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Abstract: The known mathematical model of rumor spreading, which is described by a system of four
nonlinear differential equations and is very popular in research, is considered. It is supposed that the
considered model is influenced by stochastic perturbations that are of the type of white noise and are
proportional to the deviation of the system state from its equilibrium point. Sufficient conditions of
stability in probability for each from the five equilibria of the considered model are obtained by virtue
of the Routh–Hurwitz criterion and the method of linear matrix inequalities (LMIs). The obtained
results are illustrated by numerical analysis of appropriate LMIs and numerical simulations of
solutions of the considered system of stochastic differential equations. The research method can
also be used in other applications for similar nonlinear models with the order of nonlinearity higher
than one.

Keywords: rumor spreading model; white noise; stochastic differential equations; asymptotic mean
square stability; stability in probability; linear matrix inequality

1. Introduction

There are two classes of mathematical models of the type of epidemics: medical epidemics
(see, for instance, the so-called SIR-epidemic model [1–3]) and different social epidemics (see, for
instance, the alcohol consumption model [4] or the model of obesity epidemic [5]). During the last two
decades, the rumor spreading model, that is an epidemic of the social type too, is extremely popular
in research (see, [6–29]). Following [26], we will consider the rumor spreading model (the so-called
I2SR-model) in the form

İ(t) = p− λ1 I(t)S1(t)− λ2 I(t)S2(t)− qI(t),
Ṡ1(t) = λ1 I(t)S1(t) + αS2(t)− δ1S1(t)R(t)− qS1(t),
Ṡ2(t) = λ2 I(t)S2(t)− αS2(t)− δ2S2(t)R(t)− qS2(t),
Ṙ(t) = δ1S1(t)R(t) + δ2S2(t)R(t)− qR(t),

(1)

where I(t), S1(t), S2(t), R(t) are respectively the density of ignorants, the low rate of active spreaders,
the high rate of active spreaders and stiflers at time t, p, q, α, δ1, δ2, λ1, λ2 are positive parameters.

Please note that the sense of the parameters p, q, α, δ1, δ2, λ1, λ2 that are used in the rumor
spreading model (1) are described in [26]. We will consider the system (1) as a mathematical object
and show how stability of nonlinear mathematical models of the similar type can be investigated
under influence of stochastic perturbations. In particular, we will consider here the simple parameters
λi and δi unlike from [26], where these parameters are considered in the form of the product of two
parameters: λik and δik, i = 1, 2. We will not suppose in the general case as it is made in [26] that p = q
and δ1 = δ2. We will correct also some errors and inaccuracies which there are in [26]. For example,
in [26] it is supposed that λ2 > λ1 (p. 856) but in the numerical examples the following values are used:
λ1 = 0.05 and λ2 = 0.007 or λ2 = 0.003 (p. 862), all equilibria and stability conditions are obtained
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under the assumption δ1 = δ2 = δ (p. 857) but in the numerical examples one can see δ1 = 0.007 and
δ2 = 0.59 (p. 862) or δ2 = 0.009 (p. 863) and so on.

The purpose of the proposed research is to calculate of equilibria of the system (1) and to obtain
stability conditions for each from these equilibria under assumption that the system is exposed to
stochastic perturbations. Sufficient conditions of stability in probability for each from the five equilibria
of the considered model are obtained by virtue of the Routh–Hurwitz criterion [30] and the method of
linear matrix inequalities (LMIs) [31,32]. The proposed research method can be used for a lot of other
similar nonlinear models in different applications.

2. Equilibria of the Model

Equilibria E = (I∗, S∗1 , S∗2 , R∗) of the model (1) are defined by the system of algebraic equations

(λ1S1 + λ2S2 + q)I = p,
(δ1R− λ1 I + q)S1 = αS2,
(δ2R− λ2 I + α + q)S2 = 0,
(δ1S1 + δ2S2 − q)R = 0,

(2)

that follows from (1) by the condition that I(t), S1(t), S2(t), R(t) are constants.
Please note that the solution of the system (2) is not unique. Solving the system (2) gives the

following five equilibria Ei = (I∗i , S∗1i, S∗2i, R∗i ), i = 0, ..., 4, where (see Appendix A.1)

E0 =(I∗0 , 0, 0, 0), I∗0 =
p
q

;

E1 =(I∗1 , S∗11, 0, 0), I∗1 =
q

λ1
, S∗11 =

p
q
− q

λ1
;

E2 =(I∗2 , S∗12, 0, R∗2), I∗2 =
pδ1

q(δ1 + λ1)
, S∗12 =

q
δ1

, R∗2 =
pλ1

q(δ1 + λ1)
− q

δ1
;

E3 =(I∗3 , S∗13, S∗23, 0),

I∗3 =
α + q

λ2
, S∗13 =

α(pλ2 − q(α + q))
q(λ2 − λ1)(α + q)

, S∗23 =
(q(λ2 − λ1)− αλ1)(pλ2 − q(α + q))

λ2q(λ2 − λ1)(α + q)
;

E4 =(I∗4 , S∗14, S∗24, R∗4),

if (δ2 − δ1)(λ2δ1 − λ1δ2) 6= 0 then S∗14 is a positive root of the quadratic equation

S2
1 − ν1S1 + ν2 = 0, ν1 =

qα + pδ2

q(δ2 − δ1)
+

q(λ2 + δ2)

λ2δ1 − λ1δ2
, ν2 =

αq(λ2 + δ2)

(δ2 − δ1)(λ2δ1 − λ1δ2)
,

S∗14 =


αq2(δ + λ2)

δ(λ2 − λ1)(qα + pδ)
if δ2 = δ1 = δ, λ2 > λ1,

α

δ2 − δ1
if λ2δ1 = λ1δ2, δ2 > δ1,

S∗24 =
1
δ2
(q− δ1S∗14), I∗4 =

p
λ1S∗14 + λ2S∗24 + q

, R∗4 =
λ2 I∗4 − α− q

δ2
, S∗14 <

q
δ1

, I∗4 >
α + q

λ2
.

