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Abstract: A marginally trapped surface in a spacetime is a Riemannian surface whose mean curvature
vector is lightlike at every point. In this paper we give an up-to-date overview of the differential
geometric study of these surfaces in Minkowski, de Sitter, anti-de Sitter and Robertson-Walker
spacetimes. We give the general local descriptions proven by Anciaux and his coworkers as well as
the known classifications of marginally trapped surfaces satisfying one of the following additional
geometric conditions: having positive relative nullity, having parallel mean curvature vector field,
having finite type Gauss map, being invariant under a one-parameter group of ambient isometries,
being isotropic, being pseudo-umbilical. Finally, we provide examples of constant Gaussian curvature
marginally trapped surfaces and state some open questions.
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1. Introduction

Trapped surfaces were introduced by Sir Roger Penrose in [1] and play an important role in
cosmology. From a purely differential geometric point of view, a marginally trapped surface in a
spacetime is a Riemannian surface whose mean curvature vector field is lightlike at every point, i.e.,
for every point p of the surface, the mean curvature vector H(p) satisfies 〈H(p), H(p)〉 = 0 and
H(p) 6= 0, while every non-zero vector v tangent to the surface satisfies 〈v, v〉 > 0.

Since 2007, several authors have studied marginally trapped surfaces in spacetimes and their
generalizations to higher signatures, dimensions and codimensions from a geometric point of view.
Most of the results give a complete classification of marginally trapped surfaces in a specific spacetime
under one or more additional geometric conditions, such as having positive relative nullity [2], having
parallel mean curvature vector field [3], having finite type Gauss map [4], being invariant under
certain 1-parameter groups of isometries [5–7] or being isotropic [8]. Several of these results and the
above mentioned generalizations are due to Bang-Yen Chen and his collaborators and we should also
mention his 2009 overview paper on the topic [9]. In 2015, Henri Anciaux and his collaborators gave
a local description of any marginally trapped surface (and even codimension two submanifold) in a
Lorentzian space form or a Robertson-Walker spacetime in [10,11], without requiring any additional
properties. While this is the most general result, and in some sense the best one can hope for in this
context, the previously mentioned results are still of great value, since they often give more explicit
descriptions under the additional condition at hand. Also, it is not always easy to find the surfaces
with a certain property from the general description, such as those with constant Gaussian curvature.
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In this paper we give an overview of all the above mentioned results. We work in reverse
chronological order, in the sense that, after the preliminaries (Section 2), we state the general results by
Anciaux et al. (Section 3). After that, we discuss the classifications under additonal assumptions which
can be found in the literature (Section 4–7). In Section 8, we discuss marginally trapped surfaces with
constant Gaussian curvature. The result is limited to finding the examples in previously obtained lists
and hence does not provide a complete classification. We end the paper with some open problems
(Section 9).

2. Preliminaries

A pseudo-Riemannian manifold is a manifold with a metric which is not required to be positive
definite, but merely non-degenerate. Consequently, one can distinguish three types of tangent vectors
to such a manifold: a vector v is spacelike if 〈v, v〉 > 0 or v = 0, timelike if 〈v, v〉 < 0 and lightlike or null
if 〈v, v〉 = 0 but v 6= 0.

Let S be a Riemannian or spacelike n-dimensional submanifold of a pseudo-Riemannian manifold
M and denote by∇ and ∇̃ the Levi-Civita connections of S and M respectively. The formulas of Gauss
and Weingarten state respectively that

∇̃XY = ∇XY + h(X, Y),

∇̃Xξ = −Aξ X +∇⊥X ξ

for vector fields X and Y tangent to S and a vector field ξ normal to S. Here, h is a symmetric
(1, 2)-tensor field taking values in the normal bundle, called the second fundamental form, Aξ is a
symmetric (1, 1)-tensor field, called the shape operator associated to ξ, and ∇⊥ is the normal connection.
The mean curvature vector at a point p ∈ S is defined by

H(p) =
1
n

n

∑
i=1

h(ei, ei),

where {e1, . . . , en} is an orthonormal basis of TpS. We say that S is marginally trapped if its mean
curvature vector H(p) is null for every point p of S and we say that S has null second fundamental
form if h(X, Y) is a null vector for all tangent vectors X and Y to S. It is clear that submanifolds
with null second fundamental form are marginally trapped, but the converse is not necessarily true.
Submanifolds for which the mean curvature vanishes at some points are not marginally trapped, since
the zero vector is not a null vector. However, since we stay close to the original sources, some of the
classifications in this paper include conditions preventing the vanishing of the mean curvature vector
field, while some others don’t (see also the remark after Theorem 1). For an explicit example of a
submanifold, it is not hard to check whether the mean curvature vanishes at some points or not.

We consider two types of ambient Lorentzian manifolds in this paper. The first type are those
with the highest degree of symmetry, namely Lorentzian real space forms. We recall the definition of a
(pseudo-)Riemannian space form of any index. Let Rn

s denote Rn = {(x1, . . . , xn) | x1, . . . , xn ∈ R}
equipped with the inner product

〈(x1, . . . , xn), (y1, . . . , yn)〉 = −x1y1 − . . .− xsys + xs+1ys+1 + . . . + xnyn.

For s = 0, the space Rn
0 = Rn is just the Euclidean space of dimension n and for s > 1, we call Rn

s
the pseudo-Euclidean space of dimension n and index s. It is a flat manifold, i.e., a pseudo-Riemannian
manifold with constant sectional curvature 0. We now define

Sn
s (x0, c) =

{
x ∈ Rn+1

s | 〈x− x0, x− x0〉 = 1/c
}

for x0 ∈ Rn+1
s and c > 0,

Hn
s (x0, c) =

{
x ∈ Rn+1

s+1 | 〈x− x0, x− x0〉 = 1/c
}

for x0 ∈ Rn+1
s+1 and c < 0.
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The manifolds Sn
s (x0, c) and Hn

s (x0, c), equipped with the induced metrics from Rn+1
s and Rn+1

s+1
respectively, are complete pseudo-Riemannian manifolds with constant sectional curvature c. We refer
to Rn

s , Sn
s (x0, c) and Hn

s (x0, c) as real space forms of dimension n and index s. We simply denote Sn
s (x0, c)

and Hn
s (x0, c) by Sn

s (c) and Hn
s (c) when x0 is the origin. In the rest of this paper, we will often use the

unified notation Qn
s (c) to denote the following:

Qn
s (c) =


Sn

s (c) if c > 0,
Rn

s if c = 0,
Hn

s (c) if c < 0.

