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Abstract: Introduced by S.A. Lomov, the concept of a pseudoanalytic (pseudoholomorphic) solution
laid the foundation for the development of the singular perturbation analytical theory. In order for
this concept to work in case of linear problems, an apparatus for the theory of exponential type vector
spaces was developed. When considering nonlinear singularly perturbed problems, an algebraic
approach is currently used. This approval is based on the properties of algebra homomorphisms for
holomorphic functions with various numbers of variables, as a result of which it is possible to obtain
pseudoholomorphic solutions. In this paper, formally singularly perturbed equations are considered
in topological algebras, which allows the authors to formulate the main concepts of the singular
perturbation analytical theory from the standpoint of maximal generality.

Keywords: ε-regular function; invariants of equations and systems; ε-pseudoregular solution;
essentially singular manifold
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1. Introduction

The basic concept of the singular perturbation analytic theory is the concept pseudoholomorphic
solution, i.e., such a solution, which can be presented as a series in powers of a small parameter that
converges in the usual sense (and not asymptotically). The nature of this convergence is determined
by the topology of the spaces in which the investigated problems are considered. As a rule, spaces of
holomorphic functions (of one or several variables) are used. In this regard, it was possible to formulate
the main principles for the theory of singularly perturbed differential equations and systems—under
fairly general assumptions that they possess holomorphics in small parameter first integrals [1,2].
Moreover, a connection between the first integrals and homomorphisms of algebras of holomorphic
functions with various numbers of variables was established. The pseudoholomorphic solutions
themselves are obtained as a result of applying the implicit function theorem. In the presented
paper, all of these constructions will be carried out in topological algebras for formally singularly
perturbed equations.

2. Algebraic and Analytic Aspects of the Theory of Singular Perturbations

Let Ja be a complete topological commutative algebra with unit e and let X, Y1, . . . , Yk, . . . be a
sequence of open sets Ja. Let us denote by A0,A1, . . . ,Ak, . . . the spaces of functions continuous on
the sets X, X×Y1, . . . , X×Y1 × . . .×Yk, . . . respectively with their values in Ja. Let us formulate the
block I of necessary conditions:
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(1◦) If the sequence {xi}∞
i=0 is a bounded set [3] in Ja, then the series x0 + εx1 + . . . + εixi + . . .

converges at |ε| < 1.
(2◦) If the sequence {hi,k}∞

i=1 ⊂ Ak is such that the series

∞

∑
i=0

εihi,k(x, y1, . . . , yk) (1)

converges on each set T× T1× . . .× Tk, where T is an arbitrary compact from X; T1 is an arbitrary
compact from Y1, · · · ; Tk is an arbitrary compact set from Yk in some neighborhood of the value
ε = 0, the function Φ ∈ A0 and it can be extended to all Ja, then we have

Φ

(
∞

∑
i=0

εihi,k

)
= Φ(h0,k) +

∞

∑
i=1

εigi,k

and the last row with coefficients from Ak is convergent.

Definition 1. The function f (x, y1, . . . , yk, ε) ∈ Ak represented by (1), is called ε-regular.

(3◦) If the system 
F1(x, y1, . . . , yk, ε) = q1,
· · · · · · · · · · · · · · · · · · · · ·
Fk(x, y1, . . . , yk, ε) = qk

with ε-regular left-hand sides is uniquely solvable with respect to {y1, . . . , yk} for ε = 0 in some
neighborhood of the point x0 ∈ X, then it is also uniquely solvable in some neighborhood of the
same point and thus functions ym(x, ε) ∈ A0 (m = 1, k) are ε-regular.

Remark 1. The conditions of the block I are satisfied if Ja = C, X, Y1, Y2, . . . are simply connected regions,
A0,A1, . . . are spaces of holomorphic functions on X, X×Y1, X×Y1 ×Y2, . . . respectively.

In order to formulate the conditions of block II, we give some definitions.

Definition 2. s-product of tuples ϕ = {ϕ1, . . . , ϕk} and ψ = {ψ1, . . . , ψk} is a function ϕ s©ψ = ϕ1ψ1 +

. . . + ϕkψk.

Definition 3. Let f ∈ Ak, ϕi(x) ∈ A0, i = 1, k. The composition f and ϕ = {ϕ1, . . . , ϕk} is determined by
the formula f ◦ϕ = f (x, ϕ1(x), . . . , ϕk(x)) as usual.

