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Abstract: We study the factorization properties of continuous homomorphisms defined on a (dense)
submonoid S of a Tychonoff product D = ∏i∈I Di of topological or even topologized monoids. In a
number of different situations, we establish that every continuous homomorphism f : S → K to
a topological monoid (or group) K depends on at most finitely many coordinates. For example,
this is the case if S is a subgroup of D and K is a first countable left topological group without
small subgroups (i.e., K is an NSS group). A stronger conclusion is valid if S is a finitely retractable
submonoid of D and K is a regular quasitopological NSS group of a countable pseudocharacter.
In this case, every continuous homomorphism f of S to K has a finite type, which means that f admits
a continuous factorization through a finite subproduct of D. A similar conclusion is obtained for
continuous homomorphisms of submonoids (or subgroups) of products of topological monoids to
Lie groups. Furthermore, we formulate a number of open problems intended to delimit the validity
of our results.

Keywords: monoid; homomorphism; character; NSS group; Lie group; factorization; quasitopological
group

1. Introduction

The present article is a natural continuation of the study in [1,2], where we considered continuous
mappings (homomorphisms) defined on subspaces of products of topological spaces (monoids, groups)
and established a kind of irreducible factorization of those mappings (homomorphisms) under quite general
assumptions. Our purpose here is to focus on the case when f : S→ K is a continuous homomorphism of
a submonoid (subgroup) S of a product D = ∏i∈I Di of (semi)topological monoids or groups. Again, we
are interested in identifying conditions under which f admits a factorization in the form:

f = g ◦ pJ �S, (1)

where J is a ‘small’ subset of the index set I, pJ : D → DJ = ∏i∈J Di is the projection, and g : pJ(S)→ K
is a continuous homomorphism. If one can find a finite (countable) set J for which the equality (1)
holds true, we say that f has a finite (countable) type.

It is worth noting that if X = ∏i∈I Xi is the product of infinitely many Tychonoff spaces, where
each factor satisfies |Xi| ≥ 2, then there exists a continuous real-valued function on X, which depends
on infinitely many coordinates. The case of continuous homomorphisms of topological groups is
considerably better. It follows from the Pontryagin–van Kampen duality theory that every continuous
homomorphism of a product D = ∏i∈I Di of compact abelian groups Di to the circle group T (called
character) has a finite type. In [3], S. Kaplan generalized this fact by proving that if D = ∏i∈I Di is a
product of reflexive topological (not necessarily locally compact) abelian groups, then every continuous
character of D has a finite type. An analysis of the proof in [3] shows that the requirement of the
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reflexivity of the factors in Kaplan’s theorem can be dropped. In fact, we show in Corollary 11 that
every continuous character of an arbitrary subgroup of a Tychonoff product of paratopological groups
(equivalently, topological monoids) has a finite type.

The starting point of the present research is the following very general, but relatively simple fact
about continuous homomorphisms of left topological groups (see [4] (Lemma 8.5.4)):

Proposition 1. A continuous homomorphism f : S → K defined on an arbitrary subgroup S of a product
D = ∏i∈I Di of left topological groups has a countable type provided that the left topological group K is a first
countable T1-space.

The proof of Proposition 1 given in [4] makes use of inversion in groups and cannot be applied to
more general objects of topological algebra like topological monoids or semigroups.

Our general problem, far from being completely solved here, is to extend Proposition 1 to
(semi)topological monoids or (semi)topological semigroups and find conditions on D, S, and K
guaranteeing that every continuous homomorphism f : S→ K has a countable or even finite type.

However, considering submonoids of products of topological monoids and continuous homomorphisms
of them presents several difficulties. First, the shifts in monoids need not be surjective. Second, in
a topological monoid, the left and right shifts can fail to be open mappings. Indeed, one can take
the unit interval I = [0, 1] with the usual interval topology and define continuous multiplication in
I by xy = max{x, y} for all x, y ∈ I. Then, the interval I with the given topology and multiplication
is a compact topological monoid. However, the shifts in I are neither open nor surjective (see,
e.g., [4] (Example 1.3.7)). Third, a monoid can have no invertible elements, except for the identity.
This makes it impossible to extend ‘traditional’ arguments that work for groups (see, e.g., the
proof of Proposition 2) to the more general case of submonoids of products of topological monoids.
Nevertheless, some work in this direction has been done in [5], where a factorization theorem was
established for Mal’cev subspaces of products of left semitopological Mal’cev spaces. Some arguments
presented in the proofs of Propositions 1 and 2 in [6] can be applied to the study of continuous
homomorphisms of certain subsemigroups of products of topological semigroups. Purely algebraic
aspects of factoring homomorphisms of infinite products of groups can be found in [7]. For example, if
f is an arbitrary homomorphism of a product ∏i∈I Di of abelian groups to a slender group K, then f
depends on finitely many coordinates provided the cardinality of the index set I is less than the first
uncountable Ulam measurable cardinal (it is consistent with ZFC that such a cardinal does not exist;
see [8]). The simplest nontrivial example of a slender group is an infinite cyclic group [9].

To overcome some of the aforementioned difficulties, we consider finitely retractable and
ω-retractable submonoids of products of monoids, the notions introduced in [2] (see Definition 1
below). In a sense, these are close to Σ- and σ-products described on page 4. The article [2] contained
several results on factorization of continuous homomorphisms of ω-retractable or finitely retractable
submonoids S of products of topologized monoids that, in special cases, extend Proposition 1 to
monoids. We complement those results here by proving in Corollary 3 that if S is a dense submonoid
of a product D = ∏i∈I Di of semitopological monoids with open shifts and f : S→ K is a continuous
homomorphism to a Hausdorff first countable paratopological group K, then f depends on countably
many coordinates. This conclusion is somewhat weaker than claiming that f has a countable type (see
Problem 2).

In several situations, we are able to prove that a continuous homomorphism f : S → K has a
finite type. For example, we establish in Theorem 2 that this happens if S is a finitely retractable
submonoid of a product ∏i∈I Di of topologized monoids and K is a regular quasitopological NSS
group K satisfying ψ(K) ≤ ω.

We also show in Corollary 4 that every continuous homomorphism defined on a finitely retractable
submonoid S of a product D = ∏i∈I Di of topologized monoids has a finite type provided the
homomorphism takes values in a topological NSS group K (i.e., there exists a neighborhood of the
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identity in K that does not contain nontrivial subgroups). The same conclusion is valid if instead of the
finite retractability of S, we require S to satisfy the inclusions σD ⊂ S ⊂ D, where σD is the σ-product
of the factors Di (see Corollary 5).

In Section 3, we switch to considering more general submonoids of products. We prove in Theorem 3
that every continuous homomorphism f of S to a topological NSS group K has a finite type provided S is a
submonoid of a product D of left topological monoids, D is pseudo-ω1-compact, and S fills all countable
subproducts in D. It is possible to omit the requirement of the pseudo-ω1-compactness of D if, instead,
we strengthen the requirements on the factors Di of the product D and the codomain K. According
to Proposition 6, a continuous homomorphism f : S → K has a finite type if S is a submonoid of a
product D of semitopological monoids with open shifts, which fills all countable subproducts of D
and K is a first countable topological NSS group.

In the case of continuous homomorphisms to Lie groups, one can advance even further. We prove
in Theorem 4 that if S is a submonoid of a product D of topological monoids with open shifts and either
S is open and dense in D or fills all finite subproducts of D, then every continuous homomorphism of
S to a Lie group has a finite type. Notice that under either assumption, S is a dense submonoid of D.
The density of S in D can be dropped if we assume that S is a subgroup of a product of topological
monoids. In this case, every continuous homomorphism of S to a Lie group has a finite type as well
(see Theorem 5).

Several open problem are presented in Sections 2 and 3. In these problems, we propose to find
out which conditions in our results can be either weakened, modified, or dropped.

Notation and Auxiliary Results

Let C be the field of complex numbers with the usual Euclidean topology. The torus T is identified
with the multiplicative subgroup {z ∈ C : |z| = 1} of C.