(3)

It is supposed that all nonzero elements of all equilibria are positive.
Putting N(t) = I(t)+S1(T)+S2(t)+R(t) and summing all equations of the system (1), we obtain

Ṅ(t) = p− qN(t), N(t) =
(

N(0)− p
q

)
e−qt +

p
q

, lim
t→∞

N(t) =
p
q

. (4)

In accordance with (4) for all equilibria we have

N∗ = I∗i + S∗1i + S∗2i + R∗i =
p
q

, i = 0, ..., 4. (5)



Axioms 2020, 9, 24 3 of 16

3. Stochastic Perturbations, Centralization, and Linearization

Let us suppose that the system (1) is exposed to stochastic perturbations which are
directly proportional to the deviation of the system (1) state (I(t), S1(t), S2(t), R(t)) from the
equilibrium (I∗, S∗1 , S∗2 , R∗) and are of the type of white noise (ẇ0(t), ẇ1(t), ẇ2(t), ẇ3(t)), where
(w0(t), w1(t), w2(t), w3(t)) are mutually independent standard Wiener processes. Therefore, we obtain
the following system of the Ito stochastic differential equations [33]

İ(t) = p− λ1 I(t)S1(t)− λ2 I(t)S2(t)− qI(t) + σ0(I(t)− I∗)ẇ0(t),
Ṡ1(t) = λ1 I(t)S1(t) + αS2(t)− δ1S1(t)R(t)− qS1(t) + σ1(S1(t)− S∗1)ẇ1(t),
Ṡ2(t) = λ2 I(t)S2(t)− αS2(t)− δ2S2(t)R(t)− qS2(t) + σ2(S2(t)− S∗2)ẇ2(t),
Ṙ(t) = δ1S1(t)R(t) + δ2S2(t)R(t)− qR(t) + σ3(R(t)− R∗)ẇ3(t).

(6)

Please note that the equilibrium (I∗, S∗1 , S∗2 , R∗) of the deterministic system (1) is also a solution of the
system with stochastic perturbations (6).

Let (I∗, S∗1 , S∗2 , R∗) be one of the equilibria of the system (1). Putting in (6) I(t) = y0(t) + I∗,
S1(t) = y1(t) + S∗1 , S2(t) = y2(t) + S∗2 , R(t) = y3(t) + R∗, we obtain

ẏ0(t) = p− (y0(t) + I∗)[λ1(y1(t) + S∗1) + λ2(y2(t) + S∗2) + q] + σ0y0(t)ẇ0(t),
ẏ1(t) = (y1(t) + S∗1)[λ1(y0(t) + I∗)− δ1(y3(t) + R∗)− q] + α(y2(t) + S∗2) + σ1y1(t)ẇ1(t),
ẏ2(t) = (y2(t) + S∗2)[λ2(y0(t) + I∗)− δ2(y3(t) + R∗)− α− q] + σ2y2(t)ẇ2(t),
ẏ3(t) = (y3(t) + R∗)[δ1(y1(t) + S∗1) + δ2(y2(t) + S∗2)− q] + σ3y3(t)ẇ3(t).

(7)

It is clear that stability of the zero solution of the system (7) is equivalent to stability of the equilibrium
(I∗, S∗1 , S∗2 , R∗) of the system (6).

Removing from the system (7) nonlinear terms and using the system for equilibria (2) we obtain
the linear part of the system (7)

ż0(t) = −p(I∗)−1z0(t)− λ1 I∗z1(t)− λ2 I∗z2(t) + σ0z0(t)ẇ0(t),
ż1(t) = λ1S∗1z0(t)− (q + δ1R∗ − λ1 I∗)z1(t) + αz2(t)− δ1S∗1z3(t) + σ1z1(t)ẇ1(t),
ż2(t) = λ2S∗2z0(t)− (α + q− λ2 I∗ + δ2R∗)z2(t)− δ2S∗2z3(t) + σ2z2(t)ẇ2(t),
ż3(t) = δ1R∗z1(t) + δ2R∗z2(t)− (q− δ1S∗1 − δ2S∗2)z3(t) + σ3z3(t)ẇ3(t).

(8)

Let us present the system (8) in the matrix form

dz(t) = Az(t)dt + C(z(t))dw(t), (9)

where z(t) = (z0(t), z1(t), z2(t), z3(t))′, w(t) = (w0(t), w1(t), w2(t), w3(t))′, C(z(t)) =

diag(σ0z0(t), ..., σ3z3(t)),

A =


−p(I∗)−1 −λ1 I∗ −λ2 I∗ 0

λ1S∗1 −(q + δ1R∗ − λ1 I∗) α −δ1S∗1
λ2S∗2 0 −(α + q− λ2 I∗ + δ2R∗) −δ2S∗2

0 δ1R∗ δ2R∗ −(q− δ1S∗1 − δ2S∗2)

 . (10)

Remark 1. The order of nonlinearity of the nonlinear system (7) is higher than one. For systems of such type
a sufficient condition for asymptotic mean square stability of the zero solution of its linear part (9) provides
stability in probability of the zero solution of the initial nonlinear system (7) [30]. Therefore, a sufficient condition
for asymptotic mean square stability of the zero solution of the linear Equation (9) provides stability in probability
of the equilibrium (I∗, S∗1 , S∗2 , R∗) of the initial system (6).

