Suppose (H1) holds for K = C with
B− A ≤ F′1 (B− A < F′1) and L′1 ≤ 0, and (H3) holds for

m0 = B, M0 = 2A− B + |F′1|,

m1 = B− A + F′1, M1 = B− A− F′1, m2 = F′1, M2 = L′1.

Then BVP (1), (4) has at least one non-negative, non-increasing (positive, decreasing), concave solution in
C3[0, 1].

Proof. By Lemma 5, for every solution x ∈ C3[0, 1] to (1)λ, (4) we have F′1 ≤ x′′(t) ≤ L′1 on [0, 1], and
Lemma A1 yields

B− A + F′1 ≤ x′(t) ≤ B− A− F′1, t ∈ [0, 1]

min{A, B} ≤ x(t) ≤ A + |B− A|+ |F′1|, t ∈ [0, 1].
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Because of A ≥ B, the last inequality gets the form

B ≤ x(t) ≤ 2A− B + |F′1|, t ∈ [0, 1].

So, x(t) satusfies the bounds

m0 ≤ x(i)(t) ≤ M0, t ∈ [0, 1], i = 0, 1, 2.

Essentially the same reasoning as in the proof of Theorem 1 establishes that (1), (4) has a solution
in C3[0, 1]. Since m0 = B ≥ 0(m0 > 0), M1 = B− A− F′1 ≤ 0(M1 < 0) and M2 = L′1 ≤ 0, this solution
has the desired properties.
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