Article

On a Harmonic Univalent Subclass of Functions Involving a Generalized Linear Operator

Abdeljabbar Talal Yousef and Zabidin Salleh * (D)
Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; abduljabaryousef@gmail.com
* Correspondence: zabidin@umt.edu.my

Received: 5 March 2020; Accepted: 21 March 2020; Published: 24 March 2020

Abstract

In this paper, a subclass of complex-valued harmonic univalent functions defined by a generalized linear operator is introduced. Some interesting results such as coefficient bounds, compactness, and other properties of this class are obtained.

Keywords: harmonic univalent functions; generalized linear operator; differential operator; Salagean operator; coefficient bounds

1. Introduction

Let H represent the continuous harmonic functions which are harmonic in the open unit disk $U=\{z: z \in \mathbb{C},|z|<1\}$ and let A be a subclass of H which represents the functions which are analytic in U. A harmonic function in U could be expressed as $f=h+\bar{g}$, where h and g are in A, h is the analytic part of f, g is the co-analytic part of f and $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ is a necessary and sufficient condition for f to be locally univalent and sense-preserving in U (see Clunie and Sheil-Small [1]). Now we write,

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, g(z)=\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1}
\end{equation*}
$$

Let $S H$ represents the functions of the form $f=h+\bar{g}$ which are harmonic and univalent in U, which normalized by the condition $f(0)=f_{z}(0)-1=0$. The subclass $S H^{0}$ of $S H$ consists of all functions in $S H$ which have the additional property $f_{\bar{z}}(0)=0$. The class $S H$ was investigated by Clunie and Sheil-Smallas [1]. Since then, many researchers have studied the class SH and even investigated some subclasses of it. Also, we observe that the class $S H$ reduces to the class S of normalized analytic univalent functions in U, if the co-analytic part of f is equal to zero. For $f \in S$, the Salagean differential operator $D^{n}\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ was defined by Salagean [2]. For $f=h+\bar{g}$ given by (1), Jahangiri et al. [3] defined the modified Salagean operator of f as

$$
D^{m} f(z)=D^{m} h(z)+(-1)^{m} \overline{D^{m} g(z)}
$$

where

$$
D^{m} h(z)=z+\sum_{n=2}^{\infty} n^{m} a_{n} z^{n}, D^{m} g(z)=\sum_{n=2}^{\infty} n^{m} b_{n} z^{n}
$$

Next, for functions $f \in A$, For $n \in \mathbb{N}_{0}, \beta \geq \gamma \geq 0$, Yalçın and Altınkaya [4] defined the differential operator of $I_{\gamma, \beta}^{m} f: S H^{0} \rightarrow S H^{0}$. Now we define our differential operator:

$$
\begin{gather*}
I_{\delta, \mu, \lambda, \eta, \varsigma, \tau}^{0} f(z)=h(z)+\overline{g(z)} \\
I_{\delta, \mu, \lambda, \varsigma, \tau}^{1} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{\mu+\lambda-(\delta-\varsigma)(\lambda-\tau) D^{0} f(z)+(\delta-\varsigma)(\lambda-\tau) D^{1} f(z)}{\mu+\lambda}\right) \tag{2}\\
=\frac{\mu+\lambda-(\delta-\varsigma)(\lambda-\tau)(h(z)+\overline{g(z)})+(\delta-\varsigma)(\lambda-\tau)\left(z h(z)+z \overline{g^{\prime}(z)}\right)}{\mu+\lambda} \\
I_{\delta, \mu, \lambda, \varsigma, \tau}^{m} f(z)=I_{\delta, \mu, \lambda, \varsigma, \tau}^{1}\left(I_{\delta, \mu, \lambda, \varsigma, \tau}^{m-1} f(z)\right) . \tag{3}
\end{gather*}
$$

If f is given by (1), then from (2) and (3), we get (see [5])

$$
\begin{align*}
& \stackrel{m}{I}, \mu, \lambda, \varsigma, \tau \\
&+(-1)^{m} \sum_{n=2}^{\infty}\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m} \overline{b_{n} z^{n}} . \tag{4}
\end{align*}
$$