If the index s = 0, we denote the Riemannian real space form Qn
0 (c) by Qn(c) and if the index s = 1,

we call Qn
1 (c) a Lorentzian real space form. In particular, the four-dimensional Lorentzian real space

forms R4
1, S4

1(1) and H4
1(−1) are known as the Minkowksi spacetime, the de Sitter spacetime and the

anti-de Sitter spacetime.
The second type of ambient Lorentzian manifolds that we consider are warped products

Ln
1 ( f , c) = I × f Qn−1(c),

where I ⊂ R is an open interval, f : I → R is a smooth positive function and Qn−1(c) is a Riemannian
real space form with constant curvature c ∈ {−1, 0, 1}. The metric of Ln

1 ( f , c) is given by

〈 · , · 〉 = −dt2 + f 2(t)〈 · , · 〉c,

where t is a coordinate on I and 〈 · , · 〉c is the metric of Qn−1(c). If the warping function f is constant,
then Ln

1 ( f , c) is the Lorentzian product of (I,−dt2) and a Riemannian real space form. For general
f but n = 4, the Lorentzian manifolds L4

1( f , c) are known as Robertson-Walker spacetimes. The next
remark, which can for example be found in [12] in a slightly different form, determines when a
Robertson-Walker spacetime has constant sectional curvature.

Remark 1. A Robertson-Walker spacetime L4
1( f , c) has constant sectional curvature K if and only if the

warping function f satisfies

f 2K = f f ′′ =
(

f ′
)2

+ c.

We thus have the following:

(1) L4
1( f , c) is flat if and only if f (t) = at + b, with a2 = −c;

(2) L4
1( f , c) has constant sectional curvature K > 0 if and only if

f (t) = a cosh(
√

Kt) + b sinh(
√

Kt), with a2 − b2 =
c
K

;

(3) L4
1( f , c) has constant sectional curvature K < 0 if and only if

f (t) = a cos(
√
−Kt) + b sin(

√
−Kt), with a2 + b2 =

c
K

.

We end this section by defining the following family of functions on a space of type Ln
1 ( f , c) which will

appear in some of the results:

θ : Ln
1 ( f , c)→ R : t 7→

∫ t

t0

ds
f (s)

(1)

for t0 ∈ I.
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3. Local Description of Codimension Two Marginally Trapped Submanifolds

In this section, we give a local description of any codimension two marginally trapped submanifold
of a Lorentzian space form or a space of type Ln

1 ( f , c). In particular, these descriptions hold for
marginally trapped surfaces in Minkowski spacetime, de Sitter spacetime, anti-de Sitter spacetime and
Robertson-Walker spacetimes. The results were proven in [10,11].

The results use the notion of the Gauss map of a hypersurface of a Riemannian space form.

Definition 1. Let S be an immersed hypersurface of a Riemannian real space from Qn+1(c) and denote by ν a
unit normal vector field along the immersion. Such a vector field always exists locally and it exists globally if
S is orientable. Since Qn+1(c) ⊂ Rn+2 if c > 0, Qn+1(c) = Rn+1 if c = 0 and Qn+1(c) ⊂ Rn+2

1 if c < 0,
we can view ν as a map from S to Sn+1(1) if c > 0, to Sn(1) if c = 0 and to Sn+1

1 (1) if c < 0. This map is
called the Gauss map of the hypersurface.

3.1. Local Description in Lorentzian Space Forms

The flat and non-flat cases are treated separately. In both theorems, a distinction is made between
the submanifolds with null second fundamental form and the other marginally trapped submanifolds.

Theorem 1. [10]

(1) Let Ω be an open domain of Rn and τ ∈ C2(Ω), such that ∆τ is never zero, where ∆ is the Laplacian of
Rn. Then, the immersion φ : Ω→ Rn+2

1 , defined by

φ(x) = (τ(x), x, τ(x)),

is flat and its second fundamental form is given by

h(X, Y) = Hessτ(X, Y)(1, 0, . . . , 0, 1).

In particular, φ has null second fundamental form and is therefore marginally trapped.

Conversely, any n-dimensional submanifold of Rn+2
1 with null second fundamental form is locally

congruent to the image of such an immersion.
(2) Let ϕ be an immersion of class C4 of an n-dimensional manifold S into Rn+1 and denote by ν the Gauss

map of ϕ. Assume that ϕ admits p ≥ 2 distinct, non-vanishing principal curvatures κ1, . . . , κp with
multiplicities m1, . . . , mp respectively and denote by τ1, . . . , τp−1 the p− 1 roots of the polynomial

P(τ) =
p

∑
i=1

mi

p

∏
j 6=i

(κ−1
j − τ).

Then, the p− 1 immersions φi : S→ Rn+2
1 , defined by

φi(x) = (τi(x), ϕ(x) + τi(x)ν(x))

for i ∈ {1, . . . , p− 1}, are marginally trapped.

Conversely, any n-dimensional marginally trapped submanifold of Rn+2
1 whose second fundamental form

is not null is locally congruent to the image of such an immersion.

Remark 2. Recall that the zero vector is by definition spacelike. The condition that ∆τ is nowhere vanishing in
case (1) of the above theorem ensures that the mean curvature of the corresponding immersion φ is nowhere zero.
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However, the submanifolds described in case (2) do include examples with zero mean curvature. For example, if
ϕ is minimal, then

P(0) =
m1κ1 + . . . + mpκp

κ1 . . . κp
= 0

and the immersion defined by φ(x) = (0, ϕ(x)) is minimal. Similar remarks apply to all the following theorems
in this section.

Theorem 2. [10].

(1) Let Ω be an open domain of Sn(1) ⊂ Rn+1
1 (respectively, Hn(−1) ⊂ Rn+1

2 ) and τ ∈ C2(Ω), such
that ∆τ is never zero, where ∆ is the Laplacian of Sn(1) (respectively Hn(−1)). Then the immersion
φ : Sn(1)→ Sn+2

1 (1) (respectively, Hn(−1)→ Hn+2
1 (−1)), defined by

φ(x) = (τ(x), x, τ(x)),

is flat and its second fundamental form is given by

h(X, Y) = Hessτ(X, Y)(1, 0, . . . , 0, 1).

In particular, φ has null second fundamental form and is therefore marginally trapped.

Conversely, any n-dimensional spacelike submanifold with null second fundamental form is locally
congruent to the image of such an immersion.

(2) Let ϕ be an immersion of class C4 of an n-dimensional manifold S into Sn+1(1) (respectively, Hn+1(−1))
and denote by ν the Sn+1(1)-valued (respectively Sn+1

1 (1)-valued) Gauss map of ϕ. Assume that ϕ

admits p ≥ 2 distinct, non-vanishing principal curvatures κ1, . . . , κp with multiplicities m1, . . . , mp

respectively and denote by τ1, . . . , τp−1 the p− 1 roots of the polynomial

P(τ) =
p

∑
i=1

mi

p

∏
j 6=i

(κ−1
j − τ).

Then, the p− 1 immersions φi : S→ Sn+2
1 (1) (respectively Hn+2

1 (−1)), defined by

φi(x) = (τi(x), ϕ(x) + τi(x)ν(x))

for i ∈ {1, . . . , p− 1} are marginally trapped.

Conversely, any n-dimensional marginally trapped submanifold of Sn+2
1 (1) (respectively, of Hn+2

1 (−1)),
whose second fundamental form is not null is locally congruent to the image of such an immersion.

3.2. Local Description in Robertson-Walker Spacetimes

Local representation formulas for codimension two marginally trapped submanifolds of the
Lorentzian product of the real line and a space form, corresponding to the warping function f of
Ln

1 ( f , c) being constant, were proven in [10]. These results were further generalized to marginally
trapped submanifolds of spaces of type Ln

1 ( f , c) for arbitrary positive smooth f in [11]. We state the
results below.