Block of conditions II:

(1◦) All algebras A0,A1, . . . ,Ak, . . . contain constant functions and linear functions. We consider the
embeddings A0 ⊂ A1 ⊂ . . . ⊂ Ak ⊂ . . . together with topologies to be obvious.

(2◦) On all spaces A0,A1, . . . ,Ak, . . ., a linear operation ∂0 is defined such that ∂0 p = 0, where p is a
constant function, ∂0x = e and ∂0 f = 0 if f ∈ Ak and does not depend on x. On each space Ak
(k = 1, 2, . . .), linear operations {∂i}k

i=1 are defined and they comply with the following laws:

(a) ∂i p = 0, i = 1, k, where p ∈ Ak is a constant function;
(b) ∂iyi = e, i = 1, k;
(c) if the function f ∈ Ak does not depend on ym, then ∂i f = 0 for i 6= m.

(3◦) The operations {∂i}∞
i=0 form a commutative ring.

(4◦) An operation d is introduced, and it satisfies the following rules:

(a) d ≡ ∂0 on A0;
(b) d( f ◦ g) = ∂0 f · ∂0g ∀ f , g ∈ A0;
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(c) if f ∈ Ak, ϕi(x) ∈ A0 (i = 1, k), ϕ = {ϕ1, . . . , ϕk}, then d( f ◦ϕ) = ∂ f s©∂ϕ, where
∂ f ≡ {∂0 f , ∂1 f , . . . , ∂k f }, ∂0ϕ = {e, ∂0 ϕ1, . . . , ∂0 ϕk} are tuples of length (k + 1).

(5◦) For every natural number k in the algebra Ak, there exist a lot of tuples f = { f1(x, y1, . . . , yk),
. . . , fk(x, y1, . . . , yk)} such that the operator Df

k = f s©∂, where ∂ = {∂1, . . . , ∂k}, with a specially
defined domain D(Df

k) is surjective and has the inverse Jf
k , which has the following property:

for arbitrary compact sets T ⊂ X, T1 ⊂ Y1, . . . , Tk ⊂ Yk there is a number C > 0 such that, for an
arbitrary function ϕ(x) ∈ A0, the set Γϕ

k = {C−n(Jf
k∂0)

n ϕ(x, y1, . . . , yk) ∈ T × T1 × . . .× Tk}∞
n=1

is bounded in Ja.

Let us consider the case k = 1. We investigate the following equation:

εdy1 = F(x, y1), (2)

in which F ∈ A1 and ε is a small complex parameter. The function y1(x) ∈ A0 satisfying the
initial condition

y1(x0, ε) = y0
1, (3)

where x0 ∈ X, y0
1 ∈ Y1, is required to be found.

Definition 4. The invariant of Equation (2) is the function U(x, y1, ε) ∈ A1, which turns into a constant on
the solution y1(x, ε) of this equation.

Theorem 1. When the blocks of conditions I and II are satisfied, then Equation (2) has ε-regular invariants.

Proof of Theorem 1. If U(x, y, ε) is an invariant of the Equation (2), then, as it follows from Definition 4,
we have

ε∂0U + DF
1 U = 0, (4)

where DF
1 = F∂1.

We seek a solution of Equation (4) in the form of a series in powers of ε:

U(x, y1, ε) = U0(x, y1) + εU1(x, y1) + . . . + εnUn(x, y1) + . . . (5)

for the coefficients of the equation above the following series of equations holds:

DF
1 U0 = 0,

DF
1 U1 = −∂0U0,

· · · · · · · · · · · · · · ·
DF

1 Un = −∂0Un−1.
· · · · · · · · · · · · · · ·

(6)

As a solution to the first equation of this series, we take an arbitrary function ϕ(x) ∈ A0. To satisfy
the condition (5◦) of block II, we assume that the domain of the surjective operator DF

1 consists of
functions from A1 that vanish when y1 = y0

1 ∀x ∈ X, and the inverse operator JF
1 is such that, for any

compact sets T ⊂ X, T1 ⊂ Y1, there exists a number C > 0 such that, for an arbitrary function
ϕ(x) ∈ A0 set Γϕ

1 = {C−n(JF
1 ∂0)

n ϕ, (x, y1) ∈ T × T1}∞
n=1 is limited in Ja.

