

Article **The Tubby Torus as a Quotient Group**

Sidney A. Morris ^{1,2} (D)

- ¹ School of Science, Engineering and Information Technology, Federation University Australia, P.O.B. 663, Ballarat, VIC 3353, Australia; morris.sidney@gmail.com
- ² Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC 3086, Australia

Received: 23 December 2019; Accepted: 17 January 2020; Published: 20 January 2020

Abstract: Let *E* be any metrizable nuclear locally convex space and \hat{E} the Pontryagin dual group of *E*. Then the topological group \hat{E} has the tubby torus (that is, the countably infinite product of copies of the circle group) as a quotient group if and only if *E* does not have the weak topology. This extends results in the literature related to the Banach–Mazur separable quotient problem.

Keywords: torus; tubby torus; separable quotient problem; locally convex space; nuclear space; Banach space; pontryagin duality; weak topology

1. Introduction and Preliminaries

The Separable Quotient problem for Banach spaces has its roots in the 1930s and is due to Stefan Banach and Stanisław Mazur. While a positive answer is known for various classes of Banach spaces [1], such as reflexive Banach spaces, weakly compactly generated Banach spaces, and more generally Banach-like spaces [2], the general problem remains unsolved.

Problem 1. (*Separable quotient problem for Banach spaces*) Does every infinite-dimensional Banach space have a quotient Banach space which is separable and infinite-dimensional?

The following problem stated in [3] is also unsolved, but a negative answer to it would give a negative answer to Problem 1.

Problem 2. Does every infinite-dimensional Banach space have a quotient topological group which is homeomorphic to the countably infinite product, \mathbb{R}^{ω} , of copies of \mathbb{R} ?

This suggests another question which we have not seen mentioned in the literature. We state the problem and answer it.

Question 1. Does every infinite-dimensional Banach space have a quotient topological space which is homeomorphic to \mathbb{R}^{ω} ?

Question 1 has a positive answer, although it uses very powerful machinery due to Toruńczyk. It is known [4] that every infinite-dimensional Fréchet space *F* (that is, a complete metrizable locally convex space) is homeomorphic to an infinite-dimensional Hilbert space *H*. So an infinite-dimensional Banach space *B* (indeed an infinite-dimensional Fréchet space) is homeomorphic to an infinite-dimensional Fréchet space) is homeomorphic to an infinite-dimensional Hilbert space *H*, which obviously has the infinite-dimensional separable Hilbert space ℓ_2 as a quotient. Further, by the separable case of Toruńczyk's theorem which is known as the Kadec–Anderson theorem, the separable Fréchet space \mathbb{R}^{ω} is homeomorphic to ℓ_2 , from which the positive answer to Question 1 follows.

Noting that Problem 2 remains open, it is natural to ask if every infinite-dimensional Banach space has a quotient topological group which is a separable metrizable topological group which is infinite-dimensional as a topological space. This was answered in the positive by the following theorem.

Theorem 1. [5] Every locally convex space E, which has a subspace which is an infinite-dimensional Fréchet space, has the tubby torus, \mathbb{T}^{ω} , as a quotient group, where \mathbb{T} is the compact circle group. In particular, this is the case if E is an infinite-dimensional Banach space.

We should mention the following result.

Theorem 2. [6] If *E* is any infinite-dimensional Fréchet space which is not a Banach space, then *E* has the locally convex space \mathbb{R}^{ω} as a quotient vector space.

Corollary 1. If *E* is any infinite-dimensional Fréchet space which is not a Banach space, then *E* has the tubby torus \mathbb{T}^{ω} as a quotient group.

One might suspect that every infinite-dimensional locally convex space has the tubby torus as a quotient group. This is shown to be false in [5] for the free locally convex space φ on a countably infinite discrete space. Indeed in [7] it is shown that if *X* is a countably infinite k_{ω} -space, then the free topological vector space on *X*, which is a connected infinite-dimensional (in the topological sense) topological group, does not have the tubby torus as a quotient group or even any infinite-dimensional (in the topological sense) metrizable quotient group.

It was recently proved that free topological groups on infinite connected compact spaces also have the tubby torus as a quotient group.

Theorem 3. [7] Let $F_G(X)$ and $A_G(X)$ be the Graev free topological group and the Graev free abelian topological group, respectively, on an infinite connected compact Hausdorff space. Then the connected topological groups $F_G(X)$ and $A_G(X)$ have the tubby torus \mathbb{T}^{ω} as a quotient group.

