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Abstract: A class of Briot–Bouquet differential equations is a magnificent part of investigating the
geometric behaviors of analytic functions, using the subordination and superordination concepts.
In this work, we aim to formulate a new differential operator with complex connections (coefficients)
in the open unit disk and generalize a class of Briot–Bouquet differential equations (BBDEs). We study
and generalize new classes of analytic functions based on the new differential operator. Consequently,
we define a linear operator with applications.
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1. Introduction

Inequalities in a complex domain play a massive role in function theory. They have been employed
to introduce the geometric interpolation of analytic functions in the open unit disk. Moreover, they
have been utilized to formulate generalized classes of analytic functions. Recently, Lupas [1] suggested
a combination of two famous differential operators given by Ruscheweyh [2] and Sàlàgean [3] to
present a set of inequalities and inclusions by using the concept of subordination.

In this study, we shall define a new differential operator of complex coefficients and study its
behaviors based on the properties of the theory of geometric functions. The new operator will be
formulated in generalized sub-classes of starlike functions. Subordination inequalities include the
generalized operator, and some well-known functions are discussed. Sharp results are indicated in
the sequel. As an application, we introduce a generalization of a class of Briot–Bouquet differential
equations (BBDEs) in the complex domain. Consequently, examples are illustrated utilizing the
time-space BBDEs. A comparison with recent works is shown in the sequel.

2. Differential Operators

The theory of special functions in one variable has a long and ironic past; the rising importance
in special functions of several variables is moderately contemporary. Currently, there has been quick
progress specifically in the area of special functions with the consideration of symmetries and harmonic
analysis connected with root systems. The drive for this work comes from some generalizations of the
theory of symmetric spaces, whose functions can be written as special functions depending on definite
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sets of parameters. A key implementation in the study of special functions with reflection symmetries
is Dunkl operators, which are known as a class of differential-difference operators. In this effort,
we present a Dunkl differential-difference operator of the first type in a complex domain, under a
special class of analytic functions, called a class of normalized analytic functions. This class plays an
important role in the field of geometric function theory. Based on this connection between the Dunkl
operator and geometric function theory, we impose a major class of geometric presentations called the
starlike class of analytic functions. A significant motivation to study Dunkl operators is created by their
application in the analysis of quantum many-body systems of a special type. These operators describe
integrated systems in one dimension and have seen considerable increased attention in mathematical
physics, especially in conformal field theory (see [4,5] for recent works).

Let
∧

be the class of the analytic functions taking the expansion:

g (ξ) = ξ +
∞

∑
n=2

gnξn, ξ ∈ ∪ = {ξ : |ξ| < 1}. (1)

For a function g ∈ ∧, the Ruscheweyh formulation of the derivative is given by the following
expansion formula:

Rm g (ξ) = ξ +
∞

∑
n=2

Cm
m+n−1 gn ξn,

where the term Cm
m+n−1 is the combination of coefficients. Moreover, the Sàlàgean derivation expansion

is defined by:

Sm g (ξ) = ξ +
∞

∑
n=2

nm gn ξn.

Consequently, Lupas combined the above operators to get a linear operator as follows [1]:

Lm
α g (ξ) = ξ +

∞

∑
n=2

[αnm + (1− α)Cm
m+n−1]gn ξn, ξ ∈ ∪, α ∈ [0, 1].

Here, we introduce a differential operator taking the following expansion:

D0
λ g (ξ) = g(ξ)

D1
λ g (ξ) = ξ g′ (ξ) + λ

(
(g(ξ)− ξ)− (g(−ξ) + ξ))

)
, λ ∈ C

...

Dm
λ g (ξ) = Dλ(Dm−1

λ g (ξ))

= ξ +
∞

∑
n=2

[n + λ(1 + (−1)n+1)]m gn ξn.

(2)

For λ = 0, the operator reduces to the Sàlàgean differential operator. Moreover, the operator Dm
λ

imposes a modification of the Dunkl operator of the first type [6,7], where λ is the Dunkl parameter,
which indicates the balance between the differential and difference part in Equation (2). One of its
applications is recognizing the harmonic and oscillation behaviors of the solution, and g(−ξ) is the
reflection of the function g(ξ), which plays a significant role in the symmetry problem. Moreover,
when m = 2, the operator reduces to the generalized Dunkl-Coulomb operator [8].

