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Abstract: In this paper, a subclass of complex-valued harmonic univalent functions defined by
a generalized linear operator is introduced. Some interesting results such as coefficient bounds,
compactness, and other properties of this class are obtained.
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1. Introduction

Let H represent the continuous harmonic functions which are harmonic in the open unit disk
U = {z : z ∈ C, |z| < 1} and let A be a subclass of H which represents the functions which are analytic in
U. A harmonic function in U could be expressed as f = h + g, where h and g are in A, h is the analytic
part of f , g is the co-analytic part of f and

∣∣∣h′(z)∣∣∣ > ∣∣∣g′(z)∣∣∣ is a necessary and sufficient condition for f
to be locally univalent and sense-preserving in U (see Clunie and Sheil-Small [1]). Now we write,

h(z) = z +
∞∑

n=2

anzn, g(z) =
∞∑

n=2

bnzn. (1)

Let SH represents the functions of the form f = h + g which are harmonic and univalent in
U, which normalized by the condition f (0) = fz(0) − 1 = 0. The subclass SH0 of SH consists of all
functions in SH which have the additional property fz(0) = 0. The class SH was investigated by Clunie
and Sheil-Smallas [1]. Since then, many researchers have studied the class SH and even investigated
some subclasses of it. Also, we observe that the class SH reduces to the class S of normalized analytic
univalent functions in U, if the co-analytic part of f is equal to zero. For f ∈ S, the Salagean differential
operator Dn(n ∈ N0 = N∪ {0}) was defined by Salagean [2]. For f = h + g given by (1), Jahangiri et
al. [3] defined the modified Salagean operator of f as

Dm f (z) = Dmh(z) + (−1)mDmg(z),

where

Dmh(z) = z +
∞∑

n=2

nmanzn, Dmg(z) =
∞∑

n=2

nmbnzn.

Next, for functions f ∈ A, For n ∈ N0, β ≥ γ ≥ 0, Yalçın and Altınkaya [4] defined the differential
operator of Im

γ,β f : SH0
→ SH0 . Now we define our differential operator:
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I0
δ,µ,λ,η,ς,τ f (z) = h(z) + g(z)

I1
δ,µ,λ,ς,τ f (z) = z +

∞∑
n=2

(
µ+λ−(δ−ς)(λ−τ)D0 f (z)+(δ−ς)(λ−τ)D1 f (z)

µ+λ

)
=

µ+λ−(δ−ς)(λ−τ)
(
h(z)+g(z)

)
+(δ−ς)(λ−τ)

(
zh(z)+zg′ (z)

)
µ+λ

(2)

Im
δ,µ,λ,ς,τ f (z) = I1

δ,µ,λ,ς,τ

(
Im−1
δ,µ,λ,ς,τ f (z)

)
. (3)

If f is given by (1), then from (2) and (3), we get (see [5])

m
I

δ,µ,λ,ς,τ
f (z) = z +

∞∑
n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m
anzn

+(−1)m ∞∑
n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m
bnzn.

(4)

The operator Im
δ,µ,λ,ς,τ f (z) generalizes the following differential operators:

If f ∈ A, then when we take µ = 1, λ = 0, δ = 0, τ = 1, ς = 1 we obtain Im
0,τ, δ,ς f (z) was

introduced and studied by Ramadan and Darus [6]. By taking different choices of µ, λ, δ, τ and ς we
get Im

1−λ,τ, 0,ς f (z) was introduced and studied by Darus and Ibrahim [7], Im
µ, λ,0, 1,0 f (z) was introduced

and studied by Swamy [8], Im
1−λ,0, 1,0 f (z) was introduced and studied by Al-Oboudi [9] and Im

0, 0,, 1,0 f (z)
was introduced and studied by Salagean [2].

