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Abstract: In this paper, a subclass of complex-valued harmonic univalent functions defined by
a generalized linear operator is introduced. Some interesting results such as coefficient bounds,
compactness, and other properties of this class are obtained.
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1. Introduction

Let H represent the continuous harmonic functions which are harmonic in the open unit disk
U ={z:z€C,|z| <1} and let A be a subclass of H which represents the functions which are analytic in
U. A harmonic function in U could be expressed as f = h + g, where h and g are in A, } is the analytic
part of f, g is the co-analytic part of f and |h’ (z)) > ) ' (z)| is a necessary and sulfficient condition for f
to be locally univalent and sense-preserving in U (see Clunie and Sheil-Small [1]). Now we write,

h(z) =z+ Z a,z", g(z) = Z buz". 1)
n=2 n=2

Let SH represents the functions of the form f = h + g which are harmonic and univalent in
U, which normalized by the condition f(0) = £.(0) — 1 = 0. The subclass SH" of SH consists of all
functions in SH which have the additional property f;(0) = 0. The class SH was investigated by Clunie
and Sheil-Smallas [1]. Since then, many researchers have studied the class SH and even investigated
some subclasses of it. Also, we observe that the class SH reduces to the class S of normalized analytic
univalent functions in U, if the co-analytic part of f is equal to zero. For f € S, the Salagean differential
operator D"(n € Ng = NU{0}) was defined by Salagean [2]. For f = h + g given by (1), Jahangiri et
al. [3] defined the modified Salagean operator of f as

D" f(z) = D"h(z) + (-1)"D"g(2),

where
o0

D"(z) =z+ Z n"a,z", D" g(z) = Z n"b,z".
n=2 n=2

Next, for functions f € A, For n € Ny, f >y > 0, Yal¢in and Altinkaya [4] defined the differential
operator of 131 5 f:SHY — SHY. Now we define our differential operator:
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Ig,y,A,r},g,Tf(Z) = ]’Z(Z) + g(Z)

_ v (pHA=(6-0)(A=1)Df (2)+(6-¢) (A-1)D' f(2)

Ié,y,A,c,Tf(Z) =z+ ,Ez(y o)(A-1 iz ¢)(A-1 ) )

A=(0-¢) (A=) ((2) +3(2))+(0-) (A=) (2h(z) +28 (2))

= u+A
B @) =Ty a (0 S 2) ©)
If f is given by (1), then from (2) and (3), we get (see [5])

n oy (HHA -0 (A=) (n-1) )’" n

(wigﬂf(z) T n§2( i i 4)

(=)™ E(“HH(S_;H_T)(”_U) Doz,
n=2

The operator Igy, Ao f(z) generalizes the following differential operators:

If f € A then when we take y =1, A =0, 6 =0, 7 =1, ¢ = 1 we obtain Ing, agf(z) was
introduced and studied by Ramadan and Darus [6]. By taking different choices of u, A, 6, T and ¢ we
getI" ) _.f(z) wasintroduced and studied by Darus and Ibrahim [7], I;”l/ 10, 10/ (2) was introduced
and studied by Swamy [8], I7" 10, 1,0 f(z) was introduced and studied by Al-Oboudi [9] and I(’)’f 0, 10 f(z)
was introduced and studied by Salagean [2].

If f € H, then I;j 10, 10f (z) becomes the modified Salagean operator introduced by Yasar and
Yalgin [10].

A function f: U — C is subordinate to the function g : U — C denoted by f(z) < g(z), if there
exists an analytic function w : U — U with w(0) = 0 such that

f(z) = g(w(2)), (z € U).

Moreover, if the function g is univalent in U, then we have (see [11,12]):

f(z) < g(z) if and only if f(0) = g(0), f(U) c g(U).

Denote by SHO((S, W, A, ¢, t,m,A,B) the subclass of SHO consisting of functions of the form (1) that
satisfy the condition

+1
Igu,A,c,Tf (Z) < 1+ Az
Igfy,/\,mf(z) 1+ Bz

where Igfy, Aner f(z) is defined by (4). For relevant and recent references related to this work, we refer
the reader to [13-20].

In this paper we use the same techniques that have been used earlier by Dziok [21] and Dziok et
al. [22], to investigate coefficient bound, distortion bounds, and some other properties for the class

SHO(6,u,A,¢,t,m,A,B).