Following Remark 1, below we will have sufficient conditions for asymptotic mean square stability
of the zero solution of the linear Equation (9) for each from the equilibria (3).
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4. Stability of the Equilibria

Consider some definitions and statements that will be used below [30].

Definition 1. The zero solution of the system (7) is called stable in probability if for any ε1 > 0 and ε2 > 0
there exists δ > 0 such that the solution y(t) = (y0(t), y1(t), y2(t), y3(t))′ of the system (7) satisfies the
condition P{supt≥0 |y(t)| > ε1} < ε2 provided that P{|y(0)| < δ} = 1.

Definition 2. The zero solution of the system (9) is called:

- mean square stable if for each ε > 0 there exists a δ > 0 such that E|z(t)|2 < ε, t ≥ 0, provided that
E|z(0)|2 < δ;

- asymptotically mean square stable if it is mean square stable and the solution z(t) of Equation (9) satisfies
the condition limt→∞ E|z(t)|2 = 0 provided that E|z(0)|2 < ∞.

The generator L of the Ito stochastic differential Equation (9) is defined on the functions V(t, z)
which have one continuous derivative with respect to t (Vt), two continuous derivatives (∇V and
∇2V) with respect to z and has the form [30,33]

LV(t, z(t)) = Vt(t, z(t)) +∇V′(t, z(t))Az(t) +
1
2

Tr[C(z(t))∇2V(t, z(t))C(z(t))]. (11)

Theorem 1. Let there exist a function V(t, z) with continuous derivatives Vt, ∇V, ∇2V, positive constants
c1, c2, c3, such that the following conditions hold:

EV(t, z(t)) ≥ c1E|z(t)|2, EV(0, z(0)) ≤ c2E|z(0)|2, ELV(t, z(t)) ≤ −c3E|z(t)|2.

Then the zero solution of Equation (9) is asymptotically mean square stable.

Lemma 1. Let there exist a positive definite matrix P = ‖pij‖ (i, j = 1, 2, 3, 4) such that the matrix (10) with
the equilibrium (I∗, S∗1 , S∗2 , R∗) satisfies the linear matrix inequality (LMI)

PA + A′P + Pσ < 0, Pσ = diag{p11σ2
0 , ..., p44σ2

3}. (12)

Then the equilibrium (I∗, S∗1 , S∗2 , R∗) of the system (6) is stable in probability.

Proof. For the function V(t, z) = z′Pz from (11) and LMI (12) for some c > 0 we have

LV(t, z(t)) =2z′(t)PAz(t) + Tr[C(z(t))PC(z(t))]

=z′(t)(PA + A′P + Pσ)z(t) ≤ −c|z(t)|2.

From Theorem 1 it follows that the zero solution of Equation (9) is asymptotically mean square
stable. Via Remark 1 one can conclude that the equilibrium (I∗, S∗1 , S∗2 , R∗) of the system (6) is stable in
probability. The proof is completed.

Note to satisfy the LMI (12) the matrix A must be the Hurwitz matrix [30,31].

Definition 3. The trace of the k−th order of a n× n-matrix A = ‖aij‖ is defined as follows:

Tk = ∑
1≤i1<...<ik≤n

∣∣∣∣∣∣∣
ai1i1 ... ai1ik
... ... ...
aik i1 ... aik ik

∣∣∣∣∣∣∣ , k = 1, ..., n.
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Here, in particular, T1 = Tr(A), Tn = det(A), Tn−1 =
n
∑

i=1
Aii, where Aii is the algebraic complement of the

diagonal element aii of the matrix A.

Lemma 2. [30,31] Let Tk, k = 1, 2, 3, 4, be the trace of the k-th order of a 4× 4-matrix A. The matrix A is the
Hurwitz matrix if and only if

T1 < 0, T1T2 < T3 < 0, 0 < T2
1 T4 < (T1T2 − T3)T3. (13)

A 3× 3-matrix A is the Hurwitz matrix if and only if first two conditions (13) hold.

In general, the LMI (12) for each equilibrium (3) must be numerically investigated via MATLAB.
However, in some particular cases this process can be simplified and analytical conditions can be
obtained. Below it is shown in investigation of stability of the equilibria (3).

4.1. Stability of the Equilibrium E0 = ( p
q , 0, 0, 0)

Theorem 2. If
1

λ1
>

p
q2 ,

1
λ2

(
1 +

α

q

)
>

p
q2 , (14)

and

σ2
0 < 2q, σ2

1 < 2
(

q− λ1
p
q

)
, σ2

2 < 2
(

α + q− λ2
p
q

)
, σ2

3 < 2q, (15)

then the equilibrium E0 is stable in probability.

Proof. For the equilibrium E0 =

(
p
q

, 0, 0, 0
)

the system (8) takes the form

ż0(t) = −qz0(t)− λ1 pq−1z1(t)− λ2 pq−1z2(t) + σ0z0(t)ẇ0(t),
ż1(t) = −(q− λ1 pq−1)z1(t) + αz2(t) + σ1z1(t)ẇ1(t),
ż2(t) = −(α + q− λ2 pq−1)z2(t) + σ2z2(t)ẇ2(t),
ż3(t) = −qz3(t) + σ3z3(t)ẇ3(t).