A semigroup is a nonempty set S with a binary associative operation (called multiplication).
A semigroup with an identity is called a monoid. Clearly, a monoid has a unique identity.

Assume that G is a semigroup (monoid, group) with a topology. If the left shifts in G are continuous,
then G is called a left topological semigroup (monoid, group). If both the left and right shifts in G are
continuous, then G is said to be a semitopological semigroup (monoid, group). If multiplication in G is
jointly continuous, we say that G is a topological semigroup (monoid). A semitopological group with
continuous inversion is called a quasitopological group. Further, if G is a group and multiplication in G is
jointly continuous, we say that G is a paratopological group. A paratopological group with continuous
inversion is a topological group.

The continuity of the homomorphisms of various objects of topological algebra can usually be
deduced from their continuity at the identity of the domain. Lemma 1 below is well known for (left)
topological groups (see [4] (Proposition 1.3.4)); it applies in the proofs of several results in this article.

First, we recall that a left topological monoid G has open left shifts if for every x ∈ G, the left
shift λx of G defined by λx(y) = x · y for each y ∈ G is an open mapping of G to itself. Changing
‘left’ to ‘right’ in the above definition, we get right topological monoids with right open shifts. If in
a semitopological monoid G, all shifts, right and left, are open, we say that G is a semitopological
monoid with open shifts.

Lemma 1. Let G be a left topological monoid with open left shifts and f : G → H be a homomorphism of G to a
left topological semigroup H. If f is continuous at the identity e of G, then it is continuous.

Proof. Take an arbitrary element x ∈ G and an open neighborhood V of the element y = f (x) in H.
Clearly, we have:

y = f (x) = f (x · e) = f (x) · f (e) = y · f (e).

By the continuity of the left shift λy in H, there exists an open neighborhood W of f (e) in H such
that yW ⊂ V. Since f is continuous at e, there exists an open neighborhood U of e in G such that
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f (U) ⊂ W. Then, xU is an open neighborhood of x in G and f (xU) = f (x) f (U) ⊂ yW ⊂ V. Hence,
f is continuous.

The next result complements Lemma 1.

Lemma 2. Let f : S → K, p : S → T, and g : T → K be homomorphisms of left topological monoids with
open left shifts such that f = g ◦ p and p(S) = T. Assume that f and p are continuous and that for
every neighborhood O of the identity in K, there exists an open neighborhood V of the identity in T such that
f (p−1(V)) ⊂ O. Then, g is continuous.

Proof. By Lemma 1, it suffices to verify that g is continuous at the identity of T. Let O be an arbitrary
neighborhood of the identity in K. By our assumptions, there exists an open neighborhood V of the
identity eT in T such that f (p−1(V)) ⊂ O. It follows from the equality f = g ◦ p and the surjectivity of
p that g(V) = f (p−1(V)) ⊂ O, which implies the continuity of g at eT . Hence, g is continuous.

The corollary below is close to [4] (Proposition 1.5.10).

Corollary 1. Let S, T, K be left topological groups and f : S→ K and p : S→ T be continuous homomorphisms,
where K satisfies the T1 separation axiom and p is surjective. Assume that for every neighborhood O of the
identity in K, there exists a neighborhood V of the identity in T such that f (p−1(V)) ⊂ O. Then, there exists a
continuous homomorphism g : T → K satisfying f = g ◦ p.

Proof. One of the conditions of the corollary can be reformulated by saying that for every neighborhood
O of the identity in K, there exists a neighborhood V of the identity in T such that p−1(V) ⊂ f−1(O).
Since K is a T1-space, this implies that ker p ⊂ ker f . As S, T, K are groups, we can apply the first part
of [4] (Proposition 1.5.10) to conclude that there exists an (abstract) homomorphism g : T → K satisfying
f = g ◦ p. Hence, Lemma 2 implies the continuity of g.

The next algebraic fact is known as the induced homomorphism theorem (see [10] (Theorem 1.48)
or [11] (Theorem 1.6)).

Lemma 3. Let f : D → H and p : D → F be homomorphisms of semigroups such that the equality p(x) = p(y)
implies that f (x) = f (y) whenever x, y ∈ D. If p is surjective, then there exists a unique homomorphism
g : F → H satisfying f = g ◦ p.

A character of an arbitrary monoid G is a (not necessarily continuous) homomorphism of G to the
torus T. The continuity of a character, if applied, will always be specified explicitly.

Let X = ∏i∈I Xi be the product of a family {Xi : i ∈ I} of spaces endowed with the Tychonoff
product topology and a ∈ X be an arbitrary point. For every i ∈ I, the projection of X to the factor Xi
is denoted by pi. Furthermore, for every x ∈ X, we put:

diff(x, a) = {i ∈ I : pi(x) 6= pi(a)}.

Then:
ΣX(a) = {x ∈ X : |diff(x, a)| ≤ ω}

and:
σX(a) = {x ∈ X : |diff(x, a)| < ω}

are dense subspaces of X, which are called respectively the Σ-product and σ-product of the family
{Xi : i ∈ I} with the center at a. If every Xi is a monoid (group), we will always choose a to be the
identity e of X. In the latter case, ΣX(e) and σX(e) are dense submonoids (subgroups) of the product
monoid (group) X, and we shorten ΣX(e) and σX(e) to ΣX and σX, respectively.
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Assume that Y is a subset of the product X = ∏i∈I Xi of a family {Xi : i ∈ I} of sets and f : Y → Z
is an arbitrary mapping. We say that f depends on J, for some J ⊂ I, if the equality f (x) = f (y)
holds for all x, y ∈ Y with pJ(x) = pJ(y), where pJ : X → ∏i∈J Xi is the projection. It is clear that if f
depends on J, then there exists a mapping g of pJ(Y) to Z satisfying f = g ◦ pJ �Y.

The family of all sets J ⊂ I such that f depends on J is denoted by J ( f ) (see [1]). Observe that
∅ ∈ J ( f ) if and only if f is constant. In general, for a non-constant f , the family J ( f ) can fail to be a
filter, even if f is a continuous homomorphism of topological groups [1] (Example 2.14). For a detailed
study of J ( f ), see [1,2].

In the following definition, we introduce the notion of a retractable subspace of a product of
monoids, which is widely used in the article.

Definition 1. Assume that Di is a monoid with identity ei, where i ∈ I. For a nonempty subset J of I, we
define a retraction rJ of the product D = ∏i∈I Di by letting:

rJ(x)i =

{
xi if i ∈ J;

ei if i ∈ I \ J,
(2)

for each element x ∈ D. A subset S of D is said to be retractable if rJ(S) ⊂ S, for each J ⊂ I. If κ is an
infinite cardinal and the latter inclusion is valid for all subsets J of I with |J| ≤ κ, we say that S is κ-retractable.
Similarly, if the inclusion rJ(S) ⊂ S holds for each finite set J ⊂ I, we call S finitely retractable.

Sometimes, we use “countably retractable” in place of “ω-retractable”.
We recall that a subspace Y of a product X = ∏i∈I Xi is mixing if for arbitrary points x, y ∈

Y and any set J ⊂ I, there exists a point z ∈ Y such that pJ(z) = pJ(x) and pI\J(z) = pI\J(y)
(see [1] (Definition 1.2)).

The next lemma is very close to [1] (Lemma 3).

Lemma 4. Let D = ∏i∈I Di be a product of monoids and ei be the identity of Di, where i ∈ I. Let also S be
a finitely retractable submonoid of D. If x, y ∈ S and K, L are finite disjoint subsets of the index set I, then
there exists an element s ∈ S such that pK(s) = pK(x), pL(s) = pL(y) and si = ei for each i ∈ I \ (K ∪ L).
Furthermore, if S is retractable, then it is mixing.

Proof. Since S is finitely retractable, rK(x) and rL(y) are in S. Then, the element s = rK(x) · rL(y) ∈ S
satisfies the equalities in the first claim of the lemma.