The operator $I_{\delta, \mu, \lambda, \varsigma, \tau}^{m} f(z)$ generalizes the following differential operators:
If $f \in A$, then when we take $\mu=1, \lambda=0, \delta=0, \tau=1, \varsigma=1$ we obtain $I_{0, \tau, \delta, \varsigma}^{m} f(z)$ was introduced and studied by Ramadan and Darus [6]. By taking different choices of $\mu, \lambda, \delta, \tau$ and ς we get $I_{1-\lambda, \tau, 0, \zeta}^{m} f(z)$ was introduced and studied by Darus and Ibrahim [7], $I_{\mu, \lambda, 0,1,0}^{m} f(z)$ was introduced and studied by Swamy [8], $I_{1-\lambda, 0,1,0}^{m} f(z)$ was introduced and studied by Al-Oboudi [9] and $I_{0,0,1,0}^{m} f(z)$ was introduced and studied by Salagean [2].

If $f \in H$, then $I_{\mu, \lambda, 0,1,0}^{m} f(z)$ becomes the modified Salagean operator introduced by Yasar and Yalçin [10].

A function $f: U \rightarrow C$ is subordinate to the function $g: U \rightarrow C$ denoted by $f(z)<g(z)$, if there exists an analytic function $w: U \rightarrow U$ with $w(0)=0$ such that

$$
f(z)=g(w(z)),(z \in U)
$$

Moreover, if the function g is univalent in U, then we have (see [11,12]):

$$
f(z)<g(z) \text { if and only if } f(0)=g(0), f(U) \subset g(U)
$$

Denote by $S H^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ the subclass of $S H^{0}$ consisting of functions of the form (1) that satisfy the condition

$$
\begin{equation*}
\frac{I_{\delta, \mu, \lambda, \varsigma, \tau}^{m+1} f(z)}{I_{\delta, \mu, \lambda, c, \tau}^{m} f(z)}<\frac{1+A z}{1+B z},-1 \leq A<B \leq 1 \tag{5}
\end{equation*}
$$

where $I_{\delta, \mu, \lambda, \eta, \xi, \tau}^{m} f(z)$ is defined by (4). For relevant and recent references related to this work, we refer the reader to [13-20].

In this paper we use the same techniques that have been used earlier by Dziok [21] and Dziok et al. [22], to investigate coefficient bound, distortion bounds, and some other properties for the class $S H^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$.

2. Coefficient Bounds

In this section we find the coefficient bound for the class $S H^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$.
Theorem 1. Let the function $f(z)=h+\bar{g}$ be defined by (1). Then $f \in S H^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(C_{n}\left|a_{n}\right|+D_{n}\left|b_{n}\right|\right) \leq B-A \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}=\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left\{\frac{(\delta-\varsigma)(\lambda-\tau)(n-1)[B+1]-(\mu+\lambda)(B-A)}{\mu+\lambda}\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{n}=\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left\{\frac{[A+B(2+(\delta-\varsigma)(\lambda-\tau)(n-1))](\mu+\lambda)}{\mu+\lambda}\right\} \tag{8}
\end{equation*}
$$

Proof. Let $a_{n} \neq 0$ or $b_{n} \neq 0$ for $n \geq 2$. Since $C_{n}, D_{n} \geq n(B-A)$ by (6), we obtain

$$
\begin{gathered}
\left|h^{\prime}(z)\right|-\left|g^{\prime}(z)\right| \geq 1-\sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n-1}-\sum_{n=2}^{\infty} n\left|b_{n} \||z|^{n-1}\right. \\
\geq 1-|z| \sum_{n=2}^{\infty}\left(n\left|a_{n}\right|+n\left|b_{n}\right|\right) \\
\geq 1-\frac{|z|}{B-A} \sum_{n=2}^{\infty}\left(C_{n}\left|a_{n}\right|+D_{n}\left|b_{n}\right|\right) \\
\geq 1-|z|>0
\end{gathered}
$$