Remark 1. We note that the original Dunkl operator admits the formula (see [9]):

D g (ξ) = g′(ξ) +
λ

2
(g(ξ)−g(−ξ)) ,
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which implies that Dg (ξ) 6∈ ∧ . Therefore, (2) is a modification that gives Dg (ξ) ∈ ∧ (the class of normalized
functions in the geometric function theory).

We proceed with discussing the behavior of the term λ(1 + (−1)n+1). Obviously, when:

λ :=
1

1− e2iπ = lim
n→∞

1
(1 + (−1)n+1)

,

we get the shifted Sàlàgean differential operator:

Dm g (ξ) = ξ +
∞

∑
n=2

[n + 1]m gn ξn. (3)

Furthermore, we have:
lim

n→∞
(1 + (−1)n+1) = 1 + e2iπ ,

which implies that for λ := 1
1+e2iπ , we get (3). The term (1 + (−1)n+1) plays an important role in the

oscillation problem, which was discussed in [8] (see Figure 1):

1 
 

 
Figure 1. The first graph is (1 + (−1)n+1), and the second is 1/(1 + (−1)n+1).

For functions g and f in
∧

, we say that g is subordinated to f, denoted by g ≺ f, if there occurs
a Schwarz function > ∈ ∪ with >(0) = 0 and |>(ξ)| < 1, ξ ∈ ∪ so that g(ξ) = f(>(ξ)) for all ξ ∈ ∪
(see [10]). Basically, g(ξ) ≺ f(ξ) is equivalent to g(0) = f(0) and g(∪) ⊂ f(∪).
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3. Briot–Bouquet Differential Equation

The investigation of the complex Briot–Bouquet differential equations (BBDEs) is the study of a
special class of differential equations whose consequences are designed in a complex domain (such as
the open unit disk). The chief formula of BBDE is:

ξ(g(ξ))′

g(ξ)
= Λ(ξ), g ∈

∧
, ξ ∈ ∪.

One can find different applications of these equations in dynamic and control systems (see [11–13]).
The operator (2) can be used to generalize BBDE as follows:

ξ(Dm
λ g (ξ))′

Dm
λ g (ξ)

= Λ(ξ), ξ ∈ ∪,g ∈
∧

, (4)

where Λ(ξ) is univalent convex in ∪. Our aim is to study the upper outcome of (4) by using
subordination inequalities.

Theorem 1. Let g ∈ ∧ and Λ(ξ) be univalent convex in ∪ fulfilling the subordination formula:

ξ(Dm
λ g (ξ))′

Dm
λ g (ξ)

≺ Λ(ξ). (5)

Then, the upper bound of the solution of (5) is:

Dm
λ g (ξ) ≺ ξ exp

( ∫ ξ

0

Λ(Ψ(ι))− 1
ι

dι
)

,

where Ψ(ξ) is analytic in ∪, with Ψ(0) = 0 and |Ψ(ξ)| < 1. In addition, for |ξ| = ι, Dm
λ g (ξ) achieves

the inequality:

exp
( ∫ 1

0

Λ(Ψ(−ι))− 1
ι

dι
)
≤
∣∣∣Dm

λ g (ξ)

ξ

∣∣∣ ≤ exp
( ∫ 1

0

Λ(Ψ(ι))− 1
ι

dι
)

.

Proof. By the definition of the subordination, Inequality (5) satisfies that there exists a Schwarz
function with Ψ(0) = 0 and |Ψ(ξ)| < 1 such that:

ξ(Dm
λ g (ξ))′

Dm
λ g (ξ)

= Λ(Ψ(ξ)), ξ ∈ ∪.

This leads to the equation:

(Dm
λ g (ξ))′

Dm
λ g (ξ)

− 1
ξ
=

Λ(Ψ(ξ))− 1
ξ

.

By integrating both sides, we obtain:

log Dm
λ g (ξ)− log ξ =

∫ ξ

0

Λ(Ψ(ι))− 1
ι

dι.

A computation yields:

log
(

Dm
λ g (ξ)

ξ

)
=
∫ ξ

0

Λ(Ψ(ι))− 1
ι

dι, (6)
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which is equivalent to the fact:

Dm
λ g (ξ) ≺ ξ exp

( ∫ ξ

0

Λ(Ψ(ι))− 1
ι

dι
)

.