Assume that S is retractable. Let J be a subset of I and x, y be arbitrary elements of S. Then,
both x1 = rJ(x) and y1 = rI\J(y) are elements of S, so z = x1 · y1 ∈ S satisfies pJ(z) = pJ(x) and
pI\J(z) = pI\J(y). Thus, S is mixing.

Projections of submonoids preserve the properties of being finitely retractable or κ-retractable; a
straightforward proof of this fact is omitted:

Lemma 5. Let D = ∏i∈I Di be a product of monoids and S be a finitely retractable submonoid of D. Then,
for every set J ⊂ I, the projection pJ(S) is a finitely retractable submonoid of DJ = ∏i∈J Di. The same
conclusion is valid for κ-retractability, for each κ ≥ ω.

The density, network weight and pseudocharacter of a space X are denoted by d(X), nw(X), and
ψ(X), respectively. Notice that the pseudocharacter of X is defined only if X is a T1-space. Regular
spaces are assumed to satisfy the T1 separation axiom.
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2. Finitely Retractable and ω-Retractable Submonoids of Products

Let us recall that a topologized group K (i.e., a group with an arbitrary topology) is said to be an
NSS (No Small Subgroups) group if there exists a neighborhood U of the identity eK in K that does not
contain nontrivial subgroups. This is equivalent to saying that for every element x ∈ K distinct from
eK, there exists an integer n such that xn /∈ U. Clearly, every subgroup H of an NSS group G is also an
NSS group provided H inherits its topology from G.

Proposition 2. Let D = ∏i∈I Di be a product of left topological monoids, S an arbitrary subgroup of D, and
f : S→ K a continuous homomorphism to a first countable left topological group K satisfying the T1 separation
axiom. If K is an NSS group, then f depends on a finite set E ⊂ I.

Proof. Replacing each Di with the projection pi(S) we can assume that the factors Di are left
topological groups. According to Proposition 1, one can find a countable set J ⊂ I and a continuous
homomorphism g : pJ(S) → K satisfying f = g ◦ pJ �S, where pJ : D → ∏i∈J Di is the projection.
Therefore, we can assume that the index set I is countable, say I = ω and D = ∏n∈ω Dn. Suppose
for a contradiction that the conclusion of the proposition fails to be true. Then, for every k ∈ ω, one
can find elements xk, yk ∈ S such that pi(xk) = pi(yk) for i = 0, . . . , k and f (xk) 6= f (yk). The element
zk = x−1

k · yk ∈ S satisfies pi(zk) = eDi for each i ≤ k, and f (zk) = f (xk)
−1 · f (yk) 6= eK.

Let U be a neighborhood of the identity in K that does not contain nontrivial subgroups. For every
k ∈ ω, choose an integer nk such that tk = f (zk)

nk /∈ U. Notice that pi(zk)
nk = eDi for each i = 0, . . . , k.

Hence, the sequence {znk
k : k ∈ ω} ⊂ S converges to the identity element of D. By the continuity of f ,

the sequence {tk : k ∈ ω} converges to the identity of K. However, the latter contradicts the fact that
tk /∈ U, for each k ∈ ω. This contradiction implies the required conclusion.

One can try to strengthen the conclusion of Proposition 2 as follows:

Question 1. Is it true, under the conditions of Proposition 2, that f has a finite type? In other words, can one
guarantee the continuity of the homomorphism g : pE(S)→ K satisfying f = g ◦ pE�S, for a finite set E ⊂ I?

We answer Question 1 in the negative, even if S is a dense subgroup of D. To present a counterexample,
we need the following result (see [12] (Lemma 4.7)):

Proposition 3. Let G be an uncountable separable topological abelian group such that the torsion subgroup
of G is countable. Then, there exists a discontinuous homomorphism h : G → T such that the graph
Gr(h) = {(x, h(x)) : x ∈ G} is a dense subgroup of G×T.

In fact, Proposition 3 is slightly more general than Lemma 4.7 in [12] since G is assumed to be
torsion-free there. However, almost the same argument works under the conditions of Proposition 3
as well.

Example 1. There exist a dense subgroup S of the compact topological group Tω and a continuous
homomorphism f : S→ K to a second countable topological NSS group K such that f fails to have a finite type.

Proof. Our construction of S, K, and f is quite simple. Let G0 be the usual compact torus group T.
Notice that the torsion subgroup of G0 is countable. Assume that for some n ∈ ω, we have defined a
dense subgroup Gn of Tn algebraically isomorphic to T. The topological group Gn is second countable
and, hence, separable. By Proposition 3, there exists a discontinuous homomorphism hn : Gn → T
such that Gn+1 = Gr(hn) = {(x, hn(x)) : x ∈ Gn} is a dense subgroup of Gn ×T. Denote by pn+1

n the
restriction to Gn+1 of the projection Gn ×T→ Gn. Clearly, pn+1

n is a continuous isomorphism of Gn+1

onto Gn. It follows, by induction, that each Gn is a dense subgroup of Tn, which admits a continuous
isomorphism (but not a homeomorphism) onto T.
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Denote by S the limit of the inverse sequence {Gn, pn+1
n : n ∈ ω}. Alternatively, one can describe

the group S as follows. For every n ∈ ω, let πn : Tω → Tn be the projection. Then, S is the subgroup of
Tω, which consists of all x ∈ Tn satisfying πn(x) ∈ Gn for each n ∈ ω. Since each Gn is dense in Tn,
the latter description of S implies that it is dense in Tω.

Let K = S and f be the identity isomorphism of S onto K. It is clear that S admits a continuous
isomorphism onto the NSS group T, so S and K are second countable NSS groups. It remains to
verify that f does not have a finite type. If f has a finite type, one can find n ∈ ω and a continuous
homomorphism g : Gn → K such that f = g ◦ πn�S. Since f is a topological isomorphism, so is πn�S.
It follows from πn�S = pn+1

n ◦ πn+1�S that pn+1
n is a topological isomorphism of Gn+1 onto Gn. Let

qn : Gn → Gn+1 be the mapping inverse to pn+1
n . Then, qn is also a topological isomorphism. As Gn+1

is the graph of the homomorphism hn : Gn → T, we have the equality hn = p2 ◦ qn, where p2 is the
projection of Gn ×T to the second factor. Hence, hn is continuous, which is a contradiction.

Under additional restrictions on S or K, we answer Question 1 affirmatively in Corollary 2 and
Theorems 2 and 5. In the second of these results, we actually consider a more general case of a
submonoid S of a product of topologized monoids. We assume, however, that S is finitely retractable
and K is a quasitopological group satisfying ψ(K) ≤ ω. In Theorem 5, we turn back to considering
subgroups S of products, but assume that the range K of the homomorphism f is a Lie group.

Corollary 2. Let D = ∏i∈I Di be a product of left topological groups, S a subgroup of D, and f : S → K a
continuous homomorphism to a first countable left topological NSS group K satisfying the T1 separation axiom.
If S satisfies pF(S) = ∏i∈F Di for each finite set F ⊂ I, then f has a finite type.

Proof. It follows from our assumptions about S that for every finite F ⊂ I, the restriction to S of
the projection pF : D → ∏i∈F Di = DF is an open homomorphism of S onto DF. By Proposition 2,
f depends on a finite set E ⊂ I. Hence, there exists a homomorphism g : DE → K satisfying f =

g ◦ pE�S. Since pE�S is an open continuous homomorphism, we conclude that g is continuous. Thus,
f has a finite type.

We will show in Proposition 8 that the above corollary remains valid for an arbitrary topological
NSS group K, without the assumption that K is first countable.

Problem 1. Can one weaken in Corollary 2 the first countability of K to ψ(K) ≤ ω (assuming that K
is regular)?

Let us study the dependence of f on a subset J of the index set I in more detail.

Lemma 6. Let S be a finitely retractable subspace of a product D = ∏i∈I Di of topologized monoids and
f : S→ K be a continuous mapping to a Hausdorff space K. Then, the following hold:

(a) T = S ∩ σD is dense in S.
(b) If f ∗ = f �T depends on a set J ⊂ I, then so does f . Hence, J ( f ) = J ( f ∗).