Therefore, f is univalent in U. To ensure the univalence condition, consider $z_{1}, z_{2} \in U$ so that $z_{1} \neq z_{2}$. Then

$$
\left|\frac{z_{1}^{n}-z_{2}^{n}}{z_{1}-z_{2}}\right|=\left|\sum_{m=1}^{n} z_{1}^{m-1}-z_{2}^{n-m}\right| \leq \sum_{m=1}^{n}\left|z_{1}^{m-1}\right|\left|z_{2}^{n-m}\right|<n, n \geq 2
$$

So, we have

$$
\begin{gathered}
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \geq 1-\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right|=1-\left|\frac{\sum_{n=2}^{\infty} b_{k}\left(z_{1}^{n}-z_{2}^{n}\right)}{z_{1}-z_{2}+\sum_{n=2}^{\infty} a_{n}\left(z_{1}^{n}-z_{2}^{n}\right)}\right| \\
>
\end{gathered}
$$

which proves univalences.
On the other hand, $f \in S H^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ if and only if there exists a function w; with $w(0)=0$, and $|w(z)|<1(z \in U)$ such that

$$
\frac{I_{\delta, \mu, \lambda, \zeta, \tau}^{m+1} f(z)}{I_{\delta, \mu, \lambda, \zeta, \tau}^{m} f(z)}<\frac{1+A z}{1+B z}
$$

or

$$
\begin{equation*}
\frac{I_{\delta, \mu, \lambda, \varsigma, \tau}^{m+1} f(z)-I_{\delta, \mu, \lambda, \varsigma, \tau}^{m} f(z)}{B I_{\delta, \mu, \lambda, \Lambda, \tau}^{m+1} f(z)-A I_{\delta, \mu, \lambda, \varsigma, \tau}^{m} f(z)}<1, \quad(z \in U) \tag{9}
\end{equation*}
$$

The above inequality (9) holds, since for $|z|=r(0<r<1)$ we obtain

$$
\begin{aligned}
& \left|I_{\delta, \mu, \lambda, \varsigma, \tau}^{m+1} f(z)-I_{\delta, \mu, \lambda, \varsigma, \tau}^{m} f(z)\right|-\left|B I_{\delta, \mu, \lambda, \varsigma, \tau}^{m+1} f(z)-A I_{\delta, \mu, \lambda, \varsigma, \tau}^{m} f(z)\right| \\
& =\left\lvert\, \sum_{n=2}^{\infty}\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m} \frac{(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda} a_{n} z^{n}\right. \\
& \left.+(-1)^{m} \sum_{n=2}^{\infty}\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m} \frac{2(\mu+\lambda)+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda} \overline{b_{n} z^{n}} \right\rvert\, \\
& -\left\lvert\,(B-A) z+\sum_{n=2}^{\infty}\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left(B \frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}-A\right) a_{n} z^{n}\right. \\
& \left.-(-1)^{m} \sum_{n=2}^{\infty}\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left(B, \frac{2(\mu+\lambda)+\delta(-\varsigma)(\lambda-\tau)(1-n)}{\mu+\lambda}+A\right) \overline{b_{n} z^{n}} \right\rvert\, \\
& \leq \sum_{n=2}^{\infty}\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m} \frac{(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\left|a_{n}\right| r^{n}+ \\
& \sum_{n=2}^{\infty}\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m} \frac{2(\mu+\lambda)+(\delta-\varsigma)(\lambda-\tau)(1-n)}{\mu+\lambda}\left|b_{n}\right| r^{n}-(B-A) r \\
& +\sum_{n=2}^{\infty}\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left(B \frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)+A}{\mu+\lambda}-A\right)\left|a_{n}\right| r^{n} \\
& +\sum_{n=2}^{\infty}\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left(B \frac{2(\mu+\lambda)+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}+A\right)\left|b_{n}\right| r^{n} \\
& \leq r\left\{\sum_{n=2}^{\infty}\left(C_{n}\left|a_{n}\right|+D_{n}\left|b_{n}\right|\right) r^{n-1}-(B-A)\right\}<0 .
\end{aligned}
$$

Therefore, $f \in S H^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$, and so the proof is completed.
Next we show that the condition (6) is also necessary for the functions $f \in H$ to be in the class $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)=T^{m} \cap S H^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ where T^{m} is the class of functions $f=h+\bar{g} \in S H^{0}$ so that

$$
\begin{equation*}
f=h+\bar{g}=z-\sum_{n=2}^{\infty} a_{n} z^{n}+(-1)^{m} \sum_{n=2}^{\infty}\left|b_{n}\right| \overline{z^{n}}(z \in U) \tag{10}
\end{equation*}
$$

Theorem 2. Let $f=h+\bar{g}$ be defined by (10). Then $f \in S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ if and only if the condition (6) holds.