Further, the function Λ designs the disk 0 < |ξ| < ι < 1 on a territory, which is symmetric convex,
agreeing with the real axis, that is:

Λ(−ι|ξ|) ≤ <(Λ(Ψ(ιξ))) ≤ Λ(ι|ξ|), ι ∈ (0, 1);

thus, we attain the following inequalities:

Λ(−ι) ≤ Λ(−ι |ξ|), Λ(ι |ξ|) ≤ Λ(ι).

By employing the above inequalities, we obtain the integral inequalities:

∫ 1

0

Λ(Ψ(−ι|ξ|))− 1
ι

dι ≤ <
( ∫ 1

0

Λ(Ψ(ι))− 1
ι

dι
)
≤
∫ 1

0

Λ(Ψ(ι|ξ|))− 1
ι

dι,

which leads to the next inequalities:

∫ 1

0

Λ(Ψ(−ι|ξ|))− 1
ι

dι ≤ log
∣∣∣Dm

λ g (ξ)

ξ

∣∣∣ ≤ ∫ 1

0

Λ(Ψ(ι|ξ|))− 1
ι

dι,

and:

exp
(∫ 1

0

Λ(Ψ(−ι|ξ|))− 1
ι

dι

)
≤
∣∣∣Dm

λ g (ξ)

ξ

∣∣∣ ≤ exp
(∫ 1

0

Λ(Ψ(ι|ξ|))− 1
ι

dι

)
.

We conclude that:

exp
( ∫ 1

0

Λ(Ψ(−ι))− 1
ι

dι
)
≤
∣∣∣Dm

λ g (ξ)

ξ

∣∣∣ ≤ exp
( ∫ 1

0

Λ(Ψ(ι))− 1
ι

dι
)

.

Theorem 2. Suppose that g ∈ ∧ with non-negative connections. If <(λ) > 0 and Λ, in Equation (4), is
univalent convex in ∪, then there occurs a solution fulfilling upper bound inequality:

Dm
λ g (ξ) ≺ ξ exp

( ∫ ξ

0

Λ(Ψ(ι))− 1
ι

dι
)

, (7)

where Ψ(ξ) is analytic in ∪, with Ψ(0) = 0 and |Ψ(ξ)| < 1.

Proof. In view of the assumptions, we attain:

<
(

ξ(Dm
λ g (ξ))′

Dm
λ g (ξ)

)
> 0

⇔ <
(

ξ + ∑∞
n=2 n[n + λ(1 + (−1)n+1)]m gn ξn

ξ + ∑∞
n=2[n + λ(1 + (−1)n+1)]m gn ξn

)
> 0

⇔ <
(

1 + ∑∞
n=2 n[n + λ(1 + (−1)n+1)]m gn ξn−1

1 + ∑∞
n=2[n + λ(1 + (−1)n+1)]m gn ξn−1

)
> 0

⇔
(

1 + ∑∞
n=2 n[n + λ(1 + (−1)n+1)]m gn

1 + ∑∞
n=2[n + λ(1 + (−1)n+1)]m gn

)
> 0, ξ → 1+

⇔
(

1 +
∞

∑
n=2

n[n + λ(1 + (−1)n+1)]m gn

)
> 0.
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In addition, we confirm that (Dm
λ g)(0) = 0, which implies that:

ξ(Dm
λ g (ξ))′

Dm
λ g (ξ)

∈ P .

Hence, according to Theorem 1, we arrive at (7).

Numerical Examples

We deal with the following examples.

Example 1. Suppose the parametric BB-control system (time-space equation):

ξ(Dm
λ gτ (ξ))′

Dm
λ gτ (ξ)

=
1 + ξ

1− ξ
, (8)

where 0 < τ < 1, |ξ| < 1 and:

gτ(ξ) =
ξ

(1− τξ)2

= ξ + 2τξ2 + 3τ2ξ3 + 4τ3ξ4 + 5τ4ξ5 + 6τ5ξ6 + O(ξ7).