Proof. (a) is almost immediate. Indeed, take an arbitrary element x ∈ S. For every finite set F ⊂ I,
the element t = rF(x) is in S ∩ σD = T (the retraction rF appears in Definition 1) and satisfies
pF(t) = pF(x). This implies the density of T in S.

(b) If f depends on a set J ⊂ I, then f ∗ = f �T also depends on J, so J ( f ) ⊂ J ( f ∗) (see [1]
(Lemma 1.1)). Clearly, the first part of (b) is equivalent to the inclusion J ( f ∗) ⊂ J ( f ). Hence,
to complete the proof, it suffices to verify the latter inclusion.

Suppose for a contradiction that there exist J ∈ J ( f ∗) and elements x, y ∈ S such that pJ(x) =
pJ(y) and f (x) 6= f (y). Choose disjoint neighborhoods Ox and Oy of f (x) and f (y), respectively, in K.
By the continuity of f , there exist canonical open neighborhoods Ux and Uy of x and y, respectively,
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in D such that f (S ∩Ux) ⊂ Ox and f (S ∩Uy) ⊂ Oy. Take a finite set C ⊂ I such that Ux = p−1
C pC(Ux)

and Uy = p−1
C pC(Uy). Since S is finitely retractable, we have that rC(x) ∈ S ∩Ux and rC(y) ∈ S ∩Uy.

Hence, our choice of the sets Ux and Uy implies that f (rC(x)) ∈ f (S ∩Ux) ⊂ Ox and f (rC(y)) ∈
f (S ∩Uy) ⊂ Oy. It follows from the equality pJ(x) = pJ(y) and the definition of the retraction rC
(see (2)) that pJ(rC(x)) = pJ(rC(y)). Since rC(x) ∈ S ∩ σD = T, rC(y) ∈ S ∩ σD = T and f ∗ depends
on J, we have the equality f (rC(x)) = f (rC(y)). Therefore, f (rC(x)) ∈ Ox ∩Oy 6= ∅, which contradicts
the choice of Ox and Oy. We have thus proven that f depends on J and J ∈ J ( f ).

Notice that the mapping f in Lemma 6 is not assumed to be a homomorphism. Furthermore,
every nonempty topological space X can be given the structure of a topologized monoid by retaining
the topology of X, choosing an element e ∈ X, and defining an associative multiplication in X by
x · y = y for all x, y ∈ X with y 6= e and x · e = e · x = x for each x ∈ X. The assumption in Lemma 6
that the factors Di are monoids is used only for the possibility to apply the retractions rC of D, with
C ⊂ I, which in turn requires only a choice of a ‘fixed’ point eD ∈ D, the identity of D in our case.
Therefore, Lemma 6 can be easily reformulated in purely topological terms.

A different version of Lemma 6 is presented below. In it, we assume that the restriction of f to a
dense subspace T of S satisfies a condition considered in Lemma 2 and Corollary 1.

Proposition 4. Let S be a dense submonoid of a product D = ∏i∈I Di of semitopological monoids with open
shifts and f : S→ K be a continuous homomorphism to a Hausdorff paratopological group K. Let also T be a
dense subspace of S and J be a subset of I such that for every neighborhood O of the identity in K, there exists an
open neighborhood U of the identity in D such that U = p−1

J pJ(U) and f (T ∩U) ⊂ O. Then, f depends on J.

Proof. Suppose that there exist x, y ∈ S such that pJ(x) = pJ(y) and f (x) 6= f (y). Let a = f (x) and
b = f (y) and choose disjoint open neighborhoods Oa and Ob of a and b, respectively, in K. Furthermore,
by the continuity of multiplication in K, there exists an open neighborhood O of the identity eK in K
such that OaO ⊂ Oa and ObO ⊂ Ob.

Since f is continuous, we can find canonical open neighborhoods Ux and Uy of x and y,
respectively, in D such that:

f (S ∩Ux) ⊂ aO, f (S ∩Uy) ⊂ Ob.

By our assumptions, there exists a canonical open neighborhood Ue of the identity e in D such
that Ue = p−1

J pJ(Ue) and f (T ∩ Ue) ⊂ O. Take a finite set C ⊂ I such that Ux = p−1
C pC(Ux),

Uy = p−1
C pC(Uy) and Ue = p−1

C pC(Ue). Notice that Ue = p−1
F pF(Ue), where F = J ∩ C.

Our aim is to define elements x′, y′ ∈ T ∩Ue and z ∈ S satisfying zx′ ∈ Ux and y′z ∈ Uy. Let
x = (xi)i∈I and y = (yi)i∈I . For i ∈ I, let Ue,i = pi(Ue), Ux,i = pi(Ux) and Uy,i = pi(Uy), where pi is
the projection of D to the factor Di. For every i ∈ C, choose an open neighborhood Wi of the identity
ei in Di such that xiWi ∪Wi xi ⊂ Ux,i and yiWi ∪Wi yi ⊂ Uy,i. Since S is dense in D and the set xiWi is
open in Di for each i ∈ C, we can find an element z ∈ S such that:

pC(z) ∈∏
i∈F

xiWi × ∏
i∈C\F

Wi.

Let z = (zi)i∈I . Then, zi ∈ xiWi if i ∈ F and zi ∈ Wi if i ∈ C \ F. For every i ∈ F, the set xiWi is open
in Di. Since zie = zi ∈ xiWi, we can find an open neighborhood Vi of ei in Di such that Vi ⊂ Ue,i and
ziVi ⊂ xiWi. Further, for i ∈ C \ F, it follows from zi ∈ Wi that zieixi = zixi ∈ Wixi, so there exists an
open neighborhood Vi of ei in Di such that ziVixi ⊂Wixi. Again, making use of the density of T in S
and D, we can find an element x′ ∈ T such that:

pC(x′) ∈∏
i∈F

Vi × ∏
i∈C\F

Vixi.
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Let x′ = (x′i)i∈I . Then, x′i ∈ Vi if i ∈ F and x′i ∈ Vixi if i ∈ C \ F. Since Ue = p−1
F pF(Ue) and

x′i ∈ Vi ⊂ Ue,i for each i ∈ F, we see that x′ ∈ Ue. It follows from our choice of z and x′ that
zix′i ∈ ziVi ⊂ xiWi ⊂ Ux,i if i ∈ F and zix′i ∈ ziVixi ⊂ Wixi ⊂ Ux,i if i ∈ C \ F. Therefore, zx′ ∈ Ux.
A similar argument applies to finding an element y′ ∈ T ∩Ue such that y′z ∈ Uy.

Notice that our choice of the elements x′, y′ ∈ T ∩Ue implies that f (x′) ∈ f (T ∩Ue) ⊂ O and
f (y′) ∈ f (T ∩Ue) ⊂ O. It follows from zx′ ∈ S ∩Ux and y′z ∈ S ∩Uy that:

f (z) f (x′) = f (zx′) ∈ f (S ∩Ux) ⊂ aO

and:
f (y′) f (z) = f (y′z) ∈ f (S ∩Uy) ⊂ Ob.

Therefore, we have that f (z) f (x′) ∈ f (z)O ∩ aO 6= ∅ and f (y′) f (z) ∈ O f (z) ∩Ob 6= ∅. This implies
that f (z) ∈ aOO−1 ∩O−1Ob 6= ∅, and therefore, OaO ∩ObO 6= ∅. Since OaO ⊂ Oa and ObO ⊂ Ob,
we infer that Oa ∩Ob 6= ∅, which contradicts our choice of the sets Oa and Ob. Hence, f depends
on J.

Theorem 1. Let S be a dense submonoid of a product ∏i∈I Di of semitopological monoids with open shifts and
f : S→ K be a continuous homomorphism to a Hausdorff paratopological group K. Let also J be a subset of I
such that for every neighborhood O of the identity in K, there exists an open neighborhood U of the identity in D
such that U = p−1

J pJ(U) and f (S ∩U) ⊂ O. Then, f depends on J.

Proof. The required conclusion follows directly from Proposition 4 if we take T = S.