,~1<A<B<1 (5)

2. Coefficient Bounds

In this section we find the coefficient bound for the class SHO((S, WA, c,t,mA,B).

Theorem 1. Let the function f(z) = h + g be defined by (1). Then f € SH(5, WA, c,t,mA,B)if

o0

Z(CnlanHannD <B-A ©)
n=2
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where

(et A+ G- A-T) =1\ [(6-c)(A-1)(n=1)[B+1] -
C"_( ptA ){

(#+/\)(B—A)}

E @)
and
(p A+ -0 ) A=) -V [[A+B2+(6-c)A-1)(n-1))](u+ 1)
D”_( ptA ){ ptA } ®

Proof. Leta, # 0 or b, # 0 for n > 2. Since C,,, D,, > n(B — A) by (6), we obtain

I (z)| - g’ (2)| 2 1= & nlanllzl"™ = ¥ nlbyllz""
n=2 n=2

> 1~z ¥ (nlay| + nlbnl)
n=2
>1- l_A ; (Cn|an|+Dn|bn|)

—|z| > 0.

Therefore, f is univalent in U. To ensure the univalence condition, consider z1,z; € U so that
z1 # 2. Then

n_-n
217 %

Z1— 22

n
_ m—1 n—m
=X A" -3

m=1

n
< Z|z;”_1||z§_m| <n,n>2.

m=1

So, we have

|f(21)—f(22)
h(z1)=h(z2)

_|8)-glz)| _
21‘mm%m>—

_ Zn Zbk(z —Z )
z1-20+ Y 5 n (z1 —zg)
>1-— Z:%ozmbﬂ >1— Z:,o 2 B A|bn|

1-3.,2, nlag| o

anz B—A lanl — !
which proves univalences.

On the other hand, f € SHO(é WA, c,t,mA,B) if and only if there exists a function w
with w(0) = 0, and |w | < 1(z € U) such that

m—+1
Ié,y,A,c,Tf (2) < 1+ Az
e @) T 14 Bz
ot +1
m ™m
()y/\g”rf(z) _Iéy/\g,rf(z)
B1m+l

b#/\CTf(Z) T '”MCTf(Z) <1, (zel). )
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The above inequality (9) holds, since for |z| = 7 (0 < r < 1) we obtain

m—+1 m—+1
[t fe)-n )| (B e -an )

—|y (H+A+(6—;>+(£—T>(n—l)) (6—c)(:l\:rf\)(n—1)anzn

n=2

m o [(utA+(0-0)(A-1) (n=1) \"' 2(u+A) +(6-¢) A=) (n=1) 75,
I e e

_‘(B_A)Z+n§2(y+/\+(6_ijr(//\‘_f)(n_l)) (By-i-/\-l-(é—;i(//\\—f)(n—l) —A)anz"

m D A+ (6-) (A=) (n=1) Y[ 5 2(u+1)+6(—¢) (A7) (1-n) —
-(-1) n);z(‘ = )(B, o +A)bnz

2 (pA+0-0)(A=1) (=) \" (6-0)(A-1)(n=1), | n
e

00 m N A=) (1-n
Zz(er/\Jr((S—ﬁ—)i_(//\\—T)(n—l)) 2(y+/\)+(6“—;)/\(A )(1 )Ibnlr” —(B=A)r
n=

4 OZO‘ (erAJr(b—ﬁl()/\\—T)(n—l)) (B ;t+A+(b—gifi;T)(n—1)+A —A)|ﬂn|7’”

L3 (MH@_;M_T)WA)) (BZ(H+A)+(6;_€)/\(A—T)(n—1) n A)Ibnlr”

< r{ Y. (Culay| + Dylby))r" 1 — (B —A)} <0.
n=2
Therefore, f € SHY(s, WA, ¢, t,m,A,B), and so the proof is completed.
Next we show that the condition (6) is also necessary for the functions f € H to be in the
class SH(%((S, wAct,mAB) = T"N SHO(5, w A, c,t,mA,B) where T™ is the class of functions
f =h+3eSH’ so that

(o)

f=h+Z=2-) a2"+(-1)" Y bz (z € U). (10)
n=2

n=2

O

Theorem 2. Let f = h + g be defined by (10). Then f € SHOT((S, 1, A, ¢, t,m,A,B) if and only if the condition
(6) holds.