Our aim is to apply Theorem 2. By operating the formula of (2) for different values of λ > 0, we have:

D1
0.1

(
ξ

(1− τξ)2

)
= ξ + 4τξ2 + 9.6τ2ξ3 + 16τ3ξ4 + 26τ4ξ5 + O(ξ6),

D1
0.5

(
ξ

(1− τξ)2

)
= ξ + 4τξ2 + 12τ2ξ3 + 16τ3ξ4 + 30τ4ξ5 + O(ξ6),

D1
1

(
ξ

(1− τξ)2

)
= ξ + 4τξ2 + 15τ2ξ3 + 16τ3ξ4 + 35τ4ξ5 + O(ξ6)

D1
2

(
ξ

(1− τξ)2

)
= ξ + 4τξ2 + 21τ2ξ3 + 16τ3ξ4 + 45τ4ξ5 + O(ξ6).

Now, a computation implies that:

ξ exp
( ∫ ξ

0

Λ(Ψ(ι))− 1
ι

dι
)
= ξ exp

( ∫ ξ

0

1+ι
1−ι − 1

ι
dι
)

≈ ξ exp(−2 log(ξ − 1)), <(ξ) < 1

= ξ + 2ξ2 + 3ξ3 + 4ξ4 + 5ξ5 + O(ξ6).

(9)

Comparing the connection values of D1
λ

(
ξ

(1−τξ)2

)
and (9), we conclude that τ ∈ [0.5, 1) implies that:

D1
λ

(
ξ

(1− τξ)2

)
≺ ξ exp

( ∫ ξ

0

1+ι
1−ι − 1

ι
dι
)

.

Therefore, D1
λ

(
ξ

(1−τξ)2

)
is a solution of Equation (8).

Example 2. In this example, we consider a wave equation taking the formula:

ξ(Dm
λ gτ (ξ))′

Dm
λ gτ (ξ)

= 1 + sin(ξ), (10)

where 0 < τ < 1, |ξ| < 1 and gτ(ξ) =
ξ

(1−τξ)2 .
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It is clear that: ∫ ξ

0
(sin(ι)/ι)dι = Si(ξ) = ξ − ξ3/18 + ξ5/600 + O(ξ6),

where Si is the sin integral function. Consequently, we have:

ξ exp
( ∫ ξ

0

(1 + sin(ι))− 1
ι

dι
)
= ξ − ξ3/18 + ξ5/600 + O(ξ6).

By compering the connection values, we indicate that τ ∈ [0, 14.7], and Equation (10) has an upper
univalent solution for all λ satisfying:

D1
λ

(
ξ

(1− τξ)2

)
≺ ξ exp

(
Si(ξ)

)
.

Remark 2. Theorem 2 admits the following facts:

• The nonlinear model that we studied has no computational complexity cost. It is, fairly enough, not high
speed because we have one variable and one parameter.

• It focuses on a starlike formula, which corresponds to the diffusion of the natural system of differential
equations. Therefore, we reformulated the Dunkl operator to be suitable for this study.

• Theorem 2 gives the upper analytic solution in the open unit disk. Moreover, the upper bound solution is
convex univalent; thus, all the trajectories approximate slightly the solution of Equation (7).

4. Linear Combination Operator

This work deals with a new operator combining Rm and Dm
λ as follows:

Jm
α,λ g (ξ) = (1− α)Rm g (ξ) + αDm

λ g (ξ)

= ξ +
∞

∑
n=2

[(1− α)Cm
m+n−1 + α

(
n + λ(1 + (−1)n+1)

)m
] gn ξn.

(11)

Remark 3.

• m = 0 =⇒ J0
α,λ g (ξ) = g(ξ);

• λ = 0 =⇒ Jm
α,0 g (ξ) = Lm

α g (ξ);
• α = 0 =⇒ Jm

0,λ g (ξ) = Rm g (ξ);
• α = 1 =⇒ Jm

1,λ g (ξ) = Dm
λ g (ξ);

• λ = 0, α = 1 =⇒ Jm
1,0 g (ξ) = Sm g (ξ).

Definition 1. Let α ≥ 0, λ ∈ C, and m ∈ N. A function g ∈ ∧ belongs to S∗m(α, λ, σ) if and only if:

ξ(Jm
α,λ g (ξ))′

Jm
α,λ g (ξ)

≺ σ(ξ), ξ ∈ ∪,

where σ is a univalent function with a positive real part in ∪ satisfying σ(0) = 1,<(σ′(ξ)) > 0.

Note that the class S∗m(α, λ, σ) is a generalization of some classes of analytic functions. Moreover,
this class is a specialist of the Ma and Minda class [14] given as follows (S∗(σ)):

ξ g′ (ξ)
g(ξ)

≺ σ(ξ).