Corollary 3. Let S be a dense submonoid of a product ∏i∈I Di of semitopological monoids with open shifts
and f : S→ K be a continuous homomorphism to a Hausdorff first countable paratopological group K. Then,
f depends on a countable set J ⊂ I.

Proof. Let {On : n ∈ ω} be a local base at the identity of K. For every n ∈ ω, take a canonical open
neighborhood Un of the identity in D such that f (S ∩ Un) ⊂ On. Then, Un = p−1

Cn
pCn(Un), for a

finite subset Cn of I. Let J =
⋃

n∈ω Cn. Then, |J| ≤ ω and Un = p−1
J pJ(Un), for each n ∈ ω. Hence,

the required conclusion follows from Theorem 1.

Under different assumptions on S and K, Corollaries 1 and 2 in [2] state that every continuous
homomorphism f : S→ K has a countable type. This tempts us to raise the next problem:

Problem 2. Can one strengthen the conclusion of Corollary 3 by proving that f has a countable type (provided
that the space K is regular)?

The following result is close to [1] (Theorem 2.3). As a matter of fact, it is a version of the latter
theorem in the case when the factors of the product space D are topologized monoids and S is a finitely
retractable submonoid of D. It can be helpful to mention that a finitely retractable submonoid of
D = ∏i∈I Di is not necessarily finitely mixing (cf. Lemma 4), unless the index set I is finite. Hence,
Proposition 5 below does not follow from Theorem 2.3 in [1], but we do use the latter theorem in the
proof of the proposition applying it to a special retractable (hence, mixing) submonoid of S.

In what follows, we denote by [I]<ω the family of all finite subsets of a given set I.

Proposition 5. Let D = ∏i∈I Di be a product of topologized monoids, S be a finitely retractable submonoid of
D, and f : S → Z be a continuous mapping to a regular space Z. Then, J =

⋂J ( f ) is the smallest element
of J ( f ), and there exists a continuous mapping g of pJ(S) to Z satisfying f = g ◦ pJ �S, where pJ is the
projection of D to DJ = ∏i∈J Di.
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Proof. Let T = S ∩ σD. If F is a finite subset of I, then:

rF(T) ⊂ rF(S) ∩ rF(σD) ⊂ S ∩ σD = T,

so T is finitely retractable. Since T ⊂ σD, we conclude that T is retractable. Hence, T is mixing
according to Lemma 4. Let fT = f �T. It follows from [1] (Theorem 2.3) that J∗ =

⋂J ( fT) is
the smallest element of J ( fT), so fT depends on J∗. By Lemma 6 (b), f also depends on J∗ and
J =

⋂J ( f ) = J∗. Hence, there exists a mapping g : pJ(S)→ Z satisfying f = g ◦ pJ�S. Let us verify
the continuity of g.

Suppose for a contradiction that there exist a point y ∈ S and a net {yc : c ∈ C} in S such that
{pJ(yc) : c ∈ C} converges to pJ(y), but { f (yc) : c ∈ C} does not converge to f (y) and is outside
W, for a neighborhood W of f (y) in Z (the regularity of Z is used here). For K ∈ [I]<ω, define a
point uc

K ∈ D equal to the identity e of D on I \ K, to y on K \ J and to yc on J ∩ K. Since S is finitely
retractable, Lemma 4 implies that uc

K ∈ S. Then, the net {uc
K : (c, K) ∈ C× [I]<ω} converges to y in S.

Indeed, for any canonical neighborhood U of y in D, there exists c0 ∈ C such that pJ(yc) ∈ pJ(U) for
each c > c0. Take a finite set C ⊂ I such that U = p−1

C pC(U). If K is a finite subset of I with K ⊃ C and
c > c0, then the point uc

K belongs to U. Consequently, { f (uc
K) : (c, K) ∈ C× [I]<ω} converges to f (y)

and f (uc
K) ∈W for all (c, K) following some (c1, K1).

For c ∈ C and K ∈ [I]<ω , let yc
K be an element of S that is equal to e on I \ K and to yc on K. Since

pJ(uc
K) = pJ(yc

K), we have f (uc
K) = f (yc

K). For a fixed c ∈ C, the net {yc
K : K ∈ [I]<ω} converges to

yc, whence limK f (yc
K) = f (yc). The latter implies that f (yc

K) /∈W for some c > c1 and K ⊃ K1, while
f (yc

K) = f (uc
K) ∈W. This contradiction completes the proof.

In Theorem 2 below, we present an affirmative answer to Question 1 in the case when S is a
finitely retractable submonoid of a product of topologized monoids and K is a regular quasitopological
group. We recall that a quasitopological group is a semitopological group with continuous inversion
(see [4] (Section 1.2)). Every quasitopological group has a local base at the identity consisting of
symmetric sets.

Theorem 2. Let S be a finitely retractable submonoid of a product D = ∏i∈I Di of topologized monoids and
f : S → K be a continuous homomorphism to a regular quasitopological NSS group K satisfying ψ(K) ≤ ω.
Then, f has a finite type.

Proof. Let J =
⋂J ( f ). By Proposition 5, there exists a continuous mapping g : pJ(S)→ Z satisfying

f = g ◦ pJ�S. Since pJ and f are homomorphisms, so is g. Let us show that the set J is countable.
As in the proof of Proposition 5, we put T = S ∩ σD. Then, T is a retractable submonoid of both

S and D. Let fT = f �T. It follows from [1] (Corollary 1) (with T in place of S) that J∗ =
⋂J ( fT) is

the smallest element of J ( fT), |J∗| ≤ ω and fT depends on J∗. Hence, we can apply Lemma 6(b) to
conclude that J = J∗. Thus, J is countable.

By Lemma 5, the image pJ(S) is a finitely retractable submonoid of DJ = ∏i∈J Di. Therefore,
replacing S with pJ(S) and f with g, respectively, we can assume that the index set I is countable.

Claim 1. There exists a finite set E ⊂ I such that S ∩ p−1
E pE(e) ⊂ f−1 f (e), where e is the identity

element of D.

Suppose the claim is false. Since K is a quasitopological NSS group, there exists a symmetric
neighborhood O of the identity eK in K that does not contain nontrivial subgroups. Take a sequence
{En : n ∈ ω} of finite subsets of I such that En ⊂ En+1 for each n ∈ ω and I =

⋃
n∈ω En. By our

assumption, for every n ∈ ω, there exists xn ∈ S such that pEn(xn) = pEn(e) and yn = f (xn) 6= eK.
It follows from our choice of O that there exists an integer kn such that ykn

n /∈ O. Note that kn 6= 0.
Since the set O is symmetric, we can assume that kn > 0. Consider the sequence η = {xkn

n : n ∈ ω} of
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elements of S. It is clear that pEn(xkn
n ) = pEn(xn)kn = pEn(e), for each n ∈ ω. Hence, η converges to e

in S. This contradicts the continuity of f since f (xkn
n ) = ykn

n /∈ O, for each n ∈ ω. Claim 1 is proven.
From now on, we fix a set E ⊂ I as in Claim 1.

Claim 2. The homomorphism f depends on E.

According to Lemma 6, it suffices to verify that f �T depends on E. Take arbitrary elements
x, y ∈ T with pE(x) = pE(y) and suppose for a contradiction that f (x) 6= f (y). It follows from
x, y ∈ T ⊂ σD that the set C0 = diff(x, e)∪ diff(y, e) is finite. Since K is Hausdorff, we can find disjoint
open neighborhoods Ox and Oy of f (x) and f (y), respectively, in K. By the continuity of f , there exist
canonical open sets Ux and Uy in D containing x and y, respectively, such that f (S ∩Ux) ⊂ Ox and
f (S∩Uy) ⊂ Oy. Take a finite set C ⊂ I such that Ux = p−1

C pC(Ux) and Uy = p−1
C pC(y). We can assume

without loss of generality that E ∪ C0 ⊂ C. Put F = C \ E. Then, the elements x′ = rF(x), y′ = rF(y),
x′′ = rE(x) and y′′ = rE(y) belong to S ∩ σD = T (the retractions rE and rF are defined in (2)). It also
follows from our definitions that x = x′ · x′′, y = y′ · y′′, x′′ = y′′, and pE(x′) = pE(y′) = pE(e). Our
choice of the set E (see Claim 1) implies that f (x′) = f (y′) = eK. Therefore, we have:

f (x) = f (x′ · x′′) = f (x′) · f (x′′) = f (y′) · f (y′′) = f (y′ · y′′) = f (y).