Theorem 3. [10]

(1) There are no n-dimensional submanifolds of R1 × Sn+1(1) with null second fundamental form.
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(2) Let ϕ be an immersion of class C4 of an n-dimensional manifold S into Sn+1(1). Denote by ν the Gauss
map of ϕ and by κ1, . . . , κp its p distinct principal curvatures with multiplicities m1, . . . , mp respectively.
Then, the polynomial

P(τ) =
p

∑
i=1

mi(κiτ + 1)
p

∏
j 6=i

(τ − κj)

has exactly p− 1 distinct roots τi if ϕ is minimal and p distinct roots otherwise. Moreover, the p− 1 or
p immersions φi : S→ R1 × Sn+1(1) defined by

φi =

cot−1 τi,
τi ϕ + ν√

1 + τ2
i


are marginally trapped.

Conversely, any n-dimensional marginally trapped submanifold of R1 × Sn+1(1) is locally congruent to
the image of such an immersion.

Theorem 4. [10]

(1) There are no n-dimensional submanifolds of R1 × Hn+1(−1) with null second fundamental form.
(2) Let ϕ be an immersion of class C4 of an n-dimensional manifold S into Hn+1(−1). Denote by ν the

Gauss map of ϕ and by κ1, . . . , κp its p distinct principal curvatures with multiplicities m1, . . . , mp

respectively. Denote by τ1, . . . , τq the different roots of the polynomial

P(τ) =
p

∑
i=1

mi(κiτ − 1)
p

∏
j 6=i

(τ − κj),

satisfying |τi| > 1 for i ∈ {1, . . . , q}. Then the q ≤ p immersions φi : S→ R1 × Hn+1(−1) defined by

φi =

coth−1 τi,
τi ϕ + ν√

τ2
i − 1


are marginally trapped.

Conversely, any n-dimensional marginally trapped submanifold of R1 × Hn+1(−1) is locally congruent
to the image of such an immersion.

Now consider the space Ln+2
1 ( f , c) = I × f Qn+1(c), where c ∈ {−1, 0, 1} as defined in Section 2.

It is useful to introduce following notation:

(cosc t, sinc t) =


(cos t, sin t) if c = 1,

(1, t) if c = 0,

(cosh t, sinh t) if c = −1.

The local description of codimension two marginally trapped submanifolds of Ln
1 ( f , c) is as follows.

Theorem 5. [11]

(1) Let φ : S→ Ln+2
1 ( f , c) be an immersion of an n-dimensional submanifold with null second fundamental

form. Then there are two possibilities:
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(i) the immersion takes the form
φ = (t0, ϕ),

where t0 ∈ I is a constant and ϕ defines a totally umbilical hypersurface of Qn+1(c) with a mean
curvature vector of constant length | f ′(t0)|;

(ii) the function
θ′′ cosc θ + (θ′)2c sinc θ

θ′′ sinc θ − (θ′)2 cosc θ
,

where θ is defined in (1), is constant, say C0, and φ is locally congruent to an immersion of the
form

φ = (τ, cosc(θ ◦ τ)ϕ + sinc(θ ◦ τ)ν) ,

where τ : S→ R is a real function of class C2 and ϕ defines a totally umbilical hypersurface of
Qn+1(c) with Gauss map ν and with a mean curvature vector of constant length |C0|.

(2) Let ϕ : S → Qn+1(c), with c ∈ {−1, 0, 1}, be an immersed hypersurface of class C4 with Gauss map
ν. Denote by κ1, . . . , κp the p ≥ 2 distinct principal curvatures with multiplicities m1, . . . , mp of ϕ.
Consider the immersion φ : S→ Ln+2

1 ( f , c), defined by

φ = (τ, cosc(θ ◦ τ)ϕ + sinc(θ ◦ τ)ν) ,

where τ is a real function in C2(S) and θ is defined as in equation (1). The immersion φ is marginally
trapped if and only if τ : S→ R satisfies

n
(

d f
dt
◦ τ

)
−

p

∑
i=1

mi
κi cosc(θ ◦ τ) + c sinc(θ ◦ τ)

cosc(θ ◦ τ)− κi sinc(θ ◦ τ)
= 0.

Conversely, any marginally trapped codimension two submanifold of Ln+2
1 ( f , c) is locally congruent to

the image of such an immersion.

4. Marginally Trapped Surfaces with Positive Relative Nullity

Let S be a spacelike submanifold of a pseudo-Riemannian manifold and denote the second
fundamental form by h. The relative null space at a point p ∈ S is defined by

Np(S) =
{

X ∈ TpS | h(X, Y) = 0 for all Y ∈ TpS
}

.

The dimension of Np(S) is called the relative nullity of S at p and the submanifold S is said to have
positive relative nullity if dimNp(S) > 0 for all p ∈ S.

4.1. Classification in Lorentzian Space Forms

The following result classifies all marginally trapped surfaces with positive relative nullity in the
Minkowski spacetime R4

1.

Theorem 6. [2] Up to isometries, there are two families of marginally trapped surfaces with positive relative
nullity in the Minkowski spacetime R4

1:

(1) a surface parametrized by φ(x, y) =
(

f (x), x, y, f (x)
)
, where f is an arbitrary differentiable function

such that f ′′ vanishes nowhere;
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(2) a surface parametrized by

φ(x, y) =

( ∫ x

0
r(s)q′(s)ds + q(x)y, y cos x−

∫ x

0
r(s) sin s ds,

y sin x +
∫ x

0
r(s) cos s ds,

∫ x

0
r(s)q′(s)ds + q(x)y

)
,

where q and r are defined on an open interval I containing 0, such that q′′ + q vanishes nowhere on I.

Conversely, every marginally trapped surface with positive relative nullity in the Minkowski spacetime R4
1

is congruent to an open part of a surface in one of the two families.

The next corollary follows immediately from the two explicit parametrizations in Theorem 6 since
the first and fourth components are equal to each other in both paramatrizations. However, one can
also prove it directly by using the Erbacher-Magid reduction theorem from [13], see for example [14].

Corollary 1. Every marginally trapped surface with positive relative nullity in R4
1 is contained in a null

hyperplane of R4
1.

The following two theorems give classifications of marginally trapped surfaces with positive
relative nullity in the de Sitter and anti-de Sitter spacetimes.

Theorem 7. [2] Up to isometries, there are two families of marginally trapped surfaces with positive relative
nullity in the de Sitter spacetime S4

1(1):

(1) a surface parametrized by

φ(x, y) =
(

f (x) cos y, sin x cos y, sin y, cos x cos y, f (x) cos y
)

,

where f is an arbitrary differentiable function such that f ′′ + f vanishes nowhere;
(2) a surface parametrized by

φ(x, y) =
(

p(x), η1(x), η2(x), η3(x), p(x)
)

cos y

−
(

b−
∫ x

0
r(s)p′(s)ds, ξ1(s), ξ2(s), ξ3(s), b−

∫ x

0
r(s)p′(s)ds

)
sin y,

where b is a real number, p and r are defined on an open interval I containing 0 such that r is non-constant,
η = (η1, η2, η3) is a unit speed curve in S2(1) ⊂ R3 with geodesic curvature κg = r and ξ = (ξ1, ξ2, ξ3)

is the unit normal of η in S2(1).