Proof. For this proof, we let the fractions $\frac{(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}=L$ and $\frac{2(\mu+\lambda)+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}=K$. The first part "if statement" follows from Theorem 1. Conversely, we suppose that $f \in S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$, then by (9) we have

$$
\left|\frac{\sum_{n=2}^{\infty}\left[\left.(L)^{m} \frac{(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\left|a_{n}\right| z^{n}+(K)^{m} \frac{2(\mu+\lambda)+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda} \right\rvert\, \overline{b_{n} \mid z^{n}}\right]}{(B-A) z-\sum_{n=2}^{\infty}\left[(L)^{m}(B L-A)\left|a_{n}\right| z^{n}+(K)^{m}(B K+A)\left|b_{n}\right| z^{n}\right]}\right|<1 .
$$

For $|z|=r<1$, we obtain

$$
\frac{\sum_{n=2}^{\infty}\left[(L)^{m} \frac{(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\left|a_{n}\right|+(K)^{m} \frac{2(\mu+\lambda)+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\left|b_{n}\right|\right] r^{n-1}}{(B-A)-\sum_{n=2}^{\infty}\left[(L)^{m}(B L-A)\left|a_{n}\right|+(K)^{m}(B K+A)\left|b_{n}\right|\right] r^{n-1}}<1
$$

Thus, for C_{n} and D_{n} as defined by (7) and (8), we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[C_{n}\left|a_{n}\right|+D_{n}\left|b_{n}\right|\right] r^{n-1}<B-A(0 \leq r<1) \tag{11}
\end{equation*}
$$

Let $\left\{\rho_{n}\right\}$ be the sequence of partial sums of the series

$$
\sum_{k=2}^{n}\left[C_{k}\left|a_{k}\right|+D_{k}\left|b_{k}\right|\right]
$$

Then $\left\{\rho_{n}\right\}$ is a non-decreasing sequence and by (11) it is bounded above by $B-A$. Thus, it is convergent and

$$
\sum_{n=2}^{\infty}\left[C_{n}\left|a_{n}\right|+D_{n}\left|b_{n}\right|\right]=\lim _{n \rightarrow+\infty} \rho_{n} \leq B-A
$$

This gives us the condition (6).

3. Compactness and Convex

In this section we obtain the compactness and the convex relation for the class $S H^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$.

Theorem 3. The class $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ is convex and compact subset of $S H$.
Proof. Let $f_{t} \in S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$, where

$$
\begin{equation*}
f_{t}(z)=z-\sum_{n=2}^{\infty}\left|a_{t, n}\right| z^{n}+(-1)^{m} \sum_{n=2}^{\infty}\left|b_{t, n}\right| \overline{z^{n}}(z \in U, t \in \mathbb{N}) \tag{12}
\end{equation*}
$$

Then for $0 \leq \psi \leq 1$, let $f_{1}, f_{2} \in S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ be defined by (12). Then

$$
\begin{aligned}
& \xi(z)=\psi f_{1}(z)+(1-\psi) f_{2}(z) \\
& =z-\sum_{n=2}^{\infty}\left(\psi\left|a_{1, n}\right|+(1-\psi)\left|a_{2, n}\right|\right) z^{n}+(-1)^{m} \sum_{n=2}^{\infty}\left(\psi\left|b_{1, n}\right|+(1-\psi)\left|b_{2, n}\right|\right) \overline{z^{n}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left\{C_{n}\left(\psi\left|a_{1, n}\right|+(1-\psi)\left|a_{2, n}\right|\right)+D_{n}\left(\psi\left|b_{1, n}\right|+(1-\psi)\left|b_{2, n}\right|\right)\right\} \\
& =\psi \sum_{n=2}^{\infty}\left\{C_{n}\left|a_{1, n}\right|+D_{n}\left|b_{1, n}\right|\right\}+(1-\psi) \sum_{n=2}^{\infty}\left\{C_{n}\left|a_{2, n}\right|+D_{n}\left|b_{2, n}\right|\right\} \\
& \leq \psi(B-A)+(1-\psi)(B-A)=B-A
\end{aligned}
$$