Proof. For this proof, we let the fractions W# = Land 2 +A)+(6}:3\(A_T)(n_1) = K. The first

part “if statement” follows from Theorem 1. Conversely, we suppose that f € SH%((S, wA,c,t,mA, B),
then by (9) we have

O e A e
T <1

(B=A)z - %;[(L)m(BL — Alaglz" + (K)" (BK + A)lb|2"]
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For |z| = 7 < 1, we obtain

ngz[(”mw%'””' n (K)m2(#+/\)+(5;i)/\(/\_’f)("—1)m]rn—l
— <1
(B-A)- ;2[<L)'”<BL — A)lanl + (K)" (BK + A) by [r-1
Thus, for C,, and D, as defined by (7) and (8), we have
Y [Culanl + Dalbyl}"* < B=A(0 < 7 < 1).(11) (11)
n=2

Let {p,} be the sequence of partial sums of the series

n
Z[Cklﬂkl + Dylbl].
=2

Then {p,} is a non-decreasing sequence and by (11) it is bounded above by B — A. Thus, it is
convergent and

Y [Culaul + Dalbl] = lim p, < B—A.
n=2

This gives us the condition (6). O

3. Compactness and Convex

In this section we obtain the compactness and the convex relation for the class
SHO(é,y,/\,g,T,m,A,B).

Theorem 3. The class SHOT(é, WA, ¢, t,m,A,B) is convex and compact subset of SH.

Proof. Let f; € SH(%((S, w A, c,t,m,A,B), where

fiz) =z - Z|at,n)z” + (=" Z|bt,n|z_”(z eU, teN). (12)
n=2 n=2

ThenforO<¢ <1,let fi, o € SHOT((S, 1, A, ¢, t,m,A,B) be defined by (12). Then

E(2) = $AE) + (1-9)fo(z)
T Ez(eb!al,A (= 9)agal) + (1) T (9fpra] + (1) o)

n=2
and N
L {Cultlaral + (1= 9)azal) + Du(glbra] + (1= )b
=y gz{cnpml + Dalbral} + (1-9) i:;z{cn|a2,n| Db

<y(B-A)+(1-¢)(B—A) =B-A.

Thus, the function & = ¢ f1(z) + (1 - ¢) f2(z) is in the class SH(%((S, w, A, c,t,m,A,B). This implies
that SH(%((S, WA, ¢, t,m,A,B) is convex.
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For f; € SH(%((S, w A, ¢, t,mA,B),t € Nand |z] <7 (0 <r < 1), then we have
fi(2)] <7+ )ofz{(at,nl + [beul}r
n=

<r+ §2{Cn)am| + Dafor "
P
<r+ (B-A)r?

Therefore, SH%((S, W, A, ¢, t,m,A,B) is uniformly bounded. Let

) =z-— Z|atn)z +( Z|btn|z” zel, teN).

=2

also, let f = h + g where h and g are given by (1). Then by Theorem 2 we get

o0

Y {Culanl + Dalora|} < B A. (13)
n=2

If we assume f; — f, then we get that |atn) — |a,| and |btn| — |by| as n — +oo (t € N). Let {pn}
be the sequence of partial sums of the series Z {Cn|at n| + Dn|bt n|} Then {p,} is a non-decreasing
n=
sequence and by (13) it is bounded above by B — A Thus, it is convergent and

(o8]

Y {Culata| + Dufpel} = lim ps < B- 4.
n=2

Therefore, f € SH%(&, w, A, ¢, t,m,A,B) and therefore the class SH%((S, w,A,c,t,m,A,B)is closed.
As a result, the class is closed, and the class SH%((S, w A ¢ T,mA, B) is also compact subset of SH,
which completes the proof. O

Lemma 1 [23]. Let f = h + g be so that h and g are given by (1). Furthermore, let

(11— n+a
Z{l In|+ Ibn|}§1(zeu)
n=2

where 0 < a < 1. Then f is harmonic, orientation preserving, univalent in U and f is starlike of order a.

Theorem 4. Let 0 < a < 1,C,, and Dy, be defined by (7) and (8). Then

1
1-«o C D n—1
* 0 s . n n
ra(SHT((S,y,)\,g,T,n,A,B)) = igg[B _Amm{n o a}] , (14)

where 17, is the radius of starlikeness of order .
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Proof. Let f € SH%((S, 1, A, ¢, t,m,A,B) be of the form (10). Then, for |z| = r < 1, we get

Ionf(2)-(1+a)f(2)
Io,f(2)+(1+a)f(2)

8

—az—i (n-1-a)laylz"-(-1)" ¥, (n+1+a)lb,lz"

n= n=.