If f ∈ H, then Im
µ, λ,0, 1,0 f (z) becomes the modified Salagean operator introduced by Yasar and

Yalçin [10].
A function f : U→ C is subordinate to the function g : U→ C denoted by f (z) ≺ g(z), if there

exists an analytic function w : U→ U with w(0) = 0 such that

f (z) = g(w(z)), (z ∈ U).

Moreover, if the function g is univalent in U, then we have (see [11,12]):

f (z) ≺ g(z) if and only if f (0) = g(0), f (U) ⊂ g(U).

Denote by SH0(δ,µ,λ, ς, τ, m, A, B) the subclass of SH0 consisting of functions of the form (1) that
satisfy the condition

Im+1
δ,µ,λ,ς,τ f (z)

Im
δ,µ,λ,ς,τ f (z)

≺
1 + Az
1 + Bz

,−1 ≤ A < B ≤ 1 (5)

where Im
δ,µ,λ,η,ς,τ f (z) is defined by (4). For relevant and recent references related to this work, we refer

the reader to [13–20].
In this paper we use the same techniques that have been used earlier by Dziok [21] and Dziok et

al. [22], to investigate coefficient bound, distortion bounds, and some other properties for the class
SH0(δ,µ,λ, ς, τ, m, A, B).

2. Coefficient Bounds

In this section we find the coefficient bound for the class SH0(δ,µ,λ, ς, τ, m, A, B).

Theorem 1. Let the function f (z) = h + g be defined by (1). Then f ∈ SH0(δ,µ,λ, ς, τ, m, A, B) if

∞∑
n=2

(Cn|an|+ Dn|bn|) ≤ B−A (6)
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where

Cn =

(
µ+ λ+ (δ− ς)(λ− τ)(n− 1)

µ+ λ

)m{
(δ− ς)(λ− τ)(n− 1)[B + 1] − (µ+ λ)(B−A)

µ+ λ

}
(7)

and

Dn =

(
µ+ λ+ (δ− ς)(λ− τ)(n− 1)

µ+ λ

)m{
[A + B(2 + (δ− ς)(λ− τ)(n− 1))](µ+ λ)

µ+ λ

}
. (8)

Proof. Let an , 0 or bn , 0 for n ≥ 2. Since Cn, Dn ≥ n(B−A) by (6), we obtain∣∣∣h′(z)∣∣∣− ∣∣∣g′(z)∣∣∣ ≥ 1−
∞∑

n=2
n|an||z|n−1

−

∞∑
n=2

n|bn||z|n−1

≥ 1− |z|
∞∑

n=2
(n|an|+ n|bn|)

≥ 1− |z|
B−A

∞∑
n=2

(Cn|an|+ Dn|bn|)

≥ 1− |z| > 0.

Therefore, f is univalent in U. To ensure the univalence condition, consider z1, z2 ∈ U so that
z1 , z2. Then ∣∣∣∣∣∣zn

1 − zn
2

z1 − z2

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

n∑
m=1

zm−1
1 − zn−m

2

∣∣∣∣∣∣∣ ≤
n∑

m=1

∣∣∣zm−1
1

∣∣∣∣∣∣zn−m
2

∣∣∣ < n , n ≥ 2.

So, we have ∣∣∣∣ f (z1)− f (z2)

h(z1)−h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)−g(z2)

h(z1)−h(z2)

∣∣∣∣ = 1−
∣∣∣∣∣ ∑

∞

n=2 bk(zn
1−zn

2)
z1−z2+

∑
∞

n=2 an(zn
1−zn

2)

∣∣∣∣∣
> 1−

∑
∞

n=2 n|bn |

1−
∑
∞

n=2 n|an |
≥ 1−

∑
∞

n=2
Dn

B−A |bn |∑
∞

n=2
Cn

B−A |an |
≥ 0,

which proves univalences.
On the other hand, f ∈ SH0(δ,µ,λ, ς, τ, m, A, B) if and only if there exists a function w;

with w(0) = 0, and
∣∣∣w(z)

