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Abstract: By Lomov’s S.A. regularization method, we constructed an asymptotic solution of the
singularly perturbed Cauchy problem in a two-dimensional case in the case of violation of stability
conditions of the limit-operator spectrum. In particular, the problem with a ”simple” turning point
was considered, i.e., one eigenvalue vanishes for t = 0 and has the form tm/na(t) (limit operator is
discretely irreversible). The regularization method allows us to construct an asymptotic solution that
is uniform over the entire segment [0, T], and under additional conditions on the parameters of the
singularly perturbed problem and its right-hand side, the exact solution.

Keywords: singularly perturbed Cauchy problem; regularized asymptotic solution; rational ”simple”
turning point

1. Introduction

This work consists of five parts. The first part is an introduction. The second part is nomenclature.
The third part presents the formulation of the Cauchy problem in the two-dimensional case if stability
conditions for the spectrum of the limit operator are violated (the spectrum-stability condition means
that eigenvalues of the operator A(τ) satisfy conditions λ1(τ) 6= λ2(τ), τ ∈ [0, T] and λi 6= 0, i = 1, 2).

A ”simple” pivot point of a limit operator (matrix A(τ)) is understood when one eigenvalue
vanishes at one point (i.e., matrix A(τ) is irreversible at this point). In [1], the case was considered of
when one of the eigenvalues that had the form τna(τ), a(τ) 6= 0, n was natural; in [2] the features of
the solution were identified and described for a rational ”simple” turning point in the one-dimensional
case (when the eigenvalue had the form τm/na(τ), a(τ) 6= 0).

In this article, we consider the case with a ”simple” turning point when one of the two eigenvalues
of the operator vanishes at τ = 0 and has the form τm/na(τ), a(τ) 6= 0.

The fourth part describes the formalism of the Lomov regularization method [1,3,4] that allows
one to construct an asymptotic solution uniform over the entire segment [0, T], under additional
conditions on the parameters of a singularly perturbed problem, and its right side is the exact solution.
The idea of this paper goes back to [1], in which methods were developed for solving a singularly
perturbed Cauchy problem in the case of a ”simple” turning point of a limit operator with a natural
exponent. A lemma is given on the estimation of basic singular functions, a theorem on the point
solvability of iterative problems is proved, and the leading term of the asymptotic behavior of a
singularly perturbed Cauchy problem is written out.
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In the fifth part of the paper, we prove a theorem on the asymptotic behavior of a regularized
series and a theorem on the passage to the limit as a small parameter tends to zero. For a parabolic
equation, an example of solving a singularly perturbed Cauchy problem with a fractional turning
point λ(τ) = τ1/2 is given.

The sixth part is the conclusion.

2. Problem Formulation

Consider the Cauchy problem:{
ε̄u̇(τ) = A(τ)u(τ) + h(τ),
u(0, ε) = u0,

(1)

where

(1) τ is a variable, τ ∈ [0, T];
(2) u(τ) is a function, u(τ) ∈ C∞[0, T];
(3) A(τ) is a matrix of size (2× 2), A(τ) ∈ C∞(0, T];
(4) h(τ) is a function, h(τ) ∈ C∞[0, T];
(5) λ1(τ), λ2(τ) are eigenvalues of matrix A(τ); λ1(τ) 6= λ2(τ), τ ∈ [0, T]; λ2(τ) = τm/na(τ), where

a(τ) < 0, τ ∈ [0, T], a(τ) ∈ C∞[0, T];
(6) m, n are natural numbers;
(7) Re λ1(τ) ≤ 0;
(8) A(t) ∈ C∞[0, T], where t = τ1/n;
(9) ε̄, ε = ε̄/n ∈ R there is a small parameter of the problem.

We make the change of variables in Problem (1): t = τ1/n. Then τm/n = tm and

du
dτ

=
du
dt
· dt

dτ
= u̇(t)

1
n

τ(1−n)/n = u̇(t)
1
n

t1−n.

Equation (1) takes the form:

ε̄

n
u̇(t)t1−n = A(tn)u(t) + h(tn)

or
ε̄

n
u̇(t) = tn−1 A(tn)u(t) + tn−1h(tn).

Denote ε̄/n = ε, tn−1 A(tn) = B(t). Task (1) takes the form:{
εu̇(t) = B(t)u(t) + tn−1h(tn),
u(0, ε) = u0.

(2)

Operator B(t) has eigenvalues λ̄1(t) = tn−1λ1(tn), λ̄2(t) = tpa(tn), where p = m + n − 1,
and corresponding vectors ē1(t) = e1(tn), ē2(t) = e2(tn), where e1(τ), e2(τ) are eigenvectors of
operator A(τ), i.e.,

B(t)ē1(t) = λ̄1(t)ē1(t) = tn−1λ1(tn)e1(tn);

B(t)ē2(t) = λ̄2(t)ē2(t) = tpa(tn)e1(tn).