Conversely, every marginally trapped surface with positive relative nullity in the de Sitter spacetime S4
1(1)

is congruent to an open part of a surface in one of the two families.

Theorem 8. [2] Up to isometries, there are five families of marginally trapped surfaces with positive relative
nullity in the anti-de Sitter spacetime H4

1(−1):

(1) a surface parametrized by

φ(x, y) =
(

f (x) cosh y, cosh x cosh y, sinh y, sinh x cosh y, f (x) cosh y
)

,

where f is a differentiable function such that f ′′ − f vanishes nowhere;
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(2) a surface parametrized by

φ(x, y) =
(

f (x) sinh y, cosh y, cos x sinh y, sin x sinh y, f (x) sinh y
)

,

where f is a differentiable function such that f ′′ − f vanishes nowhere;
(3) a surface parametrized by

φ(x, y) =
(

x2ey,
3ey

2
− 2 sinh y, ey − 2 sinh y, xey, x2ey − ey

2

)
;

(4) A surface parametrized by

φ(x, y) =
(

sinh y− x2ey

2
− ey, f (x)ey, xey, f (x)ey, sinh y− x2ey

2

)
,

where f is a differentiable function such that f ′′ vanishes nowhere;
(5) A surface parametrized by

φ(x, y) =
(

p(x), η1(x), η2(x), η3(x), p(x)
)

cosh y

−
(

b−
∫ x

0
r(s)p′(s)ds, ξ1(s), ξ2(s), ξ3(s), b−

∫ x

0
r(s)p′(s)ds

)
sinh y,

where b is a real number, p and r are defined on an open interval I containing 0 such that r is non-constant,
η = (η1, η2, η3) is a unit speed curve in H2(−1) ⊂ R3

1 with geodesic curvature κg = r and ξ =

(ξ1, ξ2, ξ3) is a unit normal of η in H2(−1).

Conversely, every marginally trapped surface with positive relative nullity in the anti-de Sitter spacetime
H4

1(−1) is congruent to an open part of a surface in one of the five families.

Also for de Sitter and anti-de Sitter spacetimes, we have corollaries similar to Corollary 1.

Corollary 2. Every marginally trapped surface with positive relative nullity in S4
1(1), respectively H4

1(−1),
is contained in a null hyperplane of R5

1, respectively R5
2.

4.2. Classification in Robertson-Walker Spacetimes

It turns out that marginally trapped surfaces with positive relative nullity in Robertson-Walker
spacetimes (of non-constant sectional curvature) do not exist.

Theorem 9. [12] Let L4
1( f , c) be a Robertson-Walker spacetime which contains no open subsets of constant

sectional curvature. Then L4
1( f , c) does not admit any marginally trapped surfaces with positive relative nullity.

Note that an open subset of L4
1( f , c) of constant sectional is isometric to an open part of a

Lorentzian space form, so marginally trapped surfaces with positive relative nullity in such a subset
are classified in Theorems 6–8.

5. Marginally Trapped Surfaces with Parallel Mean Curvature Vector Field

A submanifold S of a pseudo-Riemannian manifold is said to have parallel mean curvature vector
field if ∇⊥X H = 0 for every vector field X tangent to S and to have parallel second fundamental form or to
be parallel for short, if ∇Xh = 0 for every vector field X tangent to S. Here, ∇ is the connection of Van
der Waerden-Bortolotti, defined by

(∇Xh)(Y, Z) = ∇⊥X h(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)
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for all vector fields X, Y and Z tangent to S. It is easy to see that a parallel submanifold has parallel
mean curvature vector field, but the converse is not necessarily true.

In this section we give the classification of marginally trapped surfaces with parallel mean
curvature vector field in four-dimensional Lorentzian space forms, which was proven in [3]. These
surfaces are then related to marginally trapped surfaces with a 1-type Gauss map, as shown in [4].
The classification of marginally trapped surfaces with parallel mean curvature vector field uses the
notion of a light cone.

Definition 2. The light cone LC in Minkowski spacetime R4
1 is

LC =
{

x ∈ R4
1 | 〈x, x〉 = 0

}
.

We can see LC as a submanifold of de Sitter spacetime, respectively anti-de Sitter spacetime, by using the
following natural embeddings:

LC → S4
1(1) ⊂ R5

1 : x 7→ (x, 1),

LC → H4
1(−1) ⊂ R5

2 : x 7→ (1, x).

The following propositions show that marginally trapped surfaces with parallel mean curvature
vector field arise naturally in the light cones of four-dimensional Lorentzian space forms.

Proposition 1. [3] Let S be a marginally trapped surface in Q4
1(c), with c ∈ {−1, 0, 1}. If S lies in LC ⊂

Q4
1(c), then S has constant Gaussian curvature c and has parallel mean curvature vector field in Q4

1(c).

Proposition 2. [3] Let λ be a positive solution of the differential equation

λ(λxx + λyy)− λ2
x − λ2

y − 2cλ = 0 (2)

for c ∈ {−1, 0, 1} on a simply connected domain U ⊂ R2. Then S = (U, λ−1(dx2 + dy2)) is a surface of
constant curvature c. Moreover, there exists a marginally trapped isometric immersion φ : S → Q4

1(c) with
parallel mean curvature vector field such that φ lies in the light cone LC ⊂ Q4

1(1).

Remark 3. Note that equation (2) can be rewritten as ∆λ = 2cλ, where ∆ = λ(∂2
x + ∂2

y)− λx∂x − λy∂y is
the Laplacian of S = (U, λ−1(dx2 + dy2)).

5.1. Classification in Lorentzian Space Forms

The following theorem classifies all marginally trapped surfaces with parallel mean curvature in
R4

1, S4
1(1) and H4

1(−1).

Theorem 10. [3] Let S be a marginally trapped surface with parallel mean curvature vector field in the
Minkowski spacetime R4

1. Then S is one congruent to of the following six types of surfaces:

(1) a flat parallel surface given by

φ(x, y) =
1
2

(
(1− b)x2 + (1 + b)y2, (1− b)x2 + (1 + b)y2, 2x, 2y

)
for some b ∈ R;

(2) a flat parallel surface given by φ(x, y) = a
(

cosh x, sinh x, cos y, sin y
)
, with a > 0;

(3) a flat surface given by

φ(x, y) = ( f (x, y), x, y, f (x, y)),
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where f is a smooth function on S such that ∆ f = a for some nonzero real number a;

(4) a non-parallel flat surface lying in the light cone LC;

(5) a non-parallel surface lying in the de Sitter spacetime S3
1(c) for some c > 0 such that the mean curvature

vector field H′ of S in S3
1(c) satisfies 〈H′, H′〉 = −c;

(6) a non-parallel surface lying in the hyperbolic space H3(c) for some c < 0 such that the mean curvature
vector field H′ of S in H3(c) satisfies 〈H′, H′〉 = −c.