As a result, all equations of the series (6), starting from the second, are uniquely solvable:

U(x, y1, ε) = ϕ− ε(JF
1 ∂0)ϕ + . . . + (−1)nεn(JF

1 ∂0)
n ϕ + . . . (7)

and this series converges in some neighborhood of the value ε = 0 on the set T × T1. Theorem 1
is proved.



Axioms 2020, 9, 9 4 of 11

Remark 2. As it comes out from the form of series (7), we can consider U(x, y1, ε) for each fixed ε as the image
of the linear operator Hε : A0 → A1 given by the formula

Hε = I − ε(JF
1 ∂0) + . . . + (−1)nεn(JF

1 ∂0)
n + . . . ,

where I is the identity operator. Thus, U = Hε[ϕ].

Theorem 2. {Hε} forms a ε-regular family for homomorphisms of the algebra A0 into the algebra A1.

Proof of Theorem 2. Let U and V be invariants of the Equation (2). Obviously, then there exists a
function Φ such that V = Φ(U), and therefore Hε[ϕ(x)] = Φ(Hε[x]). If in this equality we put y1 = y0

1,
then ϕ(x) = Φ(x) ∀x ∈ X, therefore

Hε[ϕ(x)] = ϕ(Hε[x]). (8)

The equality (8) is called the commutation relation.
Now, let ϕ1(x), ϕ2(x) ∈ A0; then,

Hε[ϕ1 ϕ2] = (ϕ1 ϕ2)(Hε[x]) = ϕ1(Hε[x])ϕ2(Hε[x]) = Hε[ϕ1]Hε[ϕ2],

where Hε : A0 → A1 is a homomorphism. Theorem 2 is proved.

For the concepts given below, we need a definition introduced by S.A. Lomov for the notion of
the essentially singular manifold [4].

Definition 5. Let ϕ(x) ∈ A0, ϕ(x0) = 0, Φ ∈ A0, let it allow continuation to all Ja, and let T0 be some
compact from X containing the point x0. The set Q+(ϕ, Φ, T0) = {q : Φ(ϕ(x)/ε), x ∈ T0, ε > 0} is called
an essentially singular variety generated by the point ε = 0. Moreover, we say that it has the correct structure if

Q+ =
∞⋃

m=1

Πm,

where Π1 ⊂ Π2 ⊂ . . . is an increasing compact system.

We introduce the concept of ε-pseudoregularity necessary for studying the analytic properties of
a solution of y(x, ε).

Definition 6. The solution to the problems (2), (3) is called ε-pseudoregular if y1(x, ε) = Ỹ(x, ϕ(x)/ε, ε), in
which ϕ(x) ∈ A0; the function Ỹ(x, η, ε) is ε-regular for all (x, η) ∈ T0 × G where T0 is some compact set
containing the point x0, G is some unlimited set from Ja.

Theorem 3. If the essentially singular manifold Q+(ϕ, Φ, T0) is a bounded set in Ja and the equation

(JF
1 ∂0)ϕ = ϕ(x)/ε (9)

has a unique solution of the form y1 = Y1,0(x, q)
∣∣
q=Φ(ϕ(x)/ε)

such that the function Y1,0(x, q) coincides with the
contraction to the set T0 ×Q+ of some function fromA1, then problems (2), (3) have a ε-pseudoregular solution.

Proof of Theorem 3. For the invariant represented by the Formula (7), we compose the equality

(JF
1 ∂0)ϕ− ε(JF

1 ∂0)
2 ϕ + . . . + (−1)n−1εn−1(JF

1 ∂0)
n ϕ + . . . = ϕ(x)/ε,
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which defines the solution to the problems (2), (3). We apply the function Φ to its left-hand and
right-hand sides and, using the condition (2◦) of block I, we obtain the following equality:

Φ((JF
1 ∂0)ϕ) + εΨ(x, y1, ε) = q, (10)

where Ψ(x, y1, ε) is some ε-regular function.
Let the small parameter ε > 0 in Equation (2) be such that the following expression holds:

{q : q = Φ(ϕ(x)/ε), x ∈ T0} = Πm

for some natural number m (depending on ε). In accordance with the theorem conditions and the
condition (3◦) of block I, Equation (10) is solvable in some neighborhood σxq of each point (x, q) ∈
T0 ×Πm and has a solution y1 = Y1(x, q, ε) that is ε-regular in a neighborhood of |ε| < εxq, where
εxq > 0 and is determined by this neighborhood. From the cover {σxq} of the compact set T0 ×Πm, we
choose the finite subcover {σxq}N

i=1. Then, y1 = Y1(x, q, ε) will be a ε-regular function in the smallest
neighborhood of the point ε = 0 defined by a finite subcover; the function y1 = Y1(x, Φ(ϕ(x)/ε), ε)

will give a ε-pseudoregular solution to the problem (2), (3) on the part T̃0 ⊂ T0 such that the set
{(x, q) : x ∈ T̃0, q = Φ(ϕ(x)/ε)} ⊂ T0 ×Πm. The theorem is proved.

3. Invariants and ε-Pseudoregular Solutions of Systems of Equations

We take into the consideration the system of equations
εdy1 = F1(x, y1, . . . , yk),
· · · · · · · · · · · · · · · · · · · · ·
εdyk = Fk(x, y1, . . . , yk),

(11)

the right-hand sides of which belong to the algebra Ak. It is required to find its solution y(x, ε) =

{y1(x, ε), . . . , yk(x, ε)} satisfying the initial conditions

y1(x0, ε) = y0
1, . . . , yk(x0, ε) = y0

k . (12)

We rewrite system (11) by introducing the following denotation:

F(x, y) = {F1(x, y), . . . , Fk(x, y)},
y0 = {y0

1, . . . , y0
k}.

Thus, we have
εdy = F(x, y),
y(x0, ε) = y0 (13)

to be the initial investigated problem.

Definition 7. The function U(x, y, ε) ∈ Ak is called the invariant of the system (11) if it turns into a constant
on the solution y(x, ε).

We formulate a theorem similar to Theorem 1.

Theorem 4. The system (11) has ε-regular invariants.

Proof of Theorem 4. The proof is carried out according to the same scheme as in the case of a single
equation.
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Definition 8. The solution of the y(x, ε) problem (13) is called ε-pseudoregular if y(x, ε) = Ỹ(x,ϕ(x)/ε, ε),
in which ϕ(x) = {ϕ1(x), . . . , ϕk(x)}, ϕi(x) ∈ A0 (i = 1, k) and the function Ỹ(x, η, ε) in which η =

(η1, . . . , ηk), is ε-regular for all (x, η1, . . . , ηk) ∈ T0 × G1 × . . .× Gk where T0 is some compact set from X
containing x0 and Gi (i = 1, k) are unbounded sets from Ja.

Theorem 5. Let the following conditions be fulfilled:

(1◦) The functions Φi and ϕi are such that the essentially singular manifolds Q+
i (ϕi, Φi, T0) (i = 1, k) are

bounded sets in Ja.
(2◦) The equation D F

k V = e has the solutions {V1(x, y), . . . , Vk(x, y)} such that system
∂0 ϕ1 ·V1(x, y)) = ϕ1(x)/ε,
· · · · · · · · · · · · · · · · · · · · · · · ·
∂0 ϕk ·Vk(x, y)) = ϕk(x)/ε

has the only solution

y = Y0(x, q)
∣∣∣∣ q=(q1,...,qk)
qi=Φi(ϕi(x)/ε)

,

and each component Y0,i(x, q) (i = 1, k) of it coincides with the restriction to the set T0×Q+
1 × . . .×Q+

k
of some function from Ak.

Then, the solution y(x, ε) of the problem (13) is ε-pseudoregular.

Proof of Theorem 5. We write the equalities for the invariants of the system (11) in the following form:
∂0 ϕ1 ·V1(x, y)− ε(J Fk ∂0)

2 ϕ1 + ε2(J Fk ∂0)
3 ϕ1 − . . . = ϕ1(x)/ε,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∂0 ϕk ·Vk(x, y)− ε(J Fk ∂0)

2 ϕk + ε2(J Fk ∂0)
3 ϕk − . . . = ϕk(x)/ε.

(14)

In order for this system to determine the solution of the problem (11), (12) (or (13)), we assume
(see condition (5◦) of block II) that D(D F

k ) consists of functions that vanish when y = y0 for any x ∈ X
and Vi(x, y0) = 0, i = 1, k.