Thus, the function $\xi=\psi f_{1}(z)+(1-\psi) f_{2}(z)$ is in the class $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$. This implies that $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ is convex.

For $f_{t} \in S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B), t \in \mathbb{N}$ and $|z| \leq r(0<r<1)$, then we have

$$
\begin{aligned}
& \left|f_{t}(z)\right| \leq r+\sum_{n=2}^{\infty}\left\{\left|a_{t, n}\right|+\left|b_{t, n}\right|\right\} r^{n} \\
& \leq r+\sum_{n=2}^{\infty}\left\{C_{n}\left|a_{t, n}\right|+D_{n}\left|b_{t, n}\right|\right\} r^{n} \\
& \leq r+(B-A) r^{2} .
\end{aligned}
$$

Therefore, $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ is uniformly bounded. Let

$$
f_{t}(z)=z-\sum_{n=2}^{\infty}\left|a_{t, n}\right| z^{n}+(-1)^{m} \sum_{n=2}^{\infty}\left|b_{t, n}\right| \overline{z^{n}}(z \in U, t \in \mathbb{N})
$$

also, let $f=h+\bar{g}$ where h and g are given by (1). Then by Theorem 2 we get

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{C_{n}\left|a_{n}\right|+D_{n}\left|b_{t, n}\right|\right\} \leq B-A \tag{13}
\end{equation*}
$$

If we assume $f_{t} \rightarrow f$, then we get that $\left|a_{t, n}\right| \rightarrow\left|a_{n}\right|$ and $\left|b_{t, n}\right| \rightarrow\left|b_{n}\right|$ as $n \rightarrow+\infty(t \in \mathbb{N})$. Let $\left\{\rho_{n}\right\}$ be the sequence of partial sums of the series $\sum_{n=2}^{\infty}\left\{C_{n}\left|a_{t, n}\right|+D_{n}\left|b_{t, n}\right|\right\}$. Then $\left\{\rho_{n}\right\}$ is a non-decreasing sequence and by (13) it is bounded above by $B-A$. Thus, it is convergent and

$$
\sum_{n=2}^{\infty}\left\{C_{n}\left|a_{t, n}\right|+D_{n}\left|b_{t, n}\right|\right\}=\lim _{n \rightarrow \infty} \rho_{n} \leq B-A
$$

Therefore, $f \in S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ and therefore the class $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ is closed. As a result, the class is closed, and the class $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ is also compact subset of $S H$, which completes the proof.

Lemma 1 [23]. Let $f=h+\bar{g}$ be so that h and g are given by (1). Furthermore, let

$$
\sum_{n=2}^{\infty}\left\{\frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right\} \leq 1(z \in U)
$$

where $0 \leq \alpha<1$. Then f is harmonic, orientation preserving, univalent in U and f is starlike of order α.
Theorem 4. Let $0 \leq \alpha<1, C_{n}$ and D_{n} be defined by (7) and (8). Then

$$
\begin{equation*}
r_{\alpha}^{*}\left(S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, n, A, B)\right)=\inf _{n \geq 2}\left[\frac{1-\alpha}{B-A} \min \left\{\frac{C_{n}}{n+\alpha}, \frac{D_{n}}{n+\alpha}\right\}\right]^{\frac{1}{n-1}} \tag{14}
\end{equation*}
$$

where r_{α}^{*} is the radius of starlikeness of order α.