It follows from Theorem 2.5 of [3] that every non-metrizable connected locally compact abelian group has the tubby torus as a quotient group. But as a connected locally compact abelian group *G* is isomorphic as a topological group to the product $\mathbb{R}^n \times K$, for some non-negative integer *n* and compact abelian group *K*, and \mathbb{R}^n and all compact metrizable groups are separable, we see that if *G* is non-separable then it is non-metrizable. So we obtain the following result as a consequence.

Theorem 4. Every non-separable connected locally compact abelian group has the tubby torus as a quotient group.

As mentioned earlier, Problem 1 has been aswered for dual-like groups. In particular there is the following powerful and beautiful theorem.

Theorem 5. [8] If *B* is the Banach space dual of any infinite-dimensional Banach space, then *B* has a separable infinite-dimensional quotient Banach space.

Corollary 2. *If B is the Banach space dual of any infinite-dimensional Banach space, then B has the tubby torus as a quotient group.*

Recall that if *G* is a (Hausdorff) abelian topological group, then we denote by \hat{G} the group of all continuous homomorphisms of *G* into the circle group \mathbb{T} , where \hat{G} has the compact-open topology.

There is a natural homomorphism $\alpha : G \to \widehat{\widehat{G}}$. The Pontryagin–van Kampen duality theorem is stated below and a discussion and proof appear in [9,10].

Theorem 6. [9,10] If G is any locally compact abelian group then the map α is an isomorphism of topological groups of G onto \hat{G} . Also, if H is a closed subgroup of the locally compact abelian group G, then \hat{H} is a quotient group of \hat{G} , and if A is a quotient group of G, then \hat{A} is isomorphic as a topological group to a closed subgroup of \hat{G} . Further, the map α restricted to H is an isomorphism of topological groups of H onto the subgroup $\alpha(H)$ of \hat{G} .

The following is less well-known.

Let *E* be a locally convex space. As *E* is a topological group, the topological group \widehat{E} consisting of all continuous group homomorphisms of *E* into \mathbb{T} with the compact-open topology is a topological group, as is $\widehat{\widehat{E}}$. As mentioned above, there is a natural homomorphism of *E* into $\widehat{\widehat{E}}$.

Theorem 7. [11] Proposition 15.2. Let *E* be a complete metrizable locally convex space (that is a Fréchet space). Then α is an isomorphism of topological groups of *E* onto \hat{E} .

We note that Theorem 7 does not tell us whether, for example α restricted to a closed subgroup H of E is an isomorphism of topological groups of H onto the subgroup $\alpha(H)$ of \widehat{E} . In fact this is not always true. §11 of [12] gives an example of a closed subgroup H of a Fréchet space E such that α restricted to H is not an isomorphism of topological groups of H onto its image in \widehat{E} . To see how badly things can go "wrong", we note Theorem 6.1 of [11]: Let E be a metrizable locally convex space. If E is not a nuclear space, then it has a discrete subgroup H such that there are no non-trivial continuous homomorphisms from span(H)/H into \mathbb{T} , where span(H) denotes the linear span in E of H.

Theorem 5 leads us then to the natural question:

Problem 3. If *E* is any infinite-dimensional Fréchet space which does not have the weak topology and \hat{E} is its dual topological group, does \hat{E} have the tubby torus as a quotient group? In particular, is this the case for *E* a Banach space or a Schwartz space?

This question is open, however a positive answer is given for nuclear spaces in the next section.

2. The Main Result

Definition 1. A topological group G is said to be reflexive if the natural mapping α from G to \hat{G} is an isomorphism of topological groups. The topological group G is said to be strongly reflexive if every closed subgroup and every Hausdorff quotient group of G is reflexive.

Theorem 8. [12] (Theorem 20.35) Every complete metrizable nuclear locally convex space is strongly reflexive.

Proposition 1. [11] (Proposition 17.1(c)) Let H be a closed subgroup of a strongly reflexive topological group G. Then \hat{H} is isomorphic as a topological group to a quotient group of \hat{G} .

Theorem 9. Let *E* be a metrizable nuclear locally convex space. Then \hat{E} has the tubby torus \mathbb{T}^{ω} as a quotient group if and only if *E* does not have the weak topology.