Methods for solving the Cauchy problem (2) are described in [1]. Basic singularities (2) have
the form:

eϕi(t)/ε, i = 1, 2; σi(t, ε) = eϕ2(t)/ε

t∫
0

e−ϕ2(s)/εsids, i = 0, p− 1; (3)
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where ϕ1(t) =
t∫

0

sn−1λ1(sn)ds, ϕ2(t) =
t∫

0

spa(sn)ds.

Singularities (3) in the source variables have the form

eϕ1(τ)/ε̄, eϕ2(τ)/ε̄, σi(τ, ε) = eϕ2(τ)/ε̄

τ∫
0

e−ϕ2(s)/εs(i+1−n)/nds, i = 0, p− 1;

where ϕ1(τ) =

τ∫
0

λ1(s)ds, ϕ2(τ) =

τ∫
0

a(s)sm/nds.

3. Formalism of Regularization Method

Point ε = 0 for Problem (1) is special in the sense that classical existence theorems for the solution
of the Cauchy problem do not take place. Therefore, in solving this problem, essentially singular
singularities arise. When the stability condition for spectrum A(t) is satisfied, singular singularities
are described using exponentials of the form:

eϕi(t)/ε, ϕi(t) =
t∫

0

λi(s)ds, i = 1, 2, λ1(t) 6= λ2(t), λi(t) 6= 0, t ∈ [0, T],

where ϕi(t) is a smooth function (in the general case, complex) of a real variable t. To solve linear
homogeneous equations, such singularities have been described by Liouville [5–8].

If stability conditions are violated for at least one point of the spectrum of operator A(t),
then besides exponentially essentially singularities in the solution of the inhomogeneous equation,
singularities of the following form also appear:

σi = eϕ1(t)/ε

t∫
0

e−ϕ1(s)/εsids, i = 0, k− 1,

(k is the extreme zero of λ1(t)), which, for ε → 0, has a power character of decreasing under the
corresponding restrictions on λ1(t), while it is assumed that the remaining points of the spectrum do
not vanish at t = 0.

Singularly perturbed problems arise in cases when the domain of definition of the initial operator,
depending on ε with ε 6= 0, does not coincide with the domain of definition of the limit operator with
ε = 0. When studying problems with a ”simple” turning point, additional conditions arise when
the domain of values of the original operator does not coincide with the domain of values of the
limit operator.

Further, we need estimates of functions describing the basic singularities.

Lemma 1. Let the conditions on the spectrum of operator A(t) 5)÷ 7) be satisfied. Then, the estimates hold:
(a) if ∀t ∈ [0, T] Reλi(t) ≤ 0, i = 1, 2, then

∣∣e 1
ε

t∫
0

λ̄i(s)ds∣∣≤ C, |σk(t, ε)| ≤ C,

where C is a constant, k = 0, p− 1, p = m + n− 1;
(b) if Re λ1(t) ≤ −α < 0, Re a(t) ≤ −α < 0, then

∣∣e 1
ε

t∫
0

λ̄1(s)ds∣∣≤ e−
αtn
εn ,

∣∣e 1
ε

t∫
0

λ̄2(s)ds∣∣≤ e−
αtp+1
ε(p+1) , |σk(t, ε)| ≤ Cε

k+1
p+1 , k = 0, p− 1, p = m + n− 1.
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Proof of Lemma 1. (a) In this case, estimates are obvious.

(b)
∣∣e 1

ε

t∫
0

λ̄1(s)ds∣∣≤ e
− α

ε

t∫
0

sn−1ds
= e−

αtn
εn ,

∣∣e 1
ε

t∫
0

λ̄2(s)ds∣∣≤ e
− α

ε

t∫
0

spds
= e−

αtp+1
ε(p+1) ,

|σk(t, s)| =
∣∣∣∣ t∫

0

e
1
ε

t∫
s

λ̄2(s)ds
skds

∣∣∣∣≤ t∫
0

e
− α

ε

t∫
s

sp
1 ds1

skds =
t∫

0

e−
α(tp+1−sp+1)

ε(p+1) skds =

t∫
0

e
αsp+1
ε(p+1) skds

e
αtp+1
ε(p+1)

=

=

ε
k+1
p+1

t/ε1/(p+1)∫
0

e
αξ p+1

p+1 ξkdξ

e
αtp+1
ε(p+1)

.

Denote τ = t
ε1/(p+1) . Consider a fraction when τ → ∞; then, we have

τ∫
0

e
αξ p+1

p+1 ξkdξ

e
ατp+1

p+1

∼ τk

ατp −→τ→∞
0, as k < p.

Consequently, σk(t, ε) = O(ε
k+1
p+1 ).