Proof. Let $f \in S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ be of the form (10). Then, for $|z|=r<1$, we get

$$
\begin{aligned}
& \left|\frac{I_{0, \eta} f(z)-(1+\alpha) f(z)}{I_{0, \eta} f(z)+(1+\alpha) f(z)}\right| \\
& =\left|\frac{-\alpha z-\sum_{n=2}^{\infty}(n-1-\alpha)\left|a_{n}\right| z^{n}-(-1)^{m} \sum_{n=2}^{\infty}(n+1+\alpha)\left|b_{n}\right| \overline{z^{n}}}{(2-\alpha) z-\sum_{n=2}^{\infty}(n-1-\alpha)\left|a_{n}\right| z^{n}-(-1)^{m} \sum_{n=2}^{\infty}(n-1+\alpha)\left|b_{n}\right| \overline{z^{n}}}\right| \\
& \leq \frac{\alpha-\sum_{n=2}^{\infty}\left\{(n-1-\alpha)\left|a_{n}\right|-(-1)^{m} \sum_{n=2}^{\infty}(n+1+\alpha)\left|b_{n}\right|\right\} r^{n-1}}{2-\alpha-\sum_{n=2}^{\infty}\left\{(n-1-\alpha)\left|a_{n}\right|-(-1)^{m} \sum_{n=2}^{\infty}(n-1+\alpha)\left|b_{n}\right|\right\}}
\end{aligned}
$$

By using Lemma 1, we observe that f is starlike of order α in U_{r} if and only if

$$
\left|\frac{I_{0, \eta} f(z)-(1+\alpha) f(z)}{I_{0, \eta} f(z)+(1+\alpha) f(z)}\right|<1, z \in U_{r}
$$

or

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{\frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right\} r^{n-1} \leq 1 \tag{15}
\end{equation*}
$$

Furthermore, by using Theorem 2, we get

$$
\sum_{n=2}^{\infty}\left\{\frac{C_{n}}{1-\alpha}\left|a_{n}\right|+\frac{D_{n}}{1-\alpha}\left|b_{n}\right|\right\} r^{n-1} \leq 1
$$

Condition (15) is true if

$$
\frac{n-\alpha}{1-\alpha} r^{n-1} \leq \frac{C_{n}}{B-A} r^{n-1}
$$

This proves

$$
\frac{n+\alpha}{1-\alpha} r^{n-1} \leq \frac{D_{n}}{B-A} r^{n-1}(n=2,3 \ldots)
$$

So, the function f is starlike of order α in the disk $U_{r_{\alpha}}^{*}$ where

$$
r_{\alpha}^{*}=\inf _{n \geq 2}\left[\frac{1-\alpha}{B-A} \min \left\{\frac{C_{n}}{n+\alpha}, \frac{D_{n}}{n+\alpha}\right\}\right]^{\frac{1}{n-1}}
$$

and the function

$$
f_{n}(z)=h_{n}(z)+\overline{g_{n}(z)}=z-\frac{B-A}{C_{n}} z^{n}+(-1)^{m} \frac{B-A}{D_{n}} \overline{z^{n}}
$$

So, the radius r_{α}^{*} cannot be larger. Then we get (14).

4. Extreme Points

In this section we find the extreme points for the class $S H^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$.
Theorem 5. The extreme points of $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ are the functions f of the form (1) where $h=h_{k}$ and $g=g_{k}$ are of the form

$$
\begin{gather*}
h_{1}(z)=z \\
h_{n}(z)=z-\frac{B-A}{C_{n}} z^{n} \tag{16}\\
g_{n}(z)=(-1)^{m} \frac{B-A}{D_{n}} \overline{z^{n}},(z \in U, n \geq 2)
\end{gather*}
$$

Proof. Suppose that $g_{n}=\psi f_{1}+(1-\psi) f_{2}$ where $0<\psi<1$ and $f_{1}, f_{2} \in S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ are written in the form

$$
f_{t}(z)=z-\sum_{n=2}^{\infty}\left|a_{t, n}\right| z^{n}+(-1)^{m} \sum_{n=2}^{\infty}\left|b_{t, n}\right| \overline{z^{n}}(z \in U, t \in\{1,2\}) .
$$