(16)

The conditions (14) provide negativity of the coefficients before z1(t) and z2(t) in the second and the
third equations (16). It is known [30] that the last two inequalities (15) are the necessary and sufficient
conditions for asymptotic mean square stability of the zero solutions of the last two equations in (16)
which do not depend on z0(t) and z1(t) and can be considered separately. Since limt→∞ Ez2

2(t) = 0
then the system of first two Equation (16) for z0(t) and z1(t) can be considered without the process
z2(t), i.e.,

ż0(t) = −qz0(t)− λ1 pq−1z1(t) + σ0z0(t)ẇ0(t),
ż1(t) = −(q− λ1 pq−1)z1(t) + σ1z1(t)ẇ1(t).

(17)

Via Remark A2 (see Appendix A.2) the first two inequalities (15) are sufficient for asymptotic mean
square stability of the zero solution of the system (17). Therefore, the conditions (14), (15) provide
asymptotic mean square stability of the zero solution of the system (16) and via Remark 1 stability in
probability of the equilibrium E0 of the system (6). The proof is completed.

Remark 2. One can check that by the conditions (14) and (15) the matrix

A =


−q −λ1 pq−1 −λ2 pq−1 0
0 −(q− λ1 pq−1) α 0
0 0 −(α + q− λ2 pq−1) 0
0 0 0 −q

 (18)
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of the system (16) satisfies the conditions (13).

Example 1. Put

α = 0.4, λ1 = 0.5, λ2 = 0.7, δ1 = δ2 = 0.2, p = 0.8, q = 0.7,
σ0 = 1.18, σ1 = 0.50, σ2 = 0.77, σ3 = 1.18.

(19)

By these values of the parameters the conditions (14) and (15) hold:

1
λ1

= 2 >
p
q2 = 1.63,

1
λ2

(
1 +

α

q

)
= 2.24 >

p
q2 = 1.63,

σ2
0 = 1.3924 < 2q = 1.4, σ2

1 = 0.25 < 2
(

q− λ1
p
q

)
= 0.257,

σ2
2 = 0.5929 < 2

(
α + q− λ2

p
q

)
= 0.6, σ2

3 = 1.3924 < 2q = 1.4.

Using MATLAB it was shown that by the values of the parameters (19) the matrix (18) satisfies the LMI (12).
The conditions (13) with

T1 = −1.8286 < 0, T2 = 1.1286 > 0, T3 = −0.2640 < 0, T4 = 0.0189 > 0,
T3 − T1T2 = 1.7997 > 0, (T1T2 − T3)T3 − T2

1 T4 = 0.4119 > 0,

hold too. Therefore, the equilibrium E0 is stable in probability.
In Figure 1 one can see 30 trajectories of the system (6) solution for the equilibrium E0 with the initial

condition I(0) = 1.7, S1(0) = 0.9, S2(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), S2(t)
(blue), R(t) (red) converge to the equilibrium E0 = (I∗, S∗1 , S∗2 , R∗) = (1.1429, 0, 0, 0).

Figure 1. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.7, S1(0) = 0.9,
S2(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), S2(t) (blue), R(t) (red) converge to
the equilibrium E0 = (I∗, S∗1 , S∗2 , R∗) = (1.1429, 0, 0, 0).

4.2. Stability of the Equilibrium E1 =
(

q
λ1

, p
q −

q
λ1

, 0, 0
)

Theorem 3. If
1

λ1
+

1
δ1

>
p
q2 >

1
λ1

,
1

λ2

(
1 +

α

q

)
>

1
λ1

, (20)
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and

σ2
0 <

2pλ1

q
, σ2

1 <
2pλ1

q +
[

q
pλ1

(
1− q2

pλ1

)]−1 , σ2
2 < 2

(
α + q− q

λ2

λ1

)
, σ2

3 < 2
(

q− δ1

(
p
q
− q

λ1

))
, (21)

then the equilibrium E1 is stable in probability.

Proof. For the equilibrium E1 =

(
q

λ1
,

p
q
− q

λ1
, 0, 0

)
the system (8) takes the form

ż0(t) = −pq−1λ1z0(t)− qz1(t)− qλ2λ−1
1 z2(t) + σ0z0(t)ẇ0(t),

ż1(t) = λ1

(
p
q
− q

λ1

)
z0(t) + αz2(t)− δ1

(
p
q
− q

λ1

)
z3(t) + σ1z1(t)ẇ1(t),

ż2(t) = −(α + q− qλ2λ−1
1 )z2(t) + σ2z2(t)ẇ2(t),

ż3(t) = −
(

q− δ1

(
p
q
− q

λ1

))
z3(t) + σ3z3(t)ẇ3(t).

(22)

The conditions (20) provide positivity of the nonzero component of the equilibrium E1 and negativity
of the coefficients before z2(t) and z3(t) in the last two equations (22). The last two inequalities (21) are
the necessary and sufficient conditions for asymptotic mean square stability of the zero solutions of last
two equations in (22) [30] which do not depend on z0(t) and z1(t) and can be considered separately.
Since limt→∞ Ez2

2(t) = 0 and limt→∞ Ez2
3(t) = 0 then the system of first two Equation (22) for z0(t)

and z1(t) can be considered without the processes z2(t), z3(t), i.e.,

ż0(t) = −pq−1λ1z0(t)− qz1(t) + σ0z0(t)ẇ0(t),

ż1(t) = λ1

(
p
q
− q

λ1

)
z0(t) + σ1z1(t)ẇ1(t).

(23)

Via Remark A2 (see Appendix A.2) first two inequalities (21) are sufficient for asymptotic mean
square stability of the zero solution of the system (23). Therefore, the conditions (20) and (21) provide
asymptotic mean square stability of the zero solution of the system (22) and via Remark 1 stability in
probability of the equilibrium E1 of the system (6). The proof is completed.