Conversely, every surface of types (1)–(6) above gives rise to a marginally trapped surface with parallel mean
curvature vector in R4

1.

Theorem 11. [3] Let S be a marginally trapped surface with parallel mean curvature vector field in the de Sitter
spacetime S4

1(1). Then S is congruent to one of the following eight types of surfaces:

(1) a parallel surface of Gaussian curvature 1 given by

φ(x, y) =
(

1, sin x, cos x cos y, cos x sin y, 1
)

;

(2) a flat parallel surface defined by

φ(x, y) =
1
2
(
2x2 − 1, 2x2 − 2, 2x, sin 2y, cos 2y

)
;

(3) a flat parallel surface defined by

φ(x, y) =

(
b√

4− b2
,

cos(
√

2− b x)√
2− b

,
sin(
√

2− b x)√
2− b

,
cos(
√

2 + b y)√
2 + b

,
sin(
√

2 + b y)√
2 + b

)
,

with |b| < 2;

(4) a flat parallel surface defined by

φ(x, y) =

(
cosh(

√
b− 2 x)√

b− 2
,

sinh(
√

b− 2 x)√
b− 2

,
cos(
√

2 + b y)√
2 + b

,
sin(
√

2 + b y)√
2 + b

,
b√

b2 − 4

)
,

with b > 2;

(5) a surface of constant curvature one given by

φ(x, y) = ( f (x, y), cos x, sin x cos y, sin x sin y, f (x, y)),

where f is a smooth function satisfying ∆ f = a for some nonzero real number a;

(6) a non-parallel surface of curvature one, lying in the light cone LC ⊂ S4
1(1);

(7) a non-parallel surface lying in S4
1(1) ∩ S4

1(x0, c), with x0 6= 0 and c > 0, such that the mean curvature
vector field H′ of S in S4

1(1) ∩ S4
1(x0, c) satisfies 〈H′, H′〉 = 1− c.

(8) a non-parallel surface lying in S4
1(1) ∩ H4(x0, c), with x0 6= 0 and c < 0, such that the mean curvature

vector field H′ of S in S4
1(1) ∩ H4(x0, c) satisfies 〈H′, H′〉 = 1− c.

Conversely, every surface of types (1)–(8) above gives rise to a marginally trapped surface with parallel mean
curvature vector in S4

1(1).

Theorem 12. [3] Let S be a marginally trapped surface with parallel mean curvature vector field in the anti-de
Sitter spacetime H4

1(−1). Then, S is congruent to one of the following eight types of surfaces:
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(1) a parallel surface of Gaussian curvature −1 given by

φ(x, y) =
(
1, cosh x cosh y, sinh x, cosh x sinh y, 1

)
;

(2) a flat parallel surface defined by

φ(x, y) =
1
2
(
2x2 + 2, cosh 2y, 2x, sinh 2y, 2x2 + 1

)
;

(3) a flat parallel surface defined by

φ(x, y) =

(
cosh(

√
2−b x)√

2− b
,

cosh(
√

2+b y)√
2 + b

,
sinh(

√
2−b x)√

2− b
,

sinh(
√

2+b y)√
2 + b

,
b√

4−b2

)
,

with |b| < 2;

(4) a flat parallel surface defined by

φ(x, y) =

(
b√

b2 − 4
,

cosh(
√

b + 2 y)√
b + 2

,
sinh(

√
b + 2 y)√

b + 2
,

cos(
√

b− 2 x)√
b− 2

,
sin(
√

b− 2 x)√
b− 2

)
,

with b > 2;

(5) a surface of constant curvature −1 given by

φ(x, y) = ( f (x, y), cosh x, sinh x cos y, sinh x sin y, f (x, y)),

where f is a smooth function satisfying ∆ f = a for some nonzero real number a;

(6) a non-parallel surface with curvature −1, lying in the light cone LC ⊂ H4
1(−1);

(7) a non-parallel surface lying in H4
1(−1)∩ S4

2(x0, c), with x0 6= 0 and c > 0, such that the mean curvature
vector field H′ in H4

1(−1) ∩ S4
2(x0, c) satisfies 〈H′, H′〉 = −1− c;

(8) a non-parallel surface lying in H4
1(−1) ∩ H4

1(x0, c), with x0 6= 0 and c < 0, such that the mean
curvature vector field H′ in H4

1(−1) ∩ H4
1(x0, c) satisfies 〈H′, H′〉 = −1− c.

Conversely, every surface of types (1)–(8) above gives rise to a marginally trapped surface with parallel
mean curvature vector in H4

1(−1).

5.2. Finite Type Gauss Map

In [4], marginally trapped surfaces with parallel mean curvature vector field were related to
marginally trapped surfaces with a 1-type Gauss map. This notion of Gauss map is a little different
from the one we used in Section 3, so we start by recalling the definition.

Definition 3. Let S → R4
1, respectively S → S4

1(1) ⊂ R5
1 or S → H4

1(−1) ⊂ R5
2, be a spacelike oriented

surface in a four-dimensional Lorentzian space form. For any p ∈ S, we denote ν(p) = e1 ∧ e2, where
(e1, e2) is a positively oriented orthonormal basis of TpS. Then ν is a map from S to

∧2 R4
1
∼= R6

3, respectively∧2 R5
1
∼= R10

4 or
∧2 R5

2
∼= R10

6 , which we call the Gauss map of the surface.

It now makes sense to look at ∆ν, where ∆ is the Laplacian of S acting on every component of ν

and we have the following definition, which extends the notion of having harmonic Gauss map.
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Definition 4. An oriented surface S in R4
1, respectively S4

1(1) ⊂ R5
1 or H4

1(−1) ⊂ R5
2, has pointwise 1-type

Gauss map of the first kind if its Gauss map ν satisfies

∆ν = f ν

for some function f : S→ R.

The following result is a combination of Proposition 1, Theorem 5 and Proposition 6 from [4].

Theorem 13. [4] A marginally trapped surface in R4
1, S4

1(1) or H4
1(−1) has pointwise 1-type Gauss map of

the first kind if and only if it has parallel mean curvature vector field. In particular, a marginally trapped surface
in R4

1 has harmonic Gauss map if and only if it has parallel mean curvature vector field and it is flat, while a
marginally trapped surface in S4

1(1) or H4
1(−1) cannot have harmonic Gauss map.

6. Marginally Trapped Surfaces in R4
1 Which Are Invariant under a 1-Parameter Group

of Isometries

Marginally trapped surfaces in the Minkowski spacetime R4
1, satisfying the additional condition of

being invariant under the action of a 1-parameter subgroup G of the isometry group of R4
1, are studied

in [5–7]. The main results are the classifications of boost, rotation and screw invariant marginally
trapped surfaces in R4

1 respectively, which we discuss in this section.

6.1. Boost Invariant Marginally Trapped Surfaces

One says that a spacelike surface S in R4
1 is invariant under boosts if it is invariant under the

following group of linear isometries of R4
1:Bθ =


cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣∣∣ θ ∈ R

 .