Moreover, when σ(ξ) = 1 + sin(ξ) and m = 0, the class:

ξ g′ (ξ)
g(ξ)

≺ 1 + sin(ξ)
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was studied by Cho et al. [15]. Our class is a generalization of two classes given by Khatter et al. [16]
as follows:

ξ g′ (ξ)
g(ξ)

≺ β + (1− β)
√

1 + ξ

and
ξ g′ (ξ)
g(ξ)

≺ β + (1− β)eξ ,

where β = 0 introduces the class [17]:
ξ g′ (ξ)
g(ξ)

≺ eξ .

Kumar et al. [18] defined the class by using Bell numbers as follows:

ξ g′ (ξ)
g(ξ)

≺ eeξ−1.

Theorem 3. If β ∈ [0, 1], ξ ∈ ∪, then each function of the form:

• σ(ξ) = β + (1− β)
√

1 + ξ,
• σ(ξ) = β + (1− β)eξ ,
• σ(ξ) = β + (1− β)(1 + sin(ξ)),
• σ(ξ) = β + (1− β)eeξ−1,

has the upper and lower bound for all r ∈ (0, 1), θ ∈ [0, 2π) as follows:

min
|ξ|=r
<(σ(ξ)) = σ(−r) = min

|ξ|=r
|σ(ξ)|

and
max
|ξ|=r
<(σ(ξ)) = σ(r) = max

|ξ|=r
|σ(ξ)|.

Proof. The first and second type can be located in [16]. We only need to prove the third type. For β = 0,
we have the function σ(ξ) = 1 + sin(ξ) (see [15]). It is clear that:

sin(ξ) = sin(reiθ) = sin(r cos(θ)) cosh(r sin(θ)) + i cos(r cos(θ)) sinh(r sin(θ))

therefore, we have
<(σ(ξ)) = 1 + sin(r cos(θ)) cosh(r sin(θ)).

Consequently, by taking r → 0, we obtain:

min
|ξ|=r
<(σ(ξ)) = 1− sin(r) = min

|ξ|=r
|σ(ξ)| = 1.

Moreover, we have:

| sin(reiθ)|2 = cos2(r cos θ) sinh 2(r sin θ) + sin2 2(r cos θ) cosh 2(r sin r) ≤ sinh2(r);

thus, this yields:
max
|ξ|=r
<(σ(ξ)) = 1 + sin(r) = max

|ξ|=r
|σ(ξ)| ≤ 1 + sinh2(r).

Extending the above result, for β > 0, we have:

min
|ξ|=r
<(σ(ξ)) = β + (1− β)(1− sin(r)) = min

|z|=r
|σ(ξ)| = 1,
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and
max
|ξ|=r
<(σ(ξ)) = β + (1− β)(1 + sin(r)) = max

|ξ|=r
|σ(ξ)| ≤ β + (1− β)(1 + sinh2(r)).

This is similar for the last assertion.

The next result can be found in [10].

Lemma 1. If τ > 0 and σ ∈ H[1, n], then there are constants ℘ > 0 and ν > 0 with ν = ν(℘, τ, n), so that:

σ(ξ) + τξσ′(ξ) ≺
[

1 + ξ

1− ξ

]ν

⇒ σ(ξ) ≺
[

1 + ξ

1− ξ

]℘
.

Lemma 2. Let ϕ(ξ) be a convex function in ∪, h(ξ) = ϕ(ξ) + nν(ξϕ′(ξ)) for ν > 0, and n be a positive
integer. If $ ∈ H[ϕ(0), n], and:

$(ξ) + νξ$′(ξ) ≺ h(ξ), ξ ∈ ∪,

then
$(ξ) ≺ ϕ(ξ),

and this result is sharp.

5. Subordination Inequalities

Here, we are concerned with the class S∗m(α, λ, σ) for special types of σ(ξ) that are given in
Theorem 3.

Theorem 4. The class S∗m(α, λ, σ) achieves the following inclusion:

S∗m(α, λ, σ) ⊂ S∗m(α, λ, γ) ⊂ S∗m(α, λ),

where σ is one of the types in Theorem 3 and:

S∗m(α, λ, γ) := {g ∈
∧
<
( ξ(Jm

α,λ g (ξ)))′

Jm
α,λ g (ξ)

)
> γ};

S∗m(α, λ) := {g ∈
∧
<
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
> 0}.