∣∣∣ < 1(z ∈ U) such that

Im+1
δ,µ,λ,ς,τ f (z)

Im
δ,µ,λ,ς,τ f (z)

≺
1 + Az
1 + Bz

or
Im+1
δ,µ,λ,ς,τ f (z) − Im

δ,µ,λ,ς,τ f (z)

BIm+1
δ,µ,λ,ς,τ f (z) −AIm

δ,µ,λ,ς,τ f (z)
< 1, (z ∈ U). (9)
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The above inequality (9) holds, since for |z| = r (0 < r < 1) we obtain∣∣∣∣Im+1
δ,µ,λ,ς,τ f (z) − Im

δ,µ,λ,ς,τ f (z)
∣∣∣∣− ∣∣∣∣BIm+1

δ,µ,λ,ς,τ f (z) −AIm
δ,µ,λ,ς,τ f (z)

∣∣∣∣
=

∣∣∣∣∣∣ ∞∑n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m
(δ−ς)(λ−τ)(n−1)

µ+λ anzn

+(−1)m ∞∑
n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m 2(µ+λ)+(δ−ς)(λ−τ)(n−1)
µ+λ bnzn

∣∣∣∣∣∣
−

∣∣∣∣∣∣(B−A)z +
∞∑

n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m(
Bµ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ −A
)
anzn

− (−1)m ∞∑
n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m(
B, 2(µ+λ)+δ(−ς)(λ−τ)(1−n)

µ+λ + A
)
bnzn

∣∣∣∣∣∣
≤

∞∑
n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m
(δ−ς)(λ−τ)(n−1)

µ+λ |an|rn+

∞∑
n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m 2(µ+λ)+(δ−ς)(λ−τ)(1−n)
µ+λ |bn|rn

− (B−A)r

+
∞∑

n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m(
Bµ+λ+(δ−ς)(λ−τ)(n−1)+A

µ+λ −A
)
|an|rn

+
∞∑

n=2

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m(
B 2(µ+λ)+(δ−ς)(λ−τ)(n−1)

µ+λ + A
)
|bn|rn

≤ r
{
∞∑

n=2
(Cn|an|+ Dn|bn|)rn−1

− (B−A)

}
< 0.

Therefore, f ∈ SH0(δ,µ,λ, ς, τ, m, A, B), and so the proof is completed.
Next we show that the condition (6) is also necessary for the functions f ∈ H to be in the

class SH0
T(δ,µ,λ, ς, τ, m, A, B) = Tm

∩ SH0(δ,µ,λ, ς, τ, m, A, B) where Tm is the class of functions
f = h + g ∈ SH0 so that

f = h + g = z−
∞∑

n=2

anzn + (−1)m
∞∑

n=2

|bn|zn(z ∈ U). (10)

�

Theorem 2. Let f = h + g be defined by (10). Then f ∈ SH0
T(δ,µ,λ, ς, τ, m, A, B) if and only if the condition

(6) holds.

Proof. For this proof, we let the fractions (δ−ς)(λ−τ)(n−1)
µ+λ = L and 2(µ+λ)+(δ−ς)(λ−τ)(n−1)

µ+λ = K. The first

part “if statement” follows from Theorem 1. Conversely, we suppose that f ∈ SH0
T(δ,µ,λ, ς, τ, m, A, B),

then by (9) we have∣∣∣∣∣∣∣∣∣∣∣
∞∑

n=2

[
(L)m (δ−ς)(λ−τ)(n−1)

µ+λ |an|zn + (K)m 2(µ+λ)+(δ−ς)(λ−τ)(n−1)
µ+λ |bn|zn

]
(B−A)z−

∞∑
n=2

[
(L)m(BL−A)|an|zn + (K)m(BK + A)|bn|zn

]
∣∣∣∣∣∣∣∣∣∣∣ < 1.
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For |z| = r < 1, we obtain

∞∑
n=2

[
(L)m (δ−ς)(λ−τ)(n−1)

µ+λ |an|+ (K)m 2(µ+λ)+(δ−ς)(λ−τ)(n−1)
µ+λ |bn|

]
rn−1

(B−A) −
∞∑

n=2

[
(L)m(BL−A)|an|+ (K)m(BK + A)|bn|

]
rn−1

< 1.