Then, by (16), we get

$$
\left|b_{1, n}\right|=\left|b_{2, n}\right|=\frac{B-A}{D_{n}}
$$

and $a_{1, t}=a_{2, t}=0$ for $t \in\{2,3 \ldots\}$ and $b_{1, t}=b_{2, t}=0$ for $t \in\{2,3 \ldots\} \backslash\{n\}$. It follows that $g_{n}(z)=f_{1}(z)=f_{2}(z)$ and g_{n} are in the class of extreme points of the class $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$. We also can ensure that the functions $h_{n}(z)$ are the extreme points of the class $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$. Now, assume that a function f of the form (1) is in the class of the extreme points of the class $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ and f is not of the form (16). Then there exists $k \in\{2,3 \ldots\}$ such that

$$
0<\left|a_{k}\right|<\frac{B-A}{\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(k-1)}{\mu+\lambda}\right)^{m}\left\{\frac{(\delta-\varsigma)(\lambda-\tau)[(k-1)(B+1)]+(\mu+\lambda)(B-A)}{\mu+\lambda}\right\}}
$$

or

$$
0<\left|b_{k}\right|<\frac{B-A}{\left(\frac{\mu+\lambda-(\delta-\varsigma)(\lambda-\tau)(n+1)}{\mu+\lambda}\right)^{m}\left\{\frac{[A+B(2+(\delta-\varsigma)(\lambda-\tau)(n-1))](\mu+\lambda)}{\mu+\lambda}\right\}}
$$

If

$$
0<\left|a_{k}\right|<\frac{B-A}{\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left\{\frac{(\delta-\varsigma)(\lambda-\tau)(n-1)[B+1]-(\mu+\lambda)(B-A)}{\mu+\lambda}\right\}}
$$

then putting

$$
\psi=\frac{\left|a_{k}\right|\left[\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left\{\frac{(\delta-\varsigma)(\lambda-\tau)(n-1)[B+1]-(\mu+\lambda)(B-A)}{\mu+\lambda}\right\}\right]}{B-A}
$$

and

$$
\chi=\frac{f-\psi h_{k}}{1-\psi}
$$

we have $0<\psi<1, h_{k} \neq \chi$. Therefore, f is not in the class of the extreme points of the class $S H_{T}^{0}(\delta, \mu, \lambda, \eta, \varsigma, \tau, m, A, B)$. Similarly, if

$$
0<\left|b_{k}\right|<\frac{B-A}{\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left\{\frac{[A+B(2+(\delta-\varsigma)(\lambda-\tau)(n-1))](\mu+\lambda)}{\mu+\lambda}\right\}}
$$

then putting

$$
\psi=\frac{\left|b_{k}\right|\left(\frac{\mu+\lambda+(\delta-\varsigma)(\lambda-\tau)(n-1)}{\mu+\lambda}\right)^{m}\left\{\frac{[A+B(2+(\delta-\varsigma)(\lambda-\tau)(n-1))](\mu+\lambda)}{\mu+\lambda}\right\}}{B-A}
$$

and

$$
\chi=\frac{f-\psi g_{k}}{1-\psi}
$$

we have $0<\psi<1, g_{k} \neq \chi$. It follows that f is not in the family of extreme points of the class $S H_{T}^{0}(\delta, \mu, \lambda, \varsigma, \tau, m, A, B)$ and so the proof is completed.