This means that BθS = S for all θ ∈ R. A boost invariant surface S has an open and dense subset Σα

which can be parametrized by

φ : I ×R→ R4
1 : (s, θ) 7→ Bθ


α1(s)

0
α3(s)
α4(s)

 ,

where α : I ⊂ R →
{
(x1, x2, x3, x4) ∈ R4

1 | x1 > 0, x2 = 0
}

is a spacelike curve parametrized by arc
length. The next theorem classifies all boost invariant marginally trapped surfaces in R4

1.

Theorem 14. [5] Let S be a boost invariant marginally trapped surface in the Minkowski spacetime R4
1. Then,

S is locally congruent to a surface Σα whose profile curve α(s) = (α1(s), 0, α3(s), α4(s)) is described as follows.
Take a positive smooth function α1 : I ⊂ R→ R such that the function ρ, defined by

ρ(u) =
1 + (α1

′(u))2 + α1(u)α1
′′(u)

α1(u)
,

is never zero. Choose a function ε : I → {−1, 1} such that ερ is smooth and define the functions α3 and α4 by

α3(s) =
∫ s

s0

√
1 + (α1

′(t))2 cos ξ(t)dt, α4(s) =
∫ s

s0

√
1 + (α1

′(t))2 sin ξ(t)dt
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for some s0 ∈ I, where ξ(t) =
∫ t

s0

ε(u)ρ(u)
1 + (α1

′(u))2 du.

6.2. Rotation Invariant Marginally Trapped Surfaces

One says that a spacelike surface S in R4
1 is invariant under (spacelike) rotations if it is invariant

under the following group of linear isometries of R4
1:Rθ =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ

0 0 sin θ cos θ


∣∣∣∣∣∣∣∣∣ θ ∈ R

 ,

which means that RθS = S for all θ ∈ R. A rotation invariant surface S has an open and dense subset
Σα which can be parametrized by

φ : I ×R→ R4
1 : (s, θ) 7→ Rθ


α1(s)
α2(s)
α3(s)

0

 ,

where α : I ⊂ R → {(x1, x2, x3, x4) ∈ R4
1 | x3 > 0, x4 = 0} is a spacelike curve parametrized by

arc length. Rotation invariant marginally trapped surfaces in R4
1 are completely classified in the

following theorem.

Theorem 15. [6] Let S be a rotation invariant marginally trapped surface in Minkowski spacetime R4
1. Then, S

is locally congruent to a surface Σα whose profile curve α(s) = (α1(s), α2(s), α3(s), 0) is described in one the
following two cases.

(1) Given a smooth function τ : I ⊂ (0,+∞)→ R, such that τ(s) + sτ′(s) is never zero, choose a function
ε : I → {−1, 1} such that ετ is also smooth. Define the functions α1, α2, α3 by

α1(s) =
∫ s

s0

ε(t)τ(t)dt, α2(s) =
∫ s

s0

τ(t)dt, α3(s) = s

for some s0 ∈ I.
(2) Given a smooth positive function α3 : I ⊂ R→ R, such that 1− (α′3)

2 − α3α′′3 is never zero, define the
functions α1 and α2 by

α1(s) =
∫ s

s0

(
sinh ξ(t)− α′3(t) cosh ξ(t)

)
dt,

α2(t) =
∫ s

s0

(
cosh ξ(t)− α′3(t) sinh ξ(t)

)
dt

for some s0 ∈ I, where ξ(t) =
∫ t

s0

du
α3(u)

.

6.3. Screw Invariant Marginally Trapped Surfaces

One says that a spacelike surface S in R4
1 is screw invariant if it is invariant under the following

group of linear isometries of R4
1:
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Sθ =


1 θ2

√
2 θ 0

0 1 0 0
0
√

2 θ 1 0
0 0 0 1


∣∣∣∣∣∣∣∣∣ θ ∈ R

 ,

where the matrices are written with respect to the ordered basis (k, l, e3, e4), with k = (1, 1, 0, 0)/
√

2,
l = (1,−1, 0, 0)/

√
2, e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1). Note that k and l are null vectors with

〈k, l〉 = −1. A screw invariant surface S is contained inR+ ∪R−, defined as

R+ =
{

xkk + xl l + x3e3 + x4e4 ∈ R4
1 | xk > 0

}
,

R− =
{

xkk + xl l + x3e3 + x4e4 ∈ R4
1 | xk < 0

}
.

We will suppose that S is contained inR+, as similiar results can be obtained for surfaces lying inR−.
A screw invariant surface S inR+ has an open and dense subset Σα which can be parametrized by

φ : I ×R→ R4
1 : (s, θ) 7→ Sθ


αk(s)
αl(s)

0
α4(s)

 ,

where α : I ⊂ R→ {xkk + xl l + x3e3 + x4e4 ∈ R4
1 | xk > 0, x3 = 0} is a spacelike curve parametrized

by arc length. Note that αk, αl , 0 and α4 are the coordinate functions of α with respect to the basis
(k, l, e3, e4). The next theorem classifies all screw invariant marginally trapped surfaces inR+. Similar
results can also be obtained for surfaces lying inR−.

Theorem 16. [7] Let S be a screw invariant marginally trapped surface inR+. Then, S is locally congruent to
a surface Σα whose profile curve α(s) = αk(s)k + αl(s)l + α4(s)e4 is described in one of the following two cases.

(1) αk is a positive constant, α4(s) = s + s0 for some s0 ∈ R and αl is a smooth function such that 1 + αkα′′l
is never zero.

(2) Given two functions ρ : I ⊂ R→ R and ε : I → {−1, 1}, such that ρ and ερ are smooth and ρ is never
zero, define the functions αk, αl , α4 : I → R as follows:

αk(s) =

√
αk0 +

∫ s

s0

exp ξ(t)dt,

αl(s) =
∫ s

s0

αk(t)
4 exp ξ(t)

(
αk0 +

∫ t

s0

2αk(u)ρ(u)
exp ξ(u)

du
)2

dt−
∫ s

s0

2αk(t)
exp ξ(t)

dt,

α4(s) = α40αk(s) +
∫ s

s0

exp ξ(t)
αk(t)

(∫ t

s0

αk(u)ρ(u)
exp ξ(u)

du
)

dt,

with αk0, α40 ∈ R and s0 ∈ I, where ξ(t) =
∫ t

s0

ε(u)ρ(u)du + ξ0 for some ξ0 ∈ R.

7. Isotropic Marginally Trapped Surfaces

A complete classification of complete isotropic marginally trapped surfaces in Lorentzian space
forms was obtained in [8].

Definition 5. An isometric immersion of a Riemannian manifold S into a (pseudo-)Riemannian manifold
is called isotropic if 〈h(u, u), h(u, u)〉 = λ(p) does not depend on the choice of the unit vector u ∈ TpS.
The function λ : S→ R is then called the isotropy function of the immersion.
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Definition 6. An isometric immersion of a Riemannian manifold S into a (pseudo-)Riemannian manifold is
called pseudo-umbilical if there exists a function ρ : S → R such that 〈h(X, Y), H〉 = ρ〈X, Y〉 for all vector
fields X and Y tangent to S.