This contradicts our assumption that f (x) 6= f (y) and proves Claim 2.
By Lemma 3, there exists a homomorphism h of pE(S) to K satisfying f = h ◦ pE�S, where

pE : D → ∏i∈E Di is the projection. Clearly, every continuous retraction is a quotient mapping. Since
pE = pE ◦ rE and the restriction to rE(S) of the projection pE is a homeomorphism of rE(S) onto pE(S),
we conclude that pE�S is a quotient mapping. Hence, the equality f = h ◦ pE�S implies that h is
continuous, as required.

The following auxiliary fact is well known in the topological algebra folklore. For the sake of
completeness, we supply the reader with a short proof of it.

Lemma 7. Every topological NSS group K is Hausdorff and satisfies ψ(K) ≤ ω.

Proof. Let e be the identity of K and N be the closure of the singleton {e} in K. If K fails to be Hausdorff,
then N is a nontrivial subgroup of K. By our assumptions, there exists an open neighborhood U of e
in K that does not contain nontrivial subgroups. Hence, N \U 6= ∅. Pick an element x ∈ N \U, and
choose an open symmetric neighborhood V of e in K such that V2 ⊂ U. Then, V ∩ xV = ∅—otherwise
x ∈ VV−1 = V2 ⊂ U, which contradicts the choice of x. Since xV is an open neighborhood of x, we
conclude that x does not belong to the closure of V. Hence, x /∈ N. This contradiction proves that K
is Hausdorff.

To show that ψ(K) ≤ ω, we take an open neighborhood U of e in K as above. There exists a
sequence {Un : n ∈ ω} of open symmetric neighborhoods of e in K such that U0 ⊂ U and U2

n+1 ⊂ Un,
for each n ∈ ω. Then, H =

⋂
n∈ω Un is a subgroup of K satisfying H ⊂ U0 ⊂ U. Hence, our choice of

U implies that H = {e}, whence the required inequality ψ(K) ≤ ω follows.

Combining Theorem 2 and Lemma 7, we deduce the following:

Corollary 4. Let S be a finitely retractable submonoid of a product ∏i∈I Di of topologized monoids and
f : S→ K be a continuous homomorphism to a topological NSS group K. Then, f has a finite type.

Corollary 5. Let S be a submonoid of a product D = ∏i∈I Di of topologized monoids and f : S → K be a
continuous homomorphism to a topological NSS group K. If σD ⊂ S, then f has a finite type.
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Proof. It follows from σD ⊂ S that rC(S) ⊂ σD ⊂ S, for each finite subset C of I. Hence, S is finitely
retractable. By Lemma 7, K is Hausdorff (hence, regular) and satisfies ψ(K) ≤ ω. It remains to apply
Theorem 2.

Proposition 6. Let S be a submonoid of a product D = ∏i∈I Di of semitopological monoids with open shifts
such that pJ(S) = ∏i∈J Di, for each countable set J ⊂ I. Then, every continuous homomorphism of S to a first
countable topological NSS group has a finite type.

Proof. It follows from the assumptions of the proposition that S is dense in D. Therefore, Corollary 3
implies that there exists a countable subset C of I such that f depends on C. Therefore, we can find
a homomorphism g : pC(S) → K satisfying f = g ◦ pC�S. Since projections of S fill all countable
subproducts of D, the restriction of pC to S is an open mapping (see, e.g., [2] (Lemma 7)). Hence, g is a
continuous homomorphism of pC(S) = DC = ∏i∈C Di to K. Applying Corollary 4 to DC and g in place
of S and f , respectively, we conclude that g has a finite type. Hence, f has a finite type as well.

Problem 3. In Proposition 6,

(a) is it possible to weaken the assumptions about S assuming that the projections of S fill all finite subproducts
of D?

(b) is it possible to drop the assumption that K is first countable?

Our next aim is to present an analogue of Corollary 2 in the case when K is a topological NSS
group. This requires an auxiliary result on continuous isomorphisms of topological NSS groups onto
metrizable left topological groups (see Corollary 6).

Proposition 7. Every Hausdorff topological group G with ψ(G) ≤ ω admits a continuous isomorphism onto
a left topological group H whose topology is generated by a left invariant metric. If G is an NSS group, then one
can choose H to be an NSS group as well.

Proof. Let G be a topological group satisfying ψ(G) ≤ ω. Choose a sequence {Un : n ∈ ω} of
open symmetric neighborhoods of the identity e in G such that U2

n+1 ⊂ Un for each n ∈ ω and
{e} = ⋂

n∈ω Un. If G is an NSS group, we can additionally assume that U0 does not contain nontrivial
subgroups. According to [4] (Lemma 3.3.10), there exists a continuous prenorm N on G such that:

Vn = {x ∈ G : N(x) < 1/2n} ⊂ Un ⊂ {x ∈ G : N(x) ≤ 2/2n},

for each n ∈ ω. It follows from our choice of the sets Un and the prenorm N that N(x) = 0 if and only
if x = e. Hence, N is a continuous norm on G.

We define a continuous left invariant metric d on G by letting d(x, y) = N(x−1y) for all x, y ∈ G.
Let Td be the topology of G generated by d. Clearly, Td is coarser than the original topology of G. We
claim that the space H = (G, Td) with the same multiplication is a left topological group.

First, we verify that the family B = {xVn : x ∈ G, n ∈ ω} is a base for Td. Indeed, take
arbitrary elements xVp and yVq of B and a point z ∈ xVp ∩ yVq. Then, x−1z ∈ Vp and y−1z ∈ Vq,
so N(x−1z) < 1/2p and N(y−1z) < 1/2q. There exists k ∈ ω such that N(x−1z) + 1/2k < 1/2p

and N(y−1z) + 1/2k < 1/2q. Since N is a prenorm, our choice of k implies that x−1zVk ⊂ Vp and
y−1zVk ⊂ Vq, whence it follows that zVk ⊂ xVp ∩ yVq. Since zVk ∈ B, this proves that B is a base for a
topology on G.

For an arbitrary element x ∈ G and an integer n ≥ 0, we have the equality:

xVn = {y ∈ G : d(x, y) < 1/2n}.

Hence, the elements of B are open in H and form a base for the metric topology Td.
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Finally, the left translations in G preserve the base B and, therefore, are open bijections of H onto
itself. Since the inverse of the left translation λx, with x ∈ G, is the left translation λx−1 , which is also
open, we conclude that λx is an autohomeomorphism of H. This shows that H is a left topological
group. Notice that if G is an NSS group, then V0 is an open neighborhood of the identity in H,
which does not contain nontrivial subgroups. Thus, the identity mapping of G onto H is the required
continuous isomorphism.

The next fact follows from Lemma 7 and Proposition 7.

Corollary 6. Every topological NSS group admits a continuous isomorphism onto a metrizable left topological
NSS group.

We can now present the following result complementing Corollary 2:

Proposition 8. Let D = ∏i∈I Di be a product of left topological groups, S a subgroup of D, and f : S→ K a
continuous homomorphism to a topological NSS group K. If pF(S) = ∏i∈F Di for each finite set F ⊂ I, then f
has a finite type.

Proof. According to Lemma 7, the group K is Hausdorff and satisfies ψ(K) ≤ ω. Hence, Corollary 6
implies that there exists a continuous isomorphism j : K → L onto a metrizable left topological NSS
group L. Let f ∗ = j ◦ f . We can apply Proposition 2 to f ∗ and find a finite subset E of the index
set I such that f ∗ depends on E. Therefore, there exists a homomorphism g : pE(S) → L satisfying
f ∗ = g ◦ pE�S.