Thus, for Cn and Dn as defined by (7) and (8), we have

∞∑
n=2

[Cn|an|+ Dn|bn|]rn−1 < B−A(0 ≤ r < 1).(11) (11)

Let
{
ρn

}
be the sequence of partial sums of the series

n∑
k=2

[Ck|ak|+ Dk|bk|].

Then
{
ρn

}
is a non-decreasing sequence and by (11) it is bounded above by B −A. Thus, it is

convergent and
∞∑

n=2

[Cn|an|+ Dn|bn|] = lim
n→+∞

ρn ≤ B−A.

This gives us the condition (6). �

3. Compactness and Convex

In this section we obtain the compactness and the convex relation for the class
SH0(δ,µ,λ, ς, τ, m, A, B).

Theorem 3. The class SH0
T(δ,µ,λ, ς, τ, m, A, B) is convex and compact subset of SH.

Proof. Let ft ∈ SH0
T(δ,µ,λ, ς, τ, m, A, B), where

ft(z) = z−
∞∑

n=2

∣∣∣at,n
∣∣∣zn + (−1)m

∞∑
n=2

∣∣∣bt,n
∣∣∣zn(z ∈ U, t ∈ N). (12)

Then for 0 ≤ ψ ≤ 1, let f1, f2 ∈ SH0
T(δ,µ,λ, ς, τ, m, A, B) be defined by (12). Then

ξ(z) = ψ f1(z) + (1−ψ) f2(z)

= z−
∞∑

n=2

(
ψ
∣∣∣a1,n

∣∣∣+ (1−ψ)
∣∣∣a2,n

∣∣∣)zn + (−1)m ∞∑
n=2

(
ψ
∣∣∣b1,n

∣∣∣+ (1−ψ)
∣∣∣b2,n

∣∣∣)zn

and
∞∑

n=2

{
Cn

(
ψ
∣∣∣a1,n

∣∣∣+ (1−ψ)
∣∣∣a2,n

∣∣∣)+ Dn
(
ψ
∣∣∣b1,n

∣∣∣+ (1−ψ)
∣∣∣b2,n

∣∣∣)}
= ψ

∞∑
n=2

{
Cn

∣∣∣a1,n
∣∣∣+ Dn

∣∣∣b1,n
∣∣∣}+ (1−ψ)

∞∑
n=2

{
Cn

∣∣∣a2,n
∣∣∣+ Dn

∣∣∣b2,n
∣∣∣}

≤ ψ(B−A) + (1−ψ)(B−A) = B−A.

Thus, the function ξ = ψ f1(z) + (1−ψ) f2(z) is in the class SH0
T(δ,µ,λ, ς, τ, m, A, B). This implies

that SH0
T(δ,µ,λ, ς, τ, m, A, B) is convex.
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For ft ∈ SH0
T(δ,µ,λ, ς, τ, m, A, B), t ∈ N and |z| ≤ r (0 < r < 1), then we have

∣∣∣ ft(z)∣∣∣ ≤ r +
∞∑

n=2

{∣∣∣at,n
∣∣∣+ ∣∣∣bt,n

∣∣∣}rn

≤ r +
∞∑

n=2

{
Cn

∣∣∣at,n
∣∣∣+ Dn

∣∣∣bt,n
∣∣∣}rn

≤ r + (B−A)r2.