Remark that the function ρ in Definition 6 has to equal ρ = 〈H, H〉. When the mean curvature
vector of a spacelike surface in a four-dimensional Lorenztian manifold is null, the notions of isotropy
and pseudo-umbilicity are equivalent. More precisely, the following proposition was proven in [8].

Proposition 3. [8] Let φ : S→ M4
1 be a marginally trapped surface in a four-dimensional Lorentzian manifold.

Then the following assertions are equivalent:

(1) φ is pseudo-umbilical,
(2) φ is isotropic,
(3) φ is isotropic with isotropy function 0,
(4) φ has null second fundamental form.

7.1. Classification in Lorentzian Space Forms

The following theorem, which unifies Theorem 5.6, Theorem 5.10 and Theorem 5.13 from [8],
classifies the isotropic marginally trapped surfaces in R4

1, S4
1(1) and H4

1(−1). Proposition 3 then allows
the condition of being isotropic to be replaced by the stronger sounding condition of being isotropic
with isotropy function 0 or by the condition of being pseudo-umbilical.

Theorem 17. [8] Let S be a complete connected spacelike surface in Q4
1(c), with c ∈ {−1, 0, 1}. Then S is an

isotropic marginally trapped surface if and only if S has constant Gaussian curvature c and the immersion is
congruent to

φ : Q2(c)→ Q4
1(c) : x 7→ (τ(x), x, τ(x))

where τ : Q2(c)→ R is a smooth function such that ∆τ is nowhere zero, where ∆ is the Laplacian of Q2(c).

Remark that, since isotropic marginally trapped surfaces in four-dimensional Lorentzian space
forms have null second fundamental form, Theorem 17 follows from the first cases of Theorems 1 and
2, which were historically proven after Theorem 17.

7.2. Classification in Robertson-Walker spacetimes

Isotropic marginally trapped submanifolds in Robertson-Walker spacetimes can now be classified
as a corollary of Proposition 3 and the first cases of Theorem 5.

Theorem 18. Let φ : S → L4
1( f , c) be an isotropic marginally trapped immersion of a surface into a

Robertson-Walker spacetime. Then there are two possibilities.

(1) the immersion takes the form
φ = (t0, ϕ),

where t0 ∈ I is constant and ϕ defines a totally umbilical surface in Q3(c) with a mean curvature vector
of constant length | f ′(t0)|;

(2) the function
θ′′ cosc θ + (θ′)2c sinc θ

θ′′ sinc θ − (θ′)2 cosc θ
,

where θ is defined in (1), is constant, say C0, and φ is locally congruent to an immersion of the form

φ = (τ, cosc(θ ◦ τ)ϕ + sinc(θ ◦ τ)ν) ,
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where τ : S → R is a real function of class C2 and ϕ defines a totally umbilical surface in Q3(c) with
Gauss map ν and with a mean curvature vector of length |C0|.

8. Marginally Trapped Surfaces with Constant Gaussian Curvature

In this section, we look for the marginally trapped surfaces with constant Gaussian curvature
in the classifications from the previous sections. Note that, in theory, it suffices to find the constant
Gaussian curvature surfaces in the theorems of Section 3, but this seems to be a non-trivial task.

8.1. Surfaces with Positive Relative Nullity

The following result follows from the equation of Gauss and the definition of positive relative
nullity.

Proposition 4. Every marginally trapped surface with positive relative nullity in a space form Qn
s (c),

has constant Gaussian curvature c.

Therefore, all the surfaces listed in Theorems 6–8 are examples of marginally trapped surfaces
with constant Gaussian curvature.

8.2. Surfaces in Light Cones

Proposition 1 showed that marginally trapped surfaces lying in the light cone of Q4
1(c),

with c ∈ {−1, 0, 1}, have constant Gaussian curvature c, while Proposition 2 proved the existence of
such surfaces.

8.3. Surfaces with Parallel Mean Curvature Vector Field

Marginally trapped surfaces with parallel mean curvature vector field in four-dimensional
Lorentzian space forms are classified in Theorems 10–12. The surfaces with constant Gaussian
curvature are already mentioned in the formulation of these theorems and we can summarize the
situation as follows.

(1) Surfaces of types (1)–(4) in Theorem 10, of types (2)–(4) in Theorem 11 and of types (2)–(4) in
Theorem 12 are flat.

(2) Surfaces of type (1) in Theorem 11 have constant Gaussian curvature K = 1.
(3) Surfaces of type (1) in Theorem 12 have constant Gaussian curvature K = −1.

8.4. Boost Invariant Surfaces

A boost invariant surface S in Minkowski spacetime is locally congruent to a surface Σα with unit
speed profile curve α = (α1, 0, α3, α4), where α1 is positive, and has Gaussian curvature

K = −α1
′′

α1
.

Theorem 14 describes all boost invariant marginally trapped surfaces in R4
1 and the next proposition

determines all such surfaces with constant Gaussian curvature.

Proposition 5. [5,14] A boost invariant marginally trapped surface S in Minkowski spacetime has constant
Gaussian curvature if and only it is locally congruent to a surface Σα whose unit speed profile curve α =

(α1, 0, α3, α4), with α1 > 0, is given by one of the following cases.
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(1) If S is flat, then α is given by

α1(s) = c1s + c2,

α2(s) =
c1s + c2√

c2
1 + 1

(
sin
(

ln(c1s + c2)

c1
+ ξ0

)
+ c1 cos

(
ln(c1s + c2)

c1
+ ξ0

))
,

α3(s) =
c1s + c2√

c2
1 + 1

(
cos

(
ln(c1s + c2)

c1
+ ξ0

)
− c1 sin

(
ln(c1s + c2)

c1
+ ξ0

))
,

with c1, c2, ξ0 ∈ R.
(2) If S has constant Gaussian curvature K > 0, then α is given by

α1(s) = c1 cos(
√

Ks + c2),

α3(s) =
∫ s

s0

√
1 + c2

1K sin2(
√

Kt + c2) cos ξ(t)dt,

α4(s) =
∫ s

s0

√
1 + c2

1K sin2(
√

Kt + c2) sin ξ(t)dt,

where c1, c2 ∈ R, s0 ∈ I and the function ξ is given by

ξ(t) =
∫ t

s0

c2
1K cos2(

√
Ku + c2)− 2

c1 cos(
√

Ku + c2)(1 + c2
1K sin(

√
Ku + c2))

du.

(3) If S has constant Gaussian curvature K < 0, then α is given by

α1(s) = c1 exp(
√
−Ks) + c2 exp(−

√
−Ks),

α3(s) =
∫ s

s0

√
1− K

(
c1 exp(

√
−Kt) + c2 exp(−

√
Kt)
)2

cos ξ(t)dt,

α4(s) =
∫ s

s0

√
1− K

(
c1 exp(

√
−Kt) + c2 exp(−

√
Kt)
)2

sin ξ(t)dt,

where c1, c2 ∈ R, s0 ∈ I and the function ξ is given by

ξ(t) =
∫ t

s0

1− c2
1K exp(2

√
−Ku)− c2

2K exp(−2
√
−Ku)

1− K
(

c1 exp(
√
−Ku) + c2 exp(−

√
Ku)

)2 du.