We apply the functions Φ1, . . . , Φk to the equations of the system (14), respectively. Then, in
accordance with the condition (2◦) of block I, we obtain the system

Φ1(∂0 ϕ1 ·V1(x, y)) + εΨ1(x, y, ε) = q1,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Φk(∂0 ϕk ·Vk(x, y)) + εΨk(x, y, ε) = qk.

(15)

Let the small parameter ε > 0 in the system (13) be such that

{qi : qi = Φi(ϕ(x)/ε), x ∈ T0} = Πmi , i = 1, k

for natural m1, . . . , mk. By the condition of the (2◦) Theorem 5, the system (15) for ε = 0 has a
unique solution y = Y0(x, q) and, therefore, in accordance with the condition (3◦) of block I, this
system is solvable in some neighborhood σxq of each point (x, q) ∈ T0 ×Πm1 × . . .×Πmk , and its
solution Y(x, q, ε) is ε-regular there for |ε| < εxq. After that, from the cover {σxq} of the compact
set T0 ×Πm1 × . . .×Πmk , we choose a finite subcover and Y(x, q, ε) will be ε-regular in the minimal
neighborhood from the neighborhood of ε = 0 corresponding to a finite subcover. As in the proof of
Theorem 3, we choose T̃0 ⊂ T0, a compact set on which there exists a ε-regular solution
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y(x, ε) = Y(x, q, ε)

∣∣∣∣qi=Φi(ϕi(x)/ε)

(i=1,k)

.

The theorem is proved.

4. Concrete Implementations of the Theory

In this section of the article, we assume that Ja = C, X = P0 ≡ {z ∈ C : |z − z0| < r0},
Yi = Pi ≡ {wi ∈ C : |wi−w0

i | < ri}, i = 1, k. We shall use the following denotations w = {w1, . . . , wk},
w0 = {w0

1, . . . , w0
k}, P

k = P1 × . . .× Pk a polycircle of Ck.
Let A0 be the algebra of holomorphic functions in the P0 circle of the variable z; let A1 be the

algebra of holomorphic functions in the P0 × P1 bicircle of the variables (z, w1), . . .; let Ak be the
algebra of holomorphic functions of the variables (z, w1, . . . , wk) in the polycircle P0 × Pk. It is clear
that, if ∂0 = ∂z, ∂1 = ∂w1 , . . ., ∂k = ∂wk , then all the conditions of block I and the conditions (1◦)— (4◦)
of block II are satisfied. In the concepts given below, we show that the condition (5◦) also holds under
fairly general assumptions.

Thus, we investigate the Cauchy problem for ε > 0:

ε
dw
dz

= F(z, w), z ∈ P̃0 = {z ∈ C : |z− z0| < r̃0, 0 < r̃0 < r0},

w(z0, ε) = w0,
(16)

where F(z, w) = {F1(z, w), . . . , Fk(z, w)}, Fi(z, w) ∈ Ak for i = 1, k.
From the nonlinear system (16), we come to the linear equation of its integrals (invariants):

ε∂zU+ D F
k U = 0. (17)

Here, D F
k = F1∂w1 + . . .+ Fk∂wk is the linear partial differential operator of the first order in partial

derivatives: U = {U[1], . . . , U[k]}, where {U[i]}k
i=1 is the system of independent integrals.

First of all, we present an integral method for solving inhomogeneous linear differential equations
of the first order with partial derivatives [5].

Let Λ be a holomorphically smooth surface in Ck and we need to solve the initial problem

D F
k V = f , f ∈ Ak,

V
∣∣
w∈Λ= 0.

(18)

Let us suppose that the surface Λ is given by the coordinates w̃ = {w̃1, . . . , w̃k−1} and, namely,
Λ = {w ∈ Ck : wi = λ(w̃), i = 1, k}, where λi(w̃) are functions holomorphic in some region Ck−1.
Next, we compose the equation system for the characteristic equation

dw
ds

= F(z, w), (19)

in which s ∈ C is an independent variable, and z acts as a parameter. Let w = g(z, w̃, s) be a solution
to the system (19) with the initial condition

w
∣∣
s=0= λ(w̃),

where λ = {λ1, . . . , λk}.
The existence and uniqueness theorem guarantees the unique solvability of the system g(z, w̃, s) =

w relative to w̃ and s: s = S(z, w), w̃ = W̃(z, w). We denote the operator of replacing variables (s, w̃)

by the variable w by R(z) and the backward replacement operator is denoted by R−1(z, s):
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R(z)[χ(z, s, w̃)] = χ(z, S(z, w), W̃(z, w)),

R−1(z, s)[θ(z, w)] = θ(z, g(z, w̃, s)).