Remark 3. One can check that by the conditions (20) and (21) the matrix

A =


−pq−1λ1 −q −qλ2λ−1

1 0

λ1

(
p
q
− q

λ1

)
0 α −δ1

(
p
q
− q

λ1

)
0 0 −(α + q− qλ2λ−1

1 ) 0

0 0 0 −
(

q− δ1

(
p
q
− q

λ1

))

 (24)

of the system (22) satisfies the conditions (13).

Example 2. Put

α = 0.4, λ1 = 0.65, λ2 = 0.75, δ1 = δ2 = 0.2, p = 0.9, q = 0.7,
σ0 = 1.01, σ1 = 0.41, σ2 = 0.76, σ3 = 1.14.

(25)
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By these values of the parameters the conditions (20) and (21) hold:

1
λ1

+
1
δ1

= 6.538 >
p
q2 = 1.837 >

1
λ1

= 1.538,
1

λ2

(
1 +

α

q

)
= 2.095 >

1
λ1

= 1.538,

σ2
0 = 1.0201 <

2pλ1

q
< 1.671, σ2

1 = 0.1681 <
2pλ1

q +
[

q
pλ1

(
1− q2

pλ1

)]−1 = 0.2001,

σ2
2 = 0.5776 < 2

(
α + q− q

λ2

λ1

)
= 0.5846, σ2

3 = 1.2996 < 2
(

q− δ1

(
p
q
− q

λ1

))
= 1.3165.

Using MATLAB it was shown that by the values of the parameters (25) the matrix (24) satisfies the LMI (12),
the conditions (13) with

T1 = −1.7863 < 0, T2 = 1.0818 > 0, T3 = −0.2511 < 0, T4 = 0.0183 > 0,
T3 − T1T2 = 1.6813 > 0, (T1T2 − T3)T3 − T2

1 T4 = 0.3638 > 0,

hold too. Therefore, the equilibrium E1 is stable in probability.
In Figure 2 one can see 30 trajectories of the system (6) solution for the equilibrium E1 with the initial

condition I(0) = 1.7, S1(0) = 0.9, S2(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), S2(t)
(blue), R(t) (red) converge to the equilibrium E1 = (I∗, S∗1 , S∗2 , R∗) = (1.0769, 0.2088, 0, 0).

Figure 2. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.7, S1(0) = 0.9,
S2(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), S2(t) (blue), R(t) (red) converge to
the equilibrium E1 = (I∗, S∗1 , S∗2 , R∗) = (1.0769, 0.2088, 0, 0).

4.3. Stability of the Equilibrium E2 = (I∗2 , S∗12, 0, R∗2)

For the equilibrium E2 the system (8) takes the form

ż0(t) = −q(1 + λ1δ−1
1 )z0(t)− λ1 I∗2 z1(t)− λ2 I∗2 z2(t) + σ0z0(t)ẇ0(t),

ż1(t) = qλ1δ−1
1 z0(t)− (q + δ1R∗2 − λ1 I∗2 )z1(t) + αz2(t)− qz3(t) + σ1z1(t)ẇ1(t),

ż2(t) = −(α + q− λ2 I∗2 + δ2R∗2)z2(t) + σ2z2(t)ẇ2(t),
ż3(t) = δ1R∗2z1(t) + δ2R∗2z2(t) + σ3z3(t)ẇ3(t),

(26)

where I∗2 and R∗2 are defined in (3).
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Lemma 3. If
p
q2 >

1
λ1

+
1
δ1

, 1 +
α

q
>

p(λ2δ1 − λ1δ2)

q2(δ1 + λ1)
+

δ2

δ1
, (27)

then the matrix

A =


−q(1 + λ1δ−1

1 ) −λ1 I∗2 −λ2 I∗2 0
qλ1δ−1

1 0 α −q
0 0 −(α + q− λ2 I∗2 + δ2R∗2) 0
0 δ1R∗2 δ2R∗2 0

 (28)

of the system (26) is the Hurwitz matrix.

Proof. The first and the second conditions (27) provide respectively a positivity of R∗2 and a negativity
of the coefficient before z2(t) in the third equation of the system (26). Please note that the inequality

σ2
2 < 2q

(
1 +

α

q
− p(λ2δ1 − λ1δ2)

q2(δ1 + λ1)
− δ2

δ1

)
(29)

is the necessary and sufficient condition for asymptotic mean square stability of the zero solution of
the equation for z2(t) of the system (26). Therefore, by this condition limt→∞ Ez2

2(t) = 0 it is enough to
show that the matrix

A =

−q(1 + λ1δ−1
1 ) −λ1 I∗2 0

qλ1δ−1
1 0 −q

0 δ1R∗2 0

 (30)

is the Hurwitz matrix. Really, for the matrix (30) we have

T1 = −q(1 + λ1δ−1
1 ) < 0, T2 = qλ2

1δ−1
1 I∗2 + qδ1R∗2 > 0, T3 = −q2δ1R∗2(1 + λ1δ−1

1 ) < 0,

and
T1T2 = (−q(1 + λ1δ−1

1 ))(qλ2
1δ−1

1 I∗2 + qδ1R∗2)

< −q2δ1R∗2(1 + λ1δ−1
1 ) = T3.

Therefore, the matrix (30) is the Hurwitz matrix. Therefore the matrix (28) is the Hurwitz matrix too.
The proof is completed.