Proof. By Theorem 2 of [13], if *H* is a dense subgroup of the metrizable topogical group *G*, then \hat{G} is isomorphic as a topological group to \hat{H} . So the dual group \hat{E} of *E* is isomorphic as a topological group to the dual group of the completion of *E*. So there is no loss of generality in assuming that *E* is complete. Further, the completion of a metrizable nuclear locally convex space is a metrizable nuclear locally convex space by Theorems 20.34 and 20.20 of [12].

The theorem in [14] says that a locally convex space E has the weak topology if and only if every discrete subgroup of E is finitely generated. However, its proof there gives rather more. Namely, the locally convex space E does not have the weak topology if and only if E contains a discrete free abelian subgroup S which is not finitely generated.

So if the metrizable nuclear locally convex space E does not have the weak topology, then it has a subgroup S isomorphic as a topological group to a restricted direct product of \mathbb{Z}_i , i = 1, 2, ..., n, ..., where each \mathbb{Z}_i is isomorphic as a topological group to the discrete \mathbb{Z} of integers. Noting §3 of [15], we see that the dual group of this restricted direct product of \mathbb{Z}_i is the tubby torus \mathbb{T}^{ω} , and it then follows from Theorem 8 and Proposition 1 that \hat{E} has the tubby torus as a quotient group, as required.

On the other hand if the complete metrizable locally convex space *E* has the weak topology, then it is isomorphic as a locally convex space to \mathbb{R}^{ω} . So its dual group \widehat{E} is isomorphic as a topological group to the locally convex space φ . However, as mentioned earlier, it is proved in [5] (and generalized in [7]), that φ does not have the tubby torus as a quotient group, which completes the proof. \Box

Funding: This research received no external funding.

Acknowledgments: The author thanks the reviewers for their careful refereeing.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Ferrando, J.C.; Kąkol, J.; López-Pellicer, M.; Śliwa, W. On the separable quotient problem for Banach spaces. *Functiones et Approximato Commentarii Mathematici* **2018**, *59*, 153–173. [CrossRef]
- Morris, S.A.; Yost, D.T. An observation on the separable quotient problem for Banach spaces. *Axioms* 2020, 9, 7. [CrossRef]
- 3. Leiderman, A.G.; Morris, S.A.; Tkachenko, M.G. The separable quotient problem for topological groups. *Isr. J. Math.* **2019**, *234*, 331–369. [CrossRef]
- 4. Toruńczyk, H. Characterizing Hilbert space topology. Fundam. Math. 1981, 111, 247–262. [CrossRef]
- 5. Gabriyelyan, S.S.; Morris, S.A. A topological group observation on the Banach–Mazur separable quotient problem. *Topol. Appl.* **2019**, *259*, 283–286. [CrossRef]
- 6. Eidelheit, M. Zur Theorie der Systeme linearer Gleichungen. *Studia Math.* **1936**, *6*, 130–148. [CrossRef]
- Morris, S.A. A remark on the separable quotient problem for topological groups. *Bull. Aust. Math. Soc.* 2019, 100, 453–457. [CrossRef]
- Argyros, S.A.; Dodos, P.; Kanellopoulos, V. Unconditional families in Banach spaces. *Math. Ann.* 2008, 341, 15–38. [CrossRef]
- 9. Morris, S.A. *Pontryagin Duality and the Structure of Locally Compact Abelian Groups*; London Math. Soc. Lecture Notes Series 29; Cambridge University Press: Cambridge, UK, 1977.
- 10. Hofmann, K.H.; Morris, S.A. *The Structure of Compact Groups*, 3rd ed.; Walter de Gruyter GmbH: Berlin, Germany, 2013.
- 11. Banaszczyk, W. Additive Subgroups of Topological Vector Spaces; Springer: Berlin, Germany, 1991.
- Aussenhofer, L. Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups. In *Dissertationes Mathematicae*; Polska Akademia Nauk Instytut Matematyczny: Warszawa, Poland, 1999.
- 13. Chasco, M.J. Pontryagin duality for metrizable groups. Arch. Math. 1998, 70, 22-28. [CrossRef]
- Morris, S.A. A topological group charachterization of those locally convex spaces having their weak topology. *Math. Ann.* 1972, 195, 330–331. [CrossRef]
- 15. Brown, R.; Higgins, P.J.; Morris, S.A. Countable products and sums of lines and circles: Their closed subgroups, quotients and duality properties. *Math. Proc. Camb. Philos. Soc.* **1975**, *78*, 19–32. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).