Therefore, SH0
T(δ,µ,λ, ς, τ, m, A, B) is uniformly bounded. Let

ft(z) = z−
∞∑

n=2

∣∣∣at,n
∣∣∣zn + (−1)m

∞∑
n=2

∣∣∣bt,n
∣∣∣zn(z ∈ U, t ∈ N).

also, let f = h + g where h and g are given by (1). Then by Theorem 2 we get

∞∑
n=2

{
Cn|an|+ Dn

∣∣∣bt,n
∣∣∣} ≤ B−A. (13)

If we assume ft → f , then we get that
∣∣∣at,n

∣∣∣→ |an| and
∣∣∣bt,n

∣∣∣→ |bn| as n→ +∞ (t ∈ N). Let
{
ρn

}
be the sequence of partial sums of the series

∞∑
n=2

{
Cn

∣∣∣at,n
∣∣∣+ Dn

∣∣∣bt,n
∣∣∣}. Then

{
ρn

}
is a non-decreasing

sequence and by (13) it is bounded above by B−A. Thus, it is convergent and

∞∑
n=2

{
Cn

∣∣∣at,n
∣∣∣+ Dn

∣∣∣bt,n
∣∣∣} = lim

n→∞
ρn ≤ B−A.

Therefore, f ∈ SH0
T(δ,µ,λ, ς, τ, m, A, B) and therefore the class SH0

T(δ,µ,λ, ς, τ, m, A, B) is closed.
As a result, the class is closed, and the class SH0

T(δ,µ,λ, ς, τ, m, A, B) is also compact subset of SH,
which completes the proof. �

Lemma 1 [23]. Let f = h + g be so that h and g are given by (1). Furthermore, let

∞∑
n=2

{n− α
1− α

|an|+
n + α
1− α

|bn|

}
≤ 1(z ∈ U)

where 0 ≤ α < 1. Then f is harmonic, orientation preserving, univalent in U and f is starlike of order α.

Theorem 4. Let 0 ≤ α < 1, Cn and Dn be defined by (7) and (8). Then

r∗α
(
SH0

T(δ,µ,λ, ς, τ, n, A, B)
)
= inf

n≥2

[ 1− α
B−A

min
{ Cn

n + α
,

Dn

n + α

}] 1
n−1

, (14)

where r∗α is the radius of starlikeness of order α.
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Proof. Let f ∈ SH0
T(δ,µ,λ, ς, τ, m, A, B) be of the form (10). Then, for |z| = r < 1, we get∣∣∣∣∣ I0,η f (z)−(1+α) f (z)

I0,η f (z)+(1+α) f (z)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−αz−

∞∑
n=2

(n−1−α)|an |zn
−(−1)m ∞∑

n=2
(n+1+α)|bn |zn

(2−α)z−
∞∑

n=2
(n−1−α)|an |zn−(−1)m ∞∑

n=2
(n−1+α)|bn |zn

∣∣∣∣∣∣∣∣
≤

α−
∞∑

n=2

{
(n−1−α)|an |−(−1)m ∞∑

n=2
(n+1+α)|bn |

}
rn−1

2−α−
∞∑

n=2

{
(n−1−α)|an |−(−1)m ∞∑

n=2
(n−1+α)|bn |

} .

By using Lemma 1, we observe that f is starlike of order α in Ur if and only if∣∣∣∣∣∣ I0,η f (z) − (1 + α) f (z)

I0,η f (z) + (1 + α) f (z)

∣∣∣∣∣∣ < 1, z ∈ Ur

or
∞∑

n=2

{n− α
1− α

|an|+
n + α
1− α

|bn|

}
rn−1
≤ 1. (15)

Furthermore, by using Theorem 2, we get

∞∑
n=2

{ Cn

1− α
|an|+

Dn

1− α
|bn|

}
rn−1
≤ 1.

Condition (15) is true if
n− α
1− α

rn−1
≤

Cn

B−A
rn−1.

This proves
n + α
1− α

rn−1
≤

Dn

B−A
rn−1(n = 2, 3 . . .).