Corollary 1. If the conditions (27) and (29) hold then for small enough σ2
0 , σ2

1 , σ2
3 the LMI (12) holds. It means

that the zero solution of the linear system (26) is asymptotically mean square stable and therefore (Remark 1) the
equilibrium E2 is stable in probability.

Example 3. Put

α = 0.4, λ1 = 1, λ2 = 1.3, δ1 = 0.5, δ2 = 0.7, p = 0.9, q = 0.5,
σ0 = 0.55, σ1 = 0.30, σ2 = 0.72, σ3 = 0.44.

(31)

By these values of the parameters the conditions (27) and (29) hold:

p
q2 = 3.6 >

1
λ1

+
1
δ1

= 3, 1 +
α

q
= 1.8 >

p(λ2δ1 − λ1δ2)

q2(δ1 + λ1)
+

δ2

δ1
= 1.28,

σ2
2 = 0.5184 < 2q

(
1 +

α

q
− p(λ2δ1 − λ1δ2)

q2(δ1 + λ1)
− δ2

δ1

)
= 0.52.

Using MATLAB it was shown that by the values of the parameters (31) the matrix (28) satisfies the LMI (12),
via Lemma 3 the conditions (13) hold too. Therefore, the equilibrium E2 is stable in probability.
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In Figure 3 one can see 30 trajectories of the system (6) solution for the equilibrium E2 with the initial
condition I(0) = 1.7, S1(0) = 0.9, S2(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), S2(t)
(blue), R(t) (red) converge to the equilibrium E2 = (I∗, S∗1 , S∗2 , R∗) = (0.6, 1, 0, 0.2). In accordance with (5)
I∗ + S∗1 + S∗2 + R∗ = pq−1 = 1.8.

Figure 3. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.7, S1(0) = 0.9,
S2(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), S2(t) (blue), R(t) (red) converge to
the equilibrium E2 = (I∗, S∗1 , S∗2 , R∗) = (0.6, 1, 0, 0.2).

4.4. Stability of the Equilibrium E3 = (I∗3 , S∗13, S∗23, 0)

For the equilibrium E3 the system (8) takes the form

ż0(t) = −pλ2(α + q)−1z0(t)− λ1λ−1
2 (α + q)z1(t)− (α + q)z2(t) + σ0z0(t)ẇ0(t),

ż1(t) = λ1S∗13z0(t)− (q− λ1λ−1
2 (α + q))z1(t) + αz2(t)− δ1S∗13z3(t) + σ1z1(t)ẇ1(t),

ż2(t) = λ2S∗23z0(t)− δ2S∗23z3(t) + σ2z2(t)ẇ2(t),
ż3(t) = −(q− δ1S∗13 − δ2S∗23)z3(t) + σ3z3(t)ẇ3(t),

(32)

where S∗13, S∗23 are defined in (3).

Lemma 4. If

p
q2 >

1
λ2

(
1 +

α

q

)
,

1
λ1

>
1

λ2

(
1 +

α

q

)
, q > δ1S∗13 + δ2S∗23, (33)

then the matrix

A =


−pλ2(α + q)−1 −λ1λ−1

2 (α + q) −(α + q) 0
λ1S∗13 −(q− λ1λ−1

2 (α + q)) α −δ1S∗13
λ2S∗23 0 0 −δ2S∗23

0 0 0 −(q− δ1S∗13 − δ2S∗23)

 (34)

of the system (26) is the Hurwitz matrix.
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Proof. The conditions (33) provide a positivity of S∗13 and S∗23 and a negativity of the diagonal elements
of the matrix (34). Please note that the inequality

σ2
3 < 2(q− δ1S∗13 − δ2S∗23) (35)

is the necessary and sufficient condition for asymptotic mean square stability of the zero solution of the
equation for z3(t) of the system (32). Therefore, by this condition limt→∞ Ez2

3(t) = 0 and it is enough
to show that the matrix

A =

−pλ2(α + q)−1 −λ1λ−1
2 (α + q) −(α + q)

λ1S∗13 −(q− λ1λ−1
2 (α + q)) α

λ2S∗23 0 0

 (36)

with
T1 = −pλ2(α + q)−1 − (q− λ1λ−1

2 (α + q)) < 0,
T2 = p(α + q)−1(λ2q− λ1(α + q)) + (α + q)[λ2

1λ−1
2 S∗13 + λ2S∗23] > 0,

T3 = −q(α + q)(λ2 − λ1)S∗23 < 0,

is the Hurwitz matrix, i.e., T1T2 < T3. The proof is completed.

Corollary 2. If the conditions (33) and (35) hold then for small enough σ2
0 , σ2

1 , σ2
2 the LMI (12) holds. It means

that the zero solution of the linear system (32) is asymptotically mean square stable and therefore (Remark 1) the
equilibrium E3 is stable in probability.

Example 4. Put

α = 0.8, λ1 = 0.3, λ2 = 0.9, δ1 = 0.8, δ2 = 0.7, p = 1.2, q = 0.6,
σ0 = 0.91, σ1 = 0.50, σ2 = 0.40, σ3 = 0.70.

(37)

By these values of the parameters the conditions (33) and (35) hold:

p
q2 = 3.33 >

1
λ2

(
1 +

α

q

)
= 2.59,

1
λ1

= 3.33 >
1

λ2

(
1 +

α

q

)
= 2.59,

q = 0.6 > δ1S∗13 + δ2S∗23 = 0.1715, σ2
3 = 0.49 < 2(q− δ1S∗13 − δ2S∗23) = 0.5015.