Then, as you know, if the phase trajectories in the system of characteristics are transversal (not
tangent) to the surface Λ, then a solution to the Cauchy problem (17) exists, is unique, and is expressed
by the following formula:

V(z, w) =

s∫
0

f (z, g(z, w̃, s1))ds1

∣∣∣∣ s=S(z,w),
w̃=W̃(z,w)

. (20)

We return to Equation (18). We have

U(z, w, ε) = U0(z, w) + εU1(z, w) + . . . + εnUn(z, w) + . . . , (21)

and, as this takes place
D F

k U0(z, w) = 0,

D F
k U1(z, w) = −∂zU0(z, w),
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
D F

k Un(z, w) = −∂zUn−1(z, w).
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

(22)

As a solution to the first equation of this series, we take the vector function U0 =

{ϕ1(z), . . . , ϕk(z)}, ϕi(z) ∈ A0 for i = 1, k. The solution to the second equation of the series (22) is the
vector function U1 = {−∂z ϕ1V[1], . . . ,−∂z ϕkV[k]} where {V[1], . . . , V[k]} are functionally independent
solutions of the equation D F

k V = 1 and such that V[i](z, w0) = 0 ∀z ∈ P0, i = 1, k. We find solutions to
other equations using Formula (20), assuming that w0 ∈ Λ:

U2(z, w) = −R(z)
s∫

0
R−1(z, s1)∂zU1(z, w)ds1,

U3(z, w) = R(z)
s∫

0
ds1R−1(z, s1)∂zR(z)

s1∫
0

R−1(z, s2)∂zU1(z, w)ds2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Un(z, w) = (−1)n−1R(z)
s∫

0
ds1R−1(z, s1)∂zR(z)

s1∫
0

ds2R−1(z, s2)∂z . . .

. . . R(z)
sn−2∫
0

R−1(z, sn−1)∂zU1(z, w)dsn−1.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(23)

Next, to each natural n ≥ 2, we associate (n− 1) concentric circles Cm = {z : |z− z0| = tm}where

tm = r̃0 +
r− r̃0

n− 1
m, m = 1, n− 1

and r̃0 < r < r0.
These circles are situated at the same distance from each other:

ρ = tn−1 − tn−2 = . . . = t2 − r̃0 =
r− r̃0

n− 1
.
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We use the equalities (23) with the Cauchy integral formula:

U2(z, w) = − 1
2πi R(z)

s∫
0

R−1(z, s1)
∮
C1

dz1
(z1−z)2 U1(z1, w)ds1,

U3(z, w) = 1
(2πi)2 R(z)

s∫
0

ds1R−1(z, s1)
∮
C1

dz1
(z1−z)2 R(z1)

s1∫
0

R−1(z1, s2)
∮
C2

dz2
(z2−z1)2 U1(z2, w)ds2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Un(z, w) = (−1)n−1

(2πi)n−1 R(z)
s∫

0
ds1R−1(z, s1)

∮
C1

dz1
(z1−z)2 R(z1)

s1∫
0

ds2R−1(z1, s2)
∮
C2

dz2
(z2−z1)2 . . .

. . . R(zn−2)
sn−2∫
0

R−1(zn−2, sn−1)
∮

Cn−1

dzn−1
(zn−1−zn−2)2 U1(zn−1, w)dsn−1.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(24)

We represent Un(z, w) in the following form:

Un(z, w) =
(−1)n−1

(2πi)n−1

s∫
0

ds1

s1∫
0

ds2 . . .

sn−2∫
0

dsn−1

∮
C1

dz1

(z− z1)2 . . .
∮

Cn−2

dzn−2

(zn−3 − zn−2)2 ·

·
∮

Cn−1

R(z)R−1(z, s1)R(z1)R−1(z1, s2) . . . R(zn−2)R−1(zn−2, sn−1)U1(zn−1, w)dzn−1

(zn−2 − zn−1)2 .