Author Contributions: Conceptualization, A.T.Y. and Z.S.; methodology, A.T.Y.; software, A.T.Y.; validation, A.T.Y. and Z.S.; formal analysis, A.T.Y.; investigation, A.T.Y.; resources, A.T.Y.; data curation, A.T.Y.; writing-original draft preparation, A.T.Y.; writing-review and editing, Z.S.; visualization, Z.S.; supervision, Z.S.; project administration, Z.S.; funding acquisition, Z.S. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Clunie, J.; Sheil-Small, T. Harmonic Univalent Functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 1984, 9, 3-25. [CrossRef]
2. Salagean, G.S. Subclasses of univalent functions. In Complex Analysis - Fifth Roumanian-Finnish Seminar; Cazanu, C.A., Jurchescu, M., Suciu, I., Eds.; Lectures Notes in Mathematics; Springer Nature: Cham, Switzerland, 1983; Volume 1013, pp. 362-372.
3. Jahangiri, J.; Magesh, N.; Murugesan, C. Certain Subclasses of Starlike Harmonic Functions Defined by Subordination. J. Frac. Cal. App. 2017, 8, 88-100.
4. Yalçın, S.; Altınkaya, Ş. On a Subclass of Harmonic Univalent Functions involving a Linear Operator. AIP Conference Proceedings Vol. 1926, no. 1, p. 020045, Budapest, Hungary, 15-18 August 2017; Tosun, M., Ersoy, S., Ilarslan, K., Eds.; AIP Publishing LLC: New York, NY, USA, 2018.
5. Bayram, H.; Yalçın, S. A Subclass of Harmonic Univalent Functions Defined by a Linear Operator. Palestine J. Math. 2017, 6, 320-326.
6. Ramadan, S.F.; Darus, M. On the Fekete-Szegö Inequality for a Class of Analytic Functions Defined by using Generalized Differential Operator. Acta Universitatis Apulensis 2011, 26, 167-178.
7. Darus, M.; Ibrahim, R.W. On Subclasses for Generalized Operators of Complex Order. Far East J. Math. Sci. 2009, 33, 299-308.
8. Swamy, S.R. Inclusion Properties of Certain Subclasses of Analytic Functions. Int. Math. Forum 2012, 7, 1751-1760.
9. Al-Oboudi, F.M. On Univalent Functions Defined by a Generalized Sălăgean Operator. Int. J. Math. Math. Sci. 2004, 27, 1429-1436. [CrossRef]
10. Yasar, E.; Yalçin, S. Generalized Salagean-type Harmonic Univalent Functions. Stud. Univ. Babes-Bolyai Math. 2012, 57, 395-403.
11. Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials. Filomat 2018, 32, 3229-3236. [CrossRef]
12. Yousef, F.; Alroud, S.; Illafe, M. A Comprehensive Subclass of Bi-univalent Functions Associated with Chebyshev Polynomials of the Second Kind. Bol. Soc. Mat. Mex. 2019, 1-11. [CrossRef]
13. Al-Hawary, T.; Frasin, B.A.; Yousef, F. Coefficients Estimates for Certain Classes of Analytic Functions of Complex Order. Afr. Mat. 2018, 29, 1265-1271. [CrossRef]
14. Amourah, A.A.; Yousef, F. Some Properties of a Class of Analytic Functions Involving a New Generalized Differential Operator. Bol. Soc. Paran. Mat. 2020, 38, 33-42. [CrossRef]
15. Frasin, B.A.; Al-Hawary, T.; Yousef, F. Necessary and Sufficient Conditions for Hypergeometric Functions to be in a Subclass of Analytic Functions. Afr. Mat. 2019, 30, 223-230. [CrossRef]
16. Klén, R.; Manojlović, V.; Simić, S.; Vuorinen, M. Bernoulli Inequality and Hypergeometric Functions. Proc. Amer. Math. Soc. 2014, 142, 559-573. [CrossRef]
17. Malkowsky, E.; Rakočević, V. Advanced Functional Analysis; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2019.
18. Pavlović, M. Function Classes on the Unit Disc: An Introduction, Vol. 52; Walter de Gruyter GmbH \& Co KG: Berlin, Germany, 2019.
19. Silverman, H. Univalent Functions with Negative Coefficients. Proc. Amer. Math. Soc. 1975, 51, 109-116. [CrossRef]
20. Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature AG: Cham, Switzerland, 2019.
21. Dziok, J. On Janowski Harmonic Functions. J. App. Ana. 2015, 21, 99-107. [CrossRef]
22. Dziok, J.; Jahangiri, J.; Silverman, H. Harmonic Functions with Varying Coefficients. J. Ineq. App. 2016, 2016, 139. [CrossRef]
23. Jahangiri, J.M. Harmonic Functions Starlike in the Unit Disk. J. Math. Ana. App. 1999, 235, 470-477. [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