Proof. Let g ∈ S∗m(α, λ, σ), and let σ(ξ) = β + (1− β)
√

1 + ξ, then we have the inequality:

ξ(Jm
α,λ g (ξ))′

Jm
α,λ g (ξ)

≺ β + (1− β)
√

1 + ξ, ξ ∈ ∪.

In view of Theorem 3, we obtain:

min
|ξ|=1−

<(β + (1− β)
√

1 + ξ) < <
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
< max
|ξ|=1+

<(β + (1− β)
√

1 + ξ),

which yields:

β < <
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
< β + (1− β)

√
2.

Hence, we have:

<
( ξ(Jm

α,λ g (ξ))′

Jm
α,κ g (ξ)

)
> β := γ ≥ 0,
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and consequently, we get the requested result. Consider σ(ξ) = β + (1− β)eξ ; we have:

min
|ξ|=1
<(β + (1− β)eξ) < <

( ξ(Jm
α,λ g (ξ))′

Jm
α,λ g (ξ)

)
< max
|ξ|=1
<(β + (1− β)eξ),

which implies:

(β + (1− β)
1
e
) < <

( ξ(Jm
α,λ g (ξ))′

Jm
α,λ g (ξ)

)
< (β + (1− β)e),

that is:

<
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
> (β + (1− β)

1
e
) := γ ≥ 0.

Similarly, by letting σ(ξ) = β + (1− β)(1 + sin(ξ)), then we have:

min
|ξ|=1
<(β + (1− β)(1 + sin(ξ))) < <

( ξ(Jm
α,λ g (ξ))′

Jm
α,λ g (ξ)

)
< max
|ξ|=1
<(β + (1− β)(1 + sin(ξ))),

which leads to:

(β + 0.158(1− β)) < <
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
< (β + 1.841(1− β)),

and this brings the inequality:

<
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
> (β + 0.158(1− β)) := γ ≥ 0.

Remark 4. In Theorem 4,

• m = 0, β = 0, σ(ξ) = 1 + sin ξ =⇒ [15];
• m = 0 =⇒ [16];
• m = 0, β = 0, σ(ξ) = eξ =⇒ [19];
• m = 0, β = 0, σ(ξ) =

√
1 + ξ =⇒ [19].

Theorem 5. The class S∗m(α, λ, σ) achieves the following inclusion:

S∗m(α, λ, σ) ⊂Mm(α, λ, γ) := {g ∈
∧
<
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
< γ, γ > 1}.

where σ is given in Theorem 3.

The set Mm(α, λ, γ) is a generalization of the set:

M(γ) := {g ∈
∧
<
( ξ(g(ξ))′

g(ξ)

)
< γ, γ > 1}

given by Uralegaddi et al. [20].

Proof. Let g ∈ S∗m(α, λ, σ), where σ is given in Theorem 3. By the proof of Theorem 4, we have:

<
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
< β + (1− β)

√
2 := γ,
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<
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
< β + (1− β)e := γ

and:

<
( ξ(Jm

α,κ g (ξ))′

Jm
α,λ g (ξ)

)
< (β + 1.841(1− β)) := γ,

Hence, g ∈ Mm(α,g(ξ), γ), where the value of γ is based on the function σ, which completes
the proof.

Remark 5. In Theorem 5,

• m = 0, β = 0, σ(ξ) = 1 + sin ξ =⇒ [15];
• m = 0, σ(ξ) = β + (1− β)eξ =⇒ [16], Theorem 2.5;
• m = 0, σ(ξ) = β + (1− β)(

√
1 + ξ) =⇒ [16], Theorem 2.6;

• m = 0, β = 0, σ(ξ) = (
√

1 + ξ) =⇒ [16], Corollary 2.7.

Theorem 6. If g ∈ ∧ satisfies the subordination:

( ξ(Jm
α,λ g (ξ))′

Jm
α,λ g (ξ)

)(
2 +

ξ(Jm
α,λ g (ξ))′′

(Jm
α,λ g (ξ))′

−
ξ(Jm

α,λ g (ξ))′

Jm
α,g(ξ)

g (ξ)

)
≺
[

1 + ξ

1− ξ

]τ

then g ∈ S∗m(α, λ, σ), where σ(ξ) =

[
1 + ξ

1− ξ

]℘
for ℘ > 0, τ > 0.