(@-0)- & (n-1-clagl’~(-1)" T (n-1+a)lbnz"

n=.

g™

a— 0ij{(n—l—oz)lunl—(—l)m Ez(n-&-l +a)|h,,|}r"‘1

n n=

IA

2—a— OZO, {(n—l—a)lanl—(—l)m Ez(n—l-i-a)lbnl} .

n=2 n=

By using Lemma 1, we observe that f is starlike of order « in U, if and only if

Io,f(z) - (1+a)f(z)
IO/Wf(Z) +(1+ a)f(z) <lzel
Z{?:Zlanl + Tlli_zlbnl}r"‘l <1 .

n=2
Furthermore, by using Theorem 2, we get

D
Y2l ol <1
l-a l-a

Condition (15) is true if

This proves
n—+ arn_l < Dn
1-a B-A

So, the function f is starlike of order a in the disk U; where

1
= inf[l_amin{ Co Dy }]m
¢ ux2AB-A n+a’ n+a !

"n=23..).

and the function

B— -
ull) = ) + ul2) = 2= T+ (1) 2
So, the radius #}, cannot be larger. Then we get (14). O

4. Extreme Points
In this section we find the extreme points for the class SHO (6,1, A, ¢, t,m,A,B).
Theorem 5. The extreme points of SH%((S, u, A, c,t,m,A,B) are the functions f of the form (1) where h = hy,

and g = gy are of the form
hi(z) =z,

hn(Z) =ZzZ- %Zﬂ, (16)

gn(z) = (—l)m%z_’l, (zel, nx=2).
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Proof. Suppose that g, = ¢fi + (1-1)f where 0 < ¢ < 1and fi, f» € SHY(6, 1, A,¢,7,m, A, B) are
written in the form

—Z—Z|ﬂtn|2 + ( mZ|b;n)Z" (ze U, tef1,2}).

=2

Then, by (16), we get
B-A
|b1u| = [b2n] = D,
and a1y = apy = O fort € {2,3...} and byy = byy = 0 fort € {2,3...}~ {n}. It follows that
en(z) = fi(z) = f2(z) and g, are in the class of extreme points of the class SH(%((S, w, A, c,t,mA,B).
We also can ensure that the functions #,(z) are the extreme points of the class SHOT((S, WA, c,t,mA,B).
Now, assume that a function f of the form (1) is in the class of the extreme points of the class
SH?((S, w, A, c,t,m,A,B) and f is not of the form (16). Then there exists k € {2,3.. .} such that

B-A
0 <|ak|< m
(y+ﬂ+(6—c)(A—T)(k—1)) {(6 o) (A=) [(k- 1)(B+1)]+(H+A)(B—A)}
pA LA
or B A
0<|byl < : — — : .
(u+A—®—cMA—rﬂn+4)) {L4+B&+%b—cXA—TNn—D)K#+A)}
u+A u+A
If
B-A
0 < |ag| < —
(y+A+%6—ng—Txn—1)) {(6—gMA—rxn—1MB+1L4y+AxB—A>}
utA utA
then putting
| ptA+(6=0) (A=) (n=1) " [ (6=¢) (A=1) (n=1) [B+1]~(u+A) (B-A)
a TES) A
v= B—A
and
Y
X==z e

we have 0 < ¢ < 1, by # ). Therefore, f is not in the class of the extreme points of the class
SH%((S, u,A,n,¢,7,m,A,B). Similarly, if

0 < bl < B-4 ‘
(u+A+( )(A=1)(n- U) {[A+B(2+®—gMA—rMn—D)Ku+A)}
u+A utA
then putting
b |(y+/\+(6—<:)(/\—r)(n—1) )’"{ [A+B(2+(6—¢c)(A=1) (n—-1))](u+A) }
B k Ty LA
v= B-A
and fou
_ ] W&k
X - 1 —ll) 7

we have 0 < ¢ < 1, g # x. It follows that f is not in the family of extreme points of the class
SH?((S, w, A, ¢, t,m,A,B) and so the proof is completed. O
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