S
f //

pE�S
��

f ∗

""

K

j
��

pE(S)
g // L

Let g∗ = j−1 ◦ g. Clearly, the homomorphism g∗ satisfies the equality f = g∗ ◦ pE�S. It follows from
our assumptions about S that the restriction pE�S is an open continuous homomorphism of S onto
pE(S) = DE. Since f is continuous, the latter equality implies the continuity of g∗. Hence, f has a
finite type.

Proposition 8 has several applications to the study of continuous homomorphic images. We give
here only two of them. Let us recall that a Tychonoff space X is called submetrizable if it admits a
weaker metrizable topology.

Corollary 7. Let D = ∏i∈I Di be a product of σ-compact left topological groups, S a subgroup of D, and
f : S → F(X) a continuous homomorphism to the free topological group F(X) on a submetrizable space X.
If pC(S) = ∏i∈C Di for each finite set C ⊂ I, then the subgroup f (S) of F(X) is σ-compact and has a countable
network. The same conclusion is valid for the free abelian topological group A(X) in place of F(X).

Proof. Since X is submetrizable, it follows from the main theorem in [13] (see a correction in [14]) that
F(X) is an NSS group. Therefore, by Proposition 8, one can find a finite set E ⊂ I and a continuous
homomorphism g : pE(S)→ F(X) satisfying f = g ◦ pE�S. In particular, the subgroup f (S) of F(X) is
a continuous homomorphic image of the group pE(S) = DE = ∏i∈E Di. Since the set E is finite and
each factor Di is σ-compact, so are DE and its continuous image f (S) = g(DE).

Further, by [13] (Lemma 1), the group F(X) admits a continuous metric and hence is submetrizable.
Since every compact subspace of a submetrizable space has a countable base (hence a countable
network) and f (S) is σ-compact, we conclude that f (S) has a countable network. Finally, the above
argument applies without changes to the group A(X).
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Remark 1. If in the assumptions of Corollary 7, one replaces the σ-compactness of the factors Di with the
requirement d(Di) ≤ ω (resp., nw(Di) ≤ ω) for each i ∈ I, then accordingly, the conclusion changes to
d( f (S)) ≤ ω (resp., nw( f (S)) ≤ ω). To see it, one can apply the argument in the proof of the corollary along
with the fact that continuous mappings do not increase either the density or network weight.

Another curious application of Proposition 8 is given below. We recall that a space X is feebly
compact if every locally finite family of open sets in X is finite. In Tychonoff spaces, feeble compactness
and pseudocompactness coincide.

Corollary 8. Let D = ∏i∈I Di be a product of feebly compact paratopological groups, S a subgroup of D, and
f : S→ K a continuous homomorphism onto a topological NSS group K. If pF(S) = ∏i∈F Di for each finite set
F ⊂ I, then K is a compact Lie group.

Proof. It follows from Proposition 8 that f has a finite type, so we can find a finite set E ⊂ I and a
continuous homomorphism g : pE(S)→ K satisfying f = g ◦ pE�S. Hence, the group K is a continuous
homomorphic image of the group pE(S) = DE = ∏i∈E Di.

By Ravsky’s result (see [15] (Theorem 4.1) or [16] (Theorem 2.7.9)), the product group DE is
feebly compact. Hence, the continuous image K of DE is also feebly compact. By Lemma 7, the
topological group K is Hausdorff and has a countable pseudocharacter. Since the space K is Tychonoff
and feeble compactness coincides with pseudocompactness in Tychonoff spaces, we conclude that K is
pseudocompact. Furthermore, every pseudocompact topological group of countable pseudocharacter
is compact and has a countable base [16] (Proposition 2.3.12). Hence, K is compact. Finally, every
(locally) compact topological NSS group is a Lie group, by [17].

3. Open, Dense, and More General Submonoids of Products

There exist many results on the subject of when a continuous mapping f : S → K defined on
a subspace S of a Tychonoff product D = ∏i∈I Di of spaces has a countable (or even finite) type.
The article [18] by M. Hušek presented a comprehensive survey of results and methods on factoring
continuous mappings. Corollaries 1–3 in [2], as well as our results in Section 2 contribute to the
corresponding study of continuous homomorphisms.

The wealth of results and methods for factoring continuous mappings and homomorphisms
enables us to use the following two-step strategy for solving the general problem formulated in the
introduction. First, we impose purely topological restrictions on S, D, and K to guarantee that every
continuous mapping (or homomorphism) f : S→ K has a countable type. Second, making use of the
algebraic structures of S and K and the fact that f is a homomorphism, we try to show that, actually,
f has a finite type. In fact, we apply this strategy in the proof of Theorem 2. We use a similar approach
in the proof of Theorem 3 below.

A space X is said to be pseudo-ω1-compact if every locally finite family of open sets in X is
countable. Several authors use the term Discrete Countable Chain Condition (DCCC) in place of
pseudo-ω1-compactness. Let us also recall that a space Y has a regular Gδ-diagonal if there exists a
countable family {On : n ∈ ω} of open neighborhoods of the diagonal ∆Y = {(y, y) : y ∈ Y} in Y×Y
such that ∆Y =

⋂
n∈ω On. Notice that a space with a regular Gδ-diagonal is Hausdorff. It follows from

Proposition 7 that every topological group of a countable pseudocharacter has a regular Gδ-diagonal
(see also [2] (Lemma 9)).

A subset X of a (semi)topological group G is called ω-narrow (in G) if for every neighborhood
U of the identity e in G, there exists a countable set C ⊂ G such that X ⊂ CU ∩UC. Similarly, G is
ω-narrow if it is ω-narrow in itself (see [4] (Section 3.4)). These concepts will be used in the proof of
the following theorem.

Theorem 3. Let S be a submonoid of a product D = ∏i∈I Di of left topological monoids such that
pJ(S) = ∏i∈J Di, for each countable subset J of I. If D is pseudo-ω1-compact, then the following are valid:



Axioms 2020, 9, 23 15 of 18

(a) every continuous homomorphism f : S→ K to a topological NSS group K has finite type;
(b) in (a), the image f (S) admits a weaker separable metrizable topology.

Proof. By virtue of Lemma 7, we have that ψ(K) ≤ ω. Hence, K has a regular Gδ-diagonal. Since
S fills all countable subproducts of D, it follows from [19] (Theorem 3.8) with κ = ω and α = ω1 (see
also [2] (Lemma 8)) that S is pseudo-ω1-compact. Then, we apply [20] (Theorem 5) or [2] (Proposition 3])
to conclude that f depends on a countable set J ⊂ I. Hence, we can find a mapping g of pJ(S) = ∏i∈J Di
to K satisfying f = g ◦ pJ �S. It follows from our assumptions about S that the restriction of pJ to S is an
open mapping (see, e.g., [2] (Lemma 7)), so the equality f = g ◦ pJ �S implies that g is continuous.

Since the monoid pJ(S) = ∏i∈J Di = DJ is obviously (finitely) retractable, we can apply
Corollary 4 to the homomorphism g to conclude that g has a finite type. Hence, the homomorphism
f = g ◦ pJ �S has a finite type, as well.

Note that Y = f (S) ⊂ K is pseudo-ω1-compact as a continuous image of S. Hence, Y is an
ω-narrow subspace of K [4] (Proposition 5.1.15). Applying Theorem 5.1.19 of [4], we conclude that
the subgroup L = 〈Y〉 of K generated by Y is also ω-narrow. Further, we have that ψ(L) ≤ ψ(K) ≤
ω. By virtue of [4] (Corollary 3.4.25), every Hausdorff ω-narrow topological group of a countable
pseudocharacter admits a continuous isomorphism onto a separable metrizable topological group.
Hence, the subspace Y of L also admits a weaker separable metrizable topology.

Problem 4. Does Theorem 3 (a) remain valid without the assumption that D is pseudo-ω1-compact? What if,
additionally, the group K is first countable?

The following simple lemma is not used in this article. However, it clarifies the permanence
properties of the class of topologized monoids (semigroups) with open shifts.