Using MATLAB it was shown that by the values of the parameters (37) the matrix (34) satisfies the LMI (12),
for the matrix (36) T1 = −0.9048 < 0, T2 = 0.2362 > 0, T3 = −0.0320 < 0, T3 − T1T2 = 0.1817 > 0,
the conditions (13) hold too. Therefore, the equilibrium E3 is stable in probability.

In Figure 4 one can see 30 trajectories of the system (6) solution for the equilibrium E3 with the initial
condition I(0) = 1.9, S1(0) = 0.8, S2(0) = 0.4, R(0) = 0.4: all trajectories I(t) (yellow), S1(t) (green),
S2(t) (blue), R(t) (red) converge to the equilibrium E3 = (I∗, S∗1 , S∗2 , R∗) = (1.5556, 0.3810, 0.0634, 0).
In accordance with (5) I∗ + S∗1 + S∗2 + R∗ = pq−1 = 2.
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Figure 4. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.9, S1(0) = 0.8,
S2(0) = 0.4, R(0) = 0.4: all trajectories I(t) (yellow), S1(t) (green), S2(t) (blue), R(t) (red) converge to
the equilibrium E3 = (I∗, S∗1 , S∗2 , R∗) = (1.5556, 0.3810, 0.0634, 0).

4.5. Stability of the Equilibrium E4 = (I∗4 , S∗14, S∗24, R∗4)

For the equilibrium E4 the system (8) by virtue of (2) takes the form

ż0(t) = −p(I∗4 )
−1z0(t)− λ1 I∗4 z1(t)− λ2 I∗4 z2(t) + σ0z0(t)ẇ0(t),

ż1(t) = λ1S∗14z0(t)− αS∗24(S
∗
14)
−1z1(t) + αz2(t)− δ1S∗14z3(t) + σ1z1(t)ẇ1(t),

ż2(t) = λ2S∗24z0(t)− δ2S∗24z3(t) + σ2z2(t)ẇ2(t),
ż3(t) = δ1R∗4z1(t) + δ2R∗4z2(t) + σ3z3(t)ẇ3(t),

(38)

where I∗4 , S∗14, S∗24, R∗4 are defined in (3).
Let us show that the matrix

A =


−p(I∗4 )

−1 −λ1 I∗4 −λ2 I∗4 0
λ1S∗14 −αS∗24(S

∗
14)
−1 α −δ1S∗14

λ2S∗24 0 0 −δ2S∗24
0 δ1R∗4 δ2R∗4 0

 (39)

of the system (38) is the Hurwitz matrix. Really, the conditions (13) for the matrix (39) hold with

T1 = −p(I∗4 )
−1 − αS∗24(S

∗
14)
−1 < 0,

T2 = αpS∗24(I∗4 S∗14)
−1 + I∗4 (λ

2
1S∗14 + λ2

2S∗24) + R∗4(δ
2
1S∗14 + δ2

2S∗24) > 0,
T3 = −αS∗24(λ1λ2 I∗4 + δ1δ2R∗4)− p(I∗4 )

−1R∗4(δ
2
1S∗14 + δ2

2S∗24)− α(S∗24)
2(S∗14)

−1(λ2
2 I∗4 + δ2

2 R∗4) < 0,
T4 = αpR∗4(I∗4 S∗14)

−1(δ2
1(S
∗
14)

2 + δ2
2(S
∗
24)

2) + (λ2δ1 − λ1δ2)
2 I∗4 S∗14S∗24R∗4 > 0.

Example 5. Put

α = 0.4, λ1 = 0.3, λ2 = 0.9, δ1 = δ2 = 0.8, p = 1.2, q = 0.6,
σ0 = 0.51, σ1 = 0.51, σ2 = 0.55, σ3 = 0.34.

(40)

Using MATLAB it was shown that by the values of the parameters (40) the matrix (39) satisfies the LMI (12),
the conditions (13) hold too: T1 = −1.3259 < 0, T2 = 0.7020 > 0, T3 = −0.1828 < 0, T4 = 0.0187 > 0,
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T3 − T1T2 = 0.7479 > 0, (T1T2 − T3)T3 − T2
1 T4 = 0.1039 > 0. Therefore, the equilibrium E4 is stable

in probability.
In Figure 5 one can see 30 trajectories of the system (6) solution for the equilibrium E4 with the initial

condition I(0) = 1.9, S1(0) = 0.8, S2(0) = 0.7, R(0) = 0.4: all trajectories I(t) (yellow), S1(t) (green),
S2(t) (blue), R(t) (red) converge to the equilibrium E4 = (I∗, S∗1 , S∗2 , R∗) = (1.1765, 0.4250, 0.3250, 0.0735).
In accordance with (5) I∗ + S∗1 + S∗2 + R∗ = pq−1 = 2.

Please note that decreasing δ2 from δ2 = 0.8 to δ2 = 0.7, we obtain that S∗1 unlike from the previous case is
calculated via quadratic equation (see (3)). By that with the same values of all other parameters the equilibrium
E4 a bit changed E4 = (I∗, S∗1 , S∗2 , R∗) = (1.1534, 0.4543, 0.3379, 0.0544), I∗ + S∗1 + S∗2 + R∗ = pq−1 = 2,
but remains stable in probability and the conditions (13) hold with T1 = −1.3379 < 0, T2 = 0.6971 > 0,
T3 = −0.1686 < 0, T4 = 0.0143 > 0, T3 − T1T2 = 0.7641 > 0, (T1T2 − T3)T3 − T2

1 T4 = 0.1033 > 0.

Figure 5. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.9, S1(0) = 0.8,
S2(0) = 0.7, R(0) = 0.4: all trajectories I(t) (yellow), S1(t) (green), S2(t) (blue), R(t) (red) converge to
the equilibrium E4 = (I∗, S∗1 , S∗2 , R∗) = (1.1765, 0.4250, 0.3250, 0.0735).