Proof. To employ Lemma 1, a calculation implies that:

( ξ(Jm
α,λ g (ξ))′

Jm
α,λ g (ξ)

)
+ ξ
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)′
=
( ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)(
2 +

ξ(Jm
α,λ g (ξ))′′

(Jm
α,λ g (ξ))′

−
ξ(Jm

α,λ g (ξ))′

Jm
α,λ g (ξ)

)
≺
[

1 + ξ

1− ξ

]τ

.

Thus, in view of Lemma 1, we have:

( ξ(Jm
α,λ g (ξ))′

Jm
α,λ g (ξ)

)
≺
[

1 + ξ

1− ξ

]℘
:= σ(ξ),

which implies that g ∈ S∗m(α, λ, σ).

Theorem 7. Let ϕ be a convex function such that ϕ(0) = 0, and let } be the function:

}(ξ) = ϕ(ξ) +
ξ

1− `
ϕ′(ξ), ξ ∈ ∪, ` ∈ (0, 1).

If for a function, g ∈ ∧ satisfies the subordination:

( ξ

Jm+1
α,λ g (ξ)

)` Jm
α,λ g (ξ)

1− `

((Jm+1
α,λ g (ξ)

)′
Jm+1
α,λ g (ξ)

− `

(
Jm
α,λ g (ξ)

)′
Jm
α,λ g (ξ)

)
≺ }(ξ)

then: ( Jm+1
α,λ g (ξ)

ξ

)( ξ

Jm+1
α,λ g (ξ)

)` ≺ ϕ(ξ), ξ ∈ ∪.
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The outcome is sharp.

Proof. We aim to apply Lemma 2. Let:

$(ξ) =
( Jm+1

α,λ g (ξ)

ξ

)( ξ

Jm+1
α,λ g (ξ)

)`.
A differentiation implies that:

( ξ

Jm+1
α,λ g (ξ)

)` Jm
α,λ g (ξ)

1− `

((Jm+1
α,λ g (ξ)

)′
Jm+1
α,λ g (ξ)

− `

(
Jm
α,λ)g (ξ)

)′
Jm
α,λ g (ξ)

)
= $(ξ) + (

1
1− `

)ξ$′(ξ)

Thus, by the assumption, we have:

$(ξ) + (
1

1− `
)ξ$′(ξ) ≺ }(ξ) = ϕ(ξ) +

ξ

1− `
ϕ′(ξ), ξ ∈ ∪.

Employing Lemma 2 yields $(ξ) ≺ }(ξ), which means:

( Jm+1
α,λ g (ξ)

ξ

)( ξ

Jm+1
α,λ g (ξ)

)` ≺ ϕ(ξ), ξ ∈ ∪.

This result is sharp.

Remark 6. In Theorem 6, λ = 0 =⇒ [21] Theorem 2.14.

6. Conclusions

This study was concerned with a class of Briot–Bouquet differential equations utilizing a new
differential operator of complex connections. Some inequalities involving the subordination concept
were investigated. For future work, the idea of [22] will be used to present a harmonic class of
Briot–Bouquet differential equations.
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21. Lupaş, A.A. Some differential subordinations using Ruscheweyh derivative and Salaagean operator.

Adv. Differ. Equ. 2013, 2013, 150. [CrossRef]
22. Yousef, A.T.; Salleh, Z. On a Harmonic Univalent Subclass of Functions Involving a Generalized Linear

Operator. Axioms 2020, 9, 32. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.physleta.2015.01.023
http://dx.doi.org/10.1080/17455030.2019.1694729
http://dx.doi.org/10.1007/s40430-019-1715-x
http://dx.doi.org/10.1007/s40435-020-00616-z
http://dx.doi.org/10.1007/s41980-018-0127-5
http://dx.doi.org/10.1007/s13398-017-0466-8
http://dx.doi.org/10.1007/s40840-014-0026-8
http://dx.doi.org/10.1515/ms-2017-0289
http://dx.doi.org/10.1186/1687-1847-2013-150
http://dx.doi.org/10.3390/axioms9010032
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Differential Operators
	Briot–Bouquet Differential Equation
	Linear Combination Operator
	Subordination Inequalities
	Conclusions
	References