8.5. Rotation Invariant Surfaces

A rotation invariant surface S in Minkowski spacetime is locally congruent to a surface Σα with
unit profile curve α = (α1, α2, α3, 0), where α3 is positive, and has Gaussian curvature

K = −α3
′′

α3
.

Theorem 15 classifies all rotation invariant marginally trapped surfaces in R4
1 and the next proposition

determines all such surfaces with constant Gaussian curvature.

Proposition 6. [6] A rotation invariant marginally trapped surface S in Minkowski spacetime has constant
Gaussian curvature if and only it is locally congruent to a surface Σα whose unit speed profile curve α =

(α1, α2, α3, 0), with α3 > 0, is given by one of the following cases.

(1) If S is flat, then α is given by one of the following curves:
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(i) a curve of type (1) in Theorem 15;
(ii) a curve of type (2) in Theorem 15, described by one of the following two cases:

(a) the coordinate functions are given by

α1(s) =
1
2

(
1− c1

1 + c1
(c1s + c2)

c1+1
c1 +

1 + c1

1− c1
(c1s + c2)

c1−1
c1

)
,

α2(s) =
1
2

(
1− c1

1 + c1
(c1s + c2)

c1+1
c1 − 1 + c1

1− c1
(c1s + c2)

c1−1
c1

)
,

α3(s) = c1s + c2,

where c1, c2 ∈ R, with |c1| /∈ {0, 1},

(b) α(s) =
(

c1 cosh
(

s
c1

)
, c1 sinh

(
s
c1

)
, c1, 0

)
, with c1 ∈ R+

0 ;

(2) If S has constant Gaussian curvature K > 0, then α is of type (2) in Theorem 15, with

α1(s) =
(

sinh ξ(s) + c1 sin(
√

Ks + c2) cosh ξ(s)
)

,

α2(s) =
(

cosh ξ(s) + c1 sin(
√

Ks + c2) sinh ξ(s)
)

,

α3(s) = c1 cos(
√

Ks + c2),

where c1, c2 ∈ R, c1 6= 0 and the function ξ is given by

ξ(s) =
1
c1

ln

∣∣∣∣∣1 + sin(
√

Ks + c2)

1− sin(
√

Ks + c2)

∣∣∣∣∣ ,

with ξ0 ∈ R.
(3) If S has constant Gaussian curvature K < 0, then α is of type (2) in Theorem 15, with

α1(s) =
(

sinh ξ(s)−
√
−K(c1 − c2) exp ξ(s) cosh ξ(s)

)
,

α2(s) =
(

cosh ξ(s)−
√
−K(c1 − c2) exp ξ(s) sinh ξ(s)

)
,

α3(s) = c1 exp(
√
−Ks) + c2 exp(−

√
−Ks),

where c1, c2 ∈ R with c2
1 + c2

2 > 0 and the fuction ξ is given by

ξ(s) =
1√
−c1c2K

arctan

(
c1 exp(

√
−Ks)√

c1c2

)
+ ξ0 if c1c2 > 0,

ξ(s) =
1√

2c1c2K
ln

∣∣∣∣∣2c1 exp(
√
−Ks)− 2

√
−c1c2√

−Ks + 2
√
−c1c2

∣∣∣∣∣+ ξ0 if c1c2 < 0,

ξ(s) = − 1
c1
√
−K exp(

√
−Ks)

+ ξ0 if c2 = 0,

ξ(s) =
exp(
√
−Ks)

c2
√
−K

+ ξ0 if c1 = 0,

with ξ0 ∈ R.



Axioms 2020, 9, 60 20 of 21

8.6. Screw Invariant Surfaces

A screw invariant surface S in Minkowski spacetime is locally congruent to a surface Σα with unit
speed profile curve α = (αk, αl , 0, α4), where αk is positive, and has a Gaussian curvature described by

K = −αk
′′

αk
.

Theorem 16 classifies all screw invariant marginally trapped surfaces in R4
1 and the next proposition

determines all such surfaces with constant Gaussian curvature.

Proposition 7. [7] A screw invariant marginally trapped surface S in Minkowski spacetime has constant
Gaussian curvature if and only it is locally congruent to a surface Σα whose unit speed profile curve α =

(αk, αl , 0, α4), with αk positive, is given by one of the following cases.

(1) If S is flat, then α is a curve of type (1) in Theorem 16.
(2) If S has constant Gaussian curvature K > 0, then α is a curve of type (2) in Theorem 16 with

ρ(s) = 2c2
1K cos

(
2
√

Ks + c2

)
,

with c1, c2 ∈ R.
(3) If S has constant Gaussian curvature K < 0, then α is a curve of type (2) in Theorem 16 with

ρ(s) =
2
√
−K

(
c2

1 exp(2
√
−Ks) + c2

2 exp(−2
√
−Ks)

)
c2

1 exp(2
√
−Ks)− c2

2 exp(−2
√
−Ks)

,

with c1, c2 ∈ R.

8.7. Isotropic surfaces

Theorem 17 implies that an isotropic marginally trapped surface in a Lorentzian space form Q4
1(c)

has constant Gaussian curvature c. All isotropic marginally trapped surfaces in these spacetimes
therefore provide examples of constant Gaussian curvature marginally trapped surfaces.

9. Conclusions and Open Questions

While trapped and marginally trapped surfaces are concepts from physics, they have very natural
geometric definitions. In particular, a marginally trapped surface is a Riemannian surface in a spacetime
whose mean curvature vector field, one of the most important invariants in submanifold geometry, is
lightlike at every point. It is hence no surprise that this family of surfaces and their generalizations
were studied intensively from a purely geometric point of view. In this paper we gave an overview
of this study when the ambient space is Minkowski space, de Sitter space, anti-de Sitter space or a
Robertson-Walker spacetime. Most results are classification theorems under additional geometric
conditions. The local descriptions in Section 3 provide in some sense a complete classification without
additional assumptions, but it is not always easy to find surfaces with particular properties from this
general description, such as constant Gaussian curvature surfaces, see Section 8.

We finish the paper with some open questions regarding marginally trapped surfaces in
spacetimes, which arise naturally form the current overview article.

(1) What are the marginally trapped surfaces with parallel mean curvature vector in a
Robertson-Walker spacetime?

(2) For any one-parameter group of isometries of de Sitter, anti-de Sitter or a Robertson-Walker
spacetime: what are the invariant marginally trapped surfaces?
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(3) What are the marginally trapped surfaces with constant Gaussian curvature in Minkowski,
de Sitter, anti-de Sitter or a Robertson-Walker spacetime? In particular, what are the flat
marginally trapped surfaces?

(4) What are the marginally trapped surfaces satisfying any of the additional conditions appearing
in this paper in other (four-dimensional) Lorentzian manifolds, such as Kerr spacetime and
Schwarzschild spacetime?

Remark that one could in principle start from the general descriptions given in Section 3 to tackle
questions (1)–(3).
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