5. Conclusions

In this paper, it is shown how the dynamics of the very popular I2SR rumor spreading model can
be investigated under stochastic perturbations. It is shown that for some equilibria of the considered
model it is possible to get conditions for stability in probability in an analytical form, for other
equilibria stability condition can be obtained numerically by an appropriate linear matrix inequality
via MATLAB.

The proposed way of research can be used for more detail investigation both the considered I2SR
rumor spreading model and also all other known type of rumor spreading models [6–29].

Besides, this research method can be used for a detailed investigation of many other nonlinear
mathematical models (with the order of nonlinearity higher than one) in different other applications.
In particular, the proposed method can be used for systems with exponential nonlinearity [34,35],
together with stochastic perturbations of the type of white noise other types of perturbations can be
used, for instance, perturbations of the type of Poisson’s jumps [35], the method does not depend on
the dimension of the considered system and can be used for systems of more than four equations.

Funding: This research received no external funding.
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Appendix A

Appendix A.1. Equilibria of the System (1)

The equilibria E0, ..., E3 of the system (1) are obtained from the system (2) quite simply (see (3)).
To get the equilibrium E4 note that from the second and the third equations of the system (2) we obtain

R =
1
δ1
(αS2S−1

1 − q + λ1 I) =
1
δ2
(λ2 I − (α + q)).

From this and the first equation of the system (2) we have

I =
(α + q)δ1 + (αS2S−1

1 − q)δ2

λ2δ1 − λ1δ2
=

p
λ1S1 + λ2S2 + q

,

and therefore

((α + q)δ1 + (αS2S−1
1 − q)δ2)(λ1S1 + λ2S2 + q) = p(λ2δ1 − λ1δ2). (A1)

From the last equation of the system (2) and R∗ 6= 0 it follows that

S2S−1
1 =

1
δ2

(
q

S1
− δ1

)
. (A2)

Substituting (A2) into (A1) we obtain the equation for S1(
(α + q)δ1 + α

(
q

S1
− δ1

)
− qδ2

)(
λ1S1 +

λ2

δ2
(q− δ1S1) + q

)
= p(λ2δ1 − λ1δ2),

q(α− (δ2 − δ1)S1) (q(λ2 + δ2)− (λ2δ1 − λ1δ2)S1) = pδ2(λ2δ1 − λ1δ2)S1,
q(δ2 − δ1)(λ2δ1 − λ1δ2)S2

1 − [(qα + pδ2)(λ2δ1 − λ1δ2) + q2(δ2 − δ1)(λ2 + δ2)]S1 + αq2(λ2 + δ2) = 0.

If (δ2 − δ1)(λ2δ1 − λ1δ2) 6= 0 then S1 is a positive root of the quadratic equation S2
1 − ν1S1 + ν2 = 0,

where

ν1 =
qα + pδ2

q(δ2 − δ1)
+

q(λ2 + δ2)

λ2δ1 − λ1δ2
, ν2 =

αq(λ2 + δ2)

(δ2 − δ1)(λ2δ1 − λ1δ2)
.

Remark A1. Please note that a positive root of the quadratic equation S2
1 − ν1S1 + ν2 = 0 may not exist, for

instance, if ν1 < 0 and ν2 > 0. In this case a positive equilibrium E4 does not exist too. On the other hand
for some values of the parameters the quadratic equation S2

1 − ν1S1 + ν2 = 0 may have two positive roots, for

instance, if ν1 > 0 and 0 < 4ν2 < ν2
1 : S∗1 = 1

2 (ν1 ±
√

ν2
1 − 4ν2). In this case there are two equilibria of the

type of E4.

If δ1 = δ2 = δ, λ2 > λ1 then S∗1 =
αq2(δ + λ2)

δ(λ2 − λ1)(qα + pδ)
. If λ2δ1 = λ1δ2, δ2 > δ1 then S∗1 =

α

δ2 − δ1
.

If S∗1 is defined then via (2)

S∗2 =
1
δ2
(q− δ1S∗1), I∗ =

p
λ1S∗1 + λ2S∗2 + q

, R∗ =
λ2 I∗ − α− q

δ2
.

For positivity of the equilibrium E4 must be S∗1 <
q
δ1

and I∗ >
α + q

λ2
.
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Appendix A.2. Stability of the System of Two Stochastic Differential Equations

Consider the system of two stochastic differential equations

ẋ1(t) = a11x1(t) + a12x2(t) + σ1x1(t)ẇ1(t),
ẋ2(t) = a21x1(t) + a22x2(t) + σ1x2(t)ẇ2(t),

(A3)

where aij, σi, i, j = 1, 2, are constants, w1(t) and w2(t) are mutually independent standard Wiener
processes [30,33].

Lemma A1. [30] Put A = ‖aij‖, i, j = 1, 2, Ai = det(A) + a2
ii, µi =

1
2 σ2

i , i = 1, 2, and suppose that the
following conditions hold

Tr(A) = a11 + a22 < 0, det(A) = a11a22 − a12a21 > 0,

µ1 <
|Tr(A)|det(A)

A2
, µ2 <

|Tr(A)|det(A)− A2µ1

A1 − |Tr(A)|µ1
.

(A4)

Then the zero solution of the system (A3) is asymptotically mean square stable.

Remark A2. Please note that if a12a21 = 0 then the last two conditions in (A4) take the form µ1 < −a11,
µ2 < −a22.
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