Let ‖ · ‖k be the norm in Ck; then, for all z ∈ P̂0 = {z ∈ C : |z− z0| < r0} and all w from some
subregion P̂k of the polycircle Pk, the following inequality takes place:

‖Un(z, w)‖k ≤
∣∣∣∣ s∫

0

ds1

s1∫
0

ds2 . . .

sn−2∫
0

dsn−1

∣∣∣∣ 1
(2π)n−1 Hn−1‖U1(z, w)‖k,

where

Hn−1 =
∮
C1

|d z1|
|z− z1|2

. . .
∮

Cn−1

|d zn−1|
|zn−2−zn−1|2

=

=
2π∫
0

t1dα

t2
1+|z|

2−2t1|z| cos α
. . .

2π∫
0

tn−1dα

t2
n−1+t2

n−2−2tn−1tn−2 cos α
=

= (2π)n−1t1t2 ...tn−1

(t1−|z|2)(t2
2−t2

1)...(t2
n−1−t2

n−2)
≤ (2π)n−1rn−1

0 (n−1)n−1

2n−2 r̃ n−1
0 (r−r̃0)

n−1 .

As we have ∣∣∣∣ s∫
0

ds1

s1∫
0

ds2 . . .

sn−2∫
0

dsn−1

∣∣∣∣= |s|n−1

(n− 1)!
,

then

‖Un(z, w)‖k ≤
rn−1

0 (n− 1)n−1

2n−2 r̃ n−1
0 (r− r̃0)n−1(n− 1)!

‖U1(z, w)‖k,

and from that the convergence of the series (21) on any compact set from the set P̂0 × P̂k follows.
Thus, it is proved that the components of the vector U(z, w, ε) form an independent system of

integrals (invariants) and are holomorphic (ε-regular) at the point ε = 0. It is also clear that there is a
statement similar to Theorem 5 on the existence of a pseudoholomorphic (ε-pseudoregular) solution of
the Cauchy problem (16). Without loss of generality, we assume that z0 = 0.
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Theorem 6. Let the entire functions {Φ1, . . . , Φk} and the functions {ϕ1(z), . . . , ϕk(z)}
which are holomorphic in the circle P0 be such that the essentially singular manifolds
{Q+

1 (ϕ1, Φ1, T0), . . . , Q+
k (ϕk, Φk, T0)} created by the functions described above where T0 is some segment of

the real axis, the left end of which coincides with the origin and belongs to the circle P̂0, are sets bounded in C;
and the system of equations 

ϕ′1(z)V1(z, w) = ϕ1(z)/ε,
· · · · · · · · · · · · · · · · · · · · ·
ϕ′k(z)Vk(z, w) = ϕk(z)/ε,

in which {V1(z, w), . . . , Vk(z, w)} are independent solutions of the equation D F
k V = 1, has a solution of

the form

w = W0(z, q)
∣∣∣∣
q={Φ1(ϕ1(z)/ε),...,Φk(ϕk(z)/ε)}

,

each component W0,i(z, q) (i = 1, k) of it is holomorphic on the set T0 ×Q+
1 × . . .×Q+

k . Then, the solution
w(z, ε) of the initial problem (16) is pseudoholomorphic at the point ε = 0 (ε-pseudoregular).

It should be noted [6] that this solution can be continued in a pseudoholomorphic way for a fixed
ε > 0 from some segment [0, T̃0] (see the end of the proof of Theorem 5) by segment [0, T0].

5. Conclusions

Further development of the axiomatic approach in the analytical singular perturbation theory will
allow us to consider a more general class of equations with a small parameter, in particular, an analogue
of nonlinear differential equations in partial derivatives (for example, equations of the Navier–Stokes
type, etc.). This is very urgent since the range of problems leading to singularly perturbed problems
is constantly expanding. In this sense, the ”Dyson argument” that appeared in theoretical physics is
quite indicative—the solutions of the equations arising in astrophysics can depend holomorphically
on the gravitational constant only after isolating a revealing the essentially singular manifold [7].

As for the current state of the singular perturbation of theory, the asymptotic approach prevails
there. In our opinion, when solving most singularly perturbed equations, the following methods are
used: the Vasilieva–Butuzov–Nefedov boundary function method [8,9], the Maslov method [10], the
Lomov regularization method [4,11], and the Bogolyubov–Krylov–Mitropolsky average method [12,13].
In the case of more specific situations, these methods are combined and new approaches to the
asymptotic integration are proposed [14].
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