Lemma 8. Let D = ∏n
i=1 Di be a product of topologized monoids (semigroups) with open left shifts. Then the

left shifts in D are also open. Further, if f : G → H is an open continuous homomorphism of a topologized
monoid (semigroup) G with open shifts onto a topologized monoid (semigroup) H, then the left shifts in H are
also open.

Proof. Take an arbitrary element x = (x1, . . . , xn) ∈ D. If U = U1 × · · · ×Un is a basic open set in D,
then the set xU = x1U1 × · · · × xnUn is open in D. Clearly, every open set in D is the union of a family
of basic open sets, so we conclude that the left shifts in D are open.

To prove the second part of the lemma, take an element y ∈ H and an open set V ⊂ H. Choose
x ∈ G with f (x) = y. Since the set U = f−1(V) is open in G, so is xU. Hence, yV = f (xU) is open
in H.

It is worth noting that Lemma 8 is not valid for infinite products. In fact, the left shifts in the
product D = ∏i∈I Di of left topological monoids are open if and only if each factor Di has open left
shifts and almost all the factors Di, except for finitely many of them, are groups. This result easily
follows from the purely algebraic fact that if all left shifts in a monoid D are onto mappings, then D is
a group (apply Exercise 14 on page 9 of [21]).

In what follows, the codomain K of a continuous homomorphism f : S→ K will be an arbitrary
locally compact topological NSS group or, equivalently, a Lie group (see [17]). Prior to the proof of
Theorem 4, the main result of this section, we present two lemmas that do almost all the job. The first
of them is close to [22] (Corollary 3.4) and, in fact, is a special case of [23] (Theorem 0.5), which states
that every compact Hausdorff semigroup with separately continuous multiplication and two-sided
cancellation is a topological group.

Lemma 9. Let P be a compact submonoid of a Hausdorff semitopological group G. Then, P with the topology
inherited from G is a topological group.
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Lemma 10. Let S be an arbitrary submonoid of a product D = ∏i∈I Di of topological monoids and f : S→ K
be a continuous homomorphism to a Lie group K. Then, there exists a finite set E ⊂ I such that for every
neighborhood O of the identity in K, one can find a canonical open neighborhood V of the identity in D satisfying
V = p−1

E pE(V) and f (S ∩V) ⊂ O.

Proof. Clearly, the group K is Hausdorff and first countable. Let O∗ be an open symmetric neighborhood
of the identity eK in K that does not contain nontrivial subgroups. There exists an open neighborhood
O∗ of eK such that the closure of O∗ in K is compact and contained in O∗. Take a canonical open
neighborhood U of the identity element e in D such that f (S ∩U) ⊂ O∗. Then, U = p−1

E pE(U), for a
finite subset E of I. We claim that the set E is as required.

Choose a local base {On : n ∈ ω} at the identity in K. Let V be the family of canonical open
neighborhoods V of e in D satisfying V = p−1

E pE(V). Let us put:

P =
⋂
{ f (S ∩V) : V ∈ V}.

It is easy to see that P is a compact submonoid of K. Indeed, take arbitrary elements x, y ∈ P. Given an
element V ∈ V , choose W ∈ V with W2 ⊂ V. Then, x, y ∈ P ⊂ f (S ∩W), whence it follows that:

xy ∈ f (S ∩W) · f (S ∩W) ⊂ f (S ∩W) · f (S ∩W) ⊂ f (S ∩W2) ⊂ f (S ∩V).

Since the above inclusions are valid for every V ∈ V , we see that xy ∈ P. This proves that PP ⊂ P.
It is also clear that eK ∈ P, so P is a submonoid of K. It also follows from U ∈ V and the inclusion
f (S ∩U) ⊂ O∗ that P ⊂ f (S ∩U) ⊂ O∗, so P is compact. Thus, P is a compact submonoid of K.

Since the Lie group K is locally compact, it follows from Lemma 9 that P is a subgroup of K.
Hence, the inclusions P ⊂ O∗ ⊂ O∗ and our choice of O∗ together imply that P = {eK}. Let m ∈ ω be
an arbitrary integer. If f (S ∩V) \Om 6= ∅ for each V ∈ V , then the family { f (S ∩V) \Om : V ∈ V} is
a base of a filter, which contains the compact set f (S ∩U) \Om. Hence, the set:⋂ {

f (S ∩V) \Om : V ∈ V
}
=
⋂ {

f (S ∩V) : V ∈ V
}
\Om = P \Om

is nonempty. Clearly, this is impossible since P = {eK} and eK ∈ Om. We have thus proven that there
exists V ∈ V satisfying f (S ∩V) ⊂ Om. This completes the proof of the lemma.

Theorem 4. Let S be a submonoid of a product D = ∏i∈I Di of topological monoids with open shifts such
that either:

(a) pC(S) = ∏i∈C Di, for each finite set C ⊂ I, or
(b) S is open and dense in D.

Then, every continuous homomorphism f : S→ K to a Lie group K has a finite type.

Proof. By Lemma 10, there exists a finite set E ⊂ I such that for every neighborhood O of the identity
in K, one can find a canonical open neighborhood V of the identity e in D satisfying V = p−1

E pE(V)

and f (S ∩V) ⊂ O.
In both cases (a) and (b), S is dense in D. Hence, Theorem 1 implies that f depends on E.

Therefore, there exists a homomorphism g : pE(S) → K satisfying f = g ◦ pE�S. We claim that the
homomorphism g is continuous. Indeed, in Case (a), we have that pC(S) = DC for each finite set C ⊂ I,
so the restriction pE �S is an open continuous mapping of S onto DE. The same conclusion is valid
in Case (b) since S is open in D. Hence, the continuity of g follows from the equality f = g ◦ pE�S.
We have thus proven that f has a finite type.

Corollary 9. Let S be a submonoid of a product D = ∏i∈I Di of topological monoids with open shifts such that
pC(S) = ∏i∈C Di, for each finite set C ⊂ I. Then, every continuous character of S has a finite type.
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Corollary 10. Let S be a submonoid of a product D = ∏i∈I Di of topological monoids with open shifts such
that pC(S) = ∏i∈C Di, for each finite set C ⊂ I. Then, every continuous homomorphism of S to a discrete
group has a finite type.

The next problem suggests a way of generalizing Item (b) of Theorem 4 (see, e.g., Theorem 1).

Problem 5. Let D = ∏i∈I Di be a product of topological monoids with open shifts and S be an open submonoid
of D. Does every continuous homomorphism of S to a Lie group have a finite type?

In the special case when S is a subgroup of the product D = ∏i∈I Di of topological monoids Di,
we solve Problem 5 in the affirmative, even without assuming S to be open in D.

Theorem 5. Let D = ∏i∈I Di be a product of topological monoids and S be an arbitrary subgroup of D. Then,
every continuous homomorphism f : S→ K to a Lie group K has a finite type.

Proof. Replacing the factors Di with the projections Si = pi(S) of S and observing that each Si is a
paratopological group, we can assume that each factor Di is a paratopological group. Hence, so are D
and S.

Let {On : n ∈ ω} be a local base at the identity eK of K. It follows from Lemma 10 that there
exists a finite set E ⊂ I such that for every n ∈ ω, one can find an open neighborhood V of the
identity e in D satisfying V = p−1

E pE(V) and f (S ∩V) ⊂ On. Since S, K, and T = pE(S) ⊂ DE are left
topological groups, we can apply Corollary 1 to find a continuous homomorphism g : T → K satisfying
f = g ◦ pE�S. Hence, f has a finite type.

The following two corollaries are immediate from Theorem 5.

Corollary 11. Let D = ∏i∈I Di be a product of topological monoids and S be a subgroup of D. Then, every
continuous character of S has a finite type.

Corollary 12. Let D = ∏i∈I Di be a product of topological monoids and S be a subgroup of D. Then, every
continuous homomorphism of S to a discrete group has a finite type.

We do not know whether one can drop the requirement on S to be open in Theorem 4 (b):

Problem 6. Let D = ∏i∈I Di be a product of topological monoids with open shifts and S be an arbitrary dense
submonoid of D. Does every continuous homomorphism of S to a Lie group have a finite type?
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