So, the function f is starlike of order α in the disk U∗rα where

r∗α = inf
n≥2

[ 1− α
B−A

min
{ Cn

n + α
,

Dn

n + α

}] 1
n−1

,

and the function
fn(z) = hn(z) + gn(z) = z−

B−A
Cn

zn + (−1)m B−A
Dn

zn.

So, the radius r∗α cannot be larger. Then we get (14). �

4. Extreme Points

In this section we find the extreme points for the class SH0(δ,µ,λ, ς, τ, m, A, B).

Theorem 5. The extreme points of SH0
T(δ,µ,λ, ς, τ, m, A, B) are the functions f of the form (1) where h = hk

and g = gk are of the form
h1(z) = z,

hn(z) = z− B−A
Cn

zn,

gn(z) = (−1)m B−A
Dn

zn, (z ∈ U, n ≥ 2).

(16)
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Proof. Suppose that gn = ψ f1 + (1−ψ) f2 where 0 < ψ < 1 and f1, f2 ∈ SH0
T(δ,µ,λ, ς, τ, m, A, B) are

written in the form

ft(z) = z−
∞∑

n=2

∣∣∣at,n
∣∣∣zn + (−1)m

∞∑
n=2

∣∣∣bt,n
∣∣∣zn(z ∈ U, t ∈ {1, 2}).

Then, by (16), we get ∣∣∣b1,n
∣∣∣ = ∣∣∣b2,n

∣∣∣ = B−A
Dn

,

and a1,t = a2,t = 0 for t ∈ {2, 3 . . .} and b1,t = b2,t = 0 for t ∈ {2, 3 . . .} r {n}. It follows that
gn(z) = f1(z) = f2(z) and gn are in the class of extreme points of the class SH0

T(δ,µ,λ, ς, τ, m, A, B).
We also can ensure that the functions hn(z) are the extreme points of the class SH0

T(δ,µ,λ, ς, τ, m, A, B).
Now, assume that a function f of the form (1) is in the class of the extreme points of the class
SH0

T(δ,µ,λ, ς, τ, m, A, B) and f is not of the form (16). Then there exists k ∈ {2, 3 . . .} such that

0 < |ak| <
B−A(

µ+λ+(δ−ς)(λ−τ)(k−1)
µ+λ

)m{
(δ−ς)(λ−τ)[(k−1)(B+1)]+(µ+λ)(B−A)

µ+λ

}
or

0 < |bk| <
B−A(

µ+λ−(δ−ς)(λ−τ)(n+1)
µ+λ

)m{
[A+B(2+(δ−ς)(λ−τ)(n−1))](µ+λ)

µ+λ

} .

If
0 < |ak| <

B−A(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m{
(δ−ς)(λ−τ)(n−1)[B+1]−(µ+λ)(B−A)

µ+λ

}
then putting

ψ =
|ak|

[(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m{
(δ−ς)(λ−τ)(n−1)[B+1]−(µ+λ)(B−A)

µ+λ

}]
B−A

and

χ =
f −ψhk

1−ψ
,

we have 0 < ψ < 1, hk , χ. Therefore, f is not in the class of the extreme points of the class
SH0

T(δ,µ,λ, η, ς, τ, m, A, B). Similarly, if

0 < |bk| <
B−A(

µ+λ+(δ−ς)(λ−τ)(n−1)
µ+λ

)m{
[A+B(2+(δ−ς)(λ−τ)(n−1))](µ+λ)

µ+λ

}
then putting

ψ =
|bk|

(
µ+λ+(δ−ς)(λ−τ)(n−1)

µ+λ

)m{
[A+B(2+(δ−ς)(λ−τ)(n−1))](µ+λ)

µ+λ

}
B−A

and

χ =
f −ψgk

1−ψ
,

we have 0 < ψ < 1, gk , χ. It follows that f is not in the family of extreme points of the class
SH0

T(δ,µ,λ, ς, τ, m, A, B) and so the proof is completed. �
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