Remark 1. Estimates in the source variables have the form:

∣∣e 1
ε

t∫
0

λ1(s)ds∣∣≤ e−
αt
ε ,

∣∣e 1
ε

t∫
0

λ2(s)ds∣∣≤ e−
αtm/n+1
ε(m/n+1) , σk(t, ε) = O(ε

k+1
m/n+1 ).

According to the regularization method, we seek a solution of Problem (2) in the form

u(t, ε) = x(t, ε)eϕ1(t)/ε + y(t, ε)eϕ2(t)/ε +
p−1

∑
i=0

zi(t, ε)σi(t, ε) + W(t, ε), (4)

where x(t, ε), y(t, ε), W(t, ε), zi(t, ε), i = 0, p− 1 are smooth with respect to t functions that depend on
power on ε. Substituting Problem (4) into Problem (2), we get system

(B(t)− λ̄1(t))x(t, ε) = εẋ(t, ε),
(B(t)− λ̄2(t))y(t, ε) = εẏ(t, ε),
(B(t)− λ̄2(t))zi(t, ε) = εżi(t, ε), i = 0, p− 1,

B(t)W(t, ε) = εẆ(t, ε)− tn−1h(tn) +
p−1

∑
i=0

tizi(t, ε),

x(0, ε) + y(0, ε) + W(0, ε) = u0.

(5)

Decomposing the unknown vector functions in a series in powers of ε, we obtain a series of
iterative problems: 

(B(t)− λ̄1(t))xk(t) = ẋk−1(t),
(B(t)− λ̄2(t))yk(t) = ẏk−1(t),
(B(t)− λ̄2(t))zi

k(t, ε) = żi
k−1(t), i = 0, p− 1,

B(t)Wk(t) = Ẇk−1(t)− δk
0tn−1h(tn) +

p−1

∑
i=0

tizi
k−1(t),

xk(0) + yk(0) + Wk(0) = δ0
k u0.

(6)

To solve iterative Problems (6), we formulate a point-solvability theorem.
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Theorem 1. Let the following equation be given:

B(t)u(t) ≡ tn−1 A(tn) = tn−sh(tn), 0 ≤ s ≤ n− 1 (7)

and let the following conditions are met:

(1) B(t) has eigenvalues λ̄1(t) = tn−1λ1(tn), λ̄2(t) = tpa(tn) and eigenvectors ē1(t), ē2(t);
(2) h(tn) ∈ C∞[0, T].

Then, Problem (7) is solvable if and only if

(a) h1(0) = 0, s = 2, n− 1;

(b) h(k)2 = 0, k = 0,
[

m + s− 1
n

]
, s = 0, n− 1,

where h1(tn), h2(tn) are the components of decomposition h(t) on the basis of eigenvectors of operator B(t);
u1(tn), u2(tn) are the components of the expansion of u(t) on the basis of eigenvectors of operator B(t).

Proof of Theorem 1. Let us prove the need. Let system{
tn−1λ1(tn)u1(t) = tn−sh1(tn),
tpa(tn)u2(t) = tn−sh2(tn)

(8)

have a solution. Then,

(1) the first equation of System (8) is solvable:

(a) if s = 0, 1, then u1(t) = t1−s h1(tn)

λ1(tn)
,

(b) if s = 2, n− 1, then h1(0) = 0 and u1(t) = tn+1−s h̄1(tn)

λ1(tn)
, where h1(tn) = tn h̄1(tn);

(2) the second equation of System (8) is solvable if (k + 1)n − s ≤ p < (k + 2)n − s, which is

equivalent to h(k)2 (0) = 0, k = 0,
[

m + s− 1
n

]
and u2(t) = tn−j h̄2(tn)

a(tn)
, 0 ≤ j ≤ n− 1.

Sufficiency is obvious.

Consider Problem (6) as k = −1:

(B(t)− λ̄1(t))x−1(t) = 0,
(B(t)− λ̄2(t))y−1(t) = 0,
(B(t)− λ̄2(t))zi

−1(t) = 0, i = 0, p− 1,
B(t)W−1(t) = 0,
x−1(0) + y−1(0) + W−1(0) = 0.

(9)

Solution (9) has the form

x−1(t) = α1
−1(t)ē1(t), y−1(t) = β2

−1(t)ē2(t), zi
−1(t) = γi,2

−1(t)ē2(t),
W−1(t) ≡ 0, α1

−1(0) = 0, β2
−1(0) = 0.

Functions x−1(t), y−1(t), zi
−1(t) are determined at the next iteration step k = 0 from the solvability

conditions: 

(B(t)− λ̄1(t))x0(t) = ẋ−1(t),
(B(t)− λ̄2(t))y0(t) = ẏ−1(t),
(B(t)− λ̄2(t))zi

0(t) = żi
−1(t), i = 0, p− 1,

B(t)W0(t) = −tnh(tn) +
p−1

∑
i=0

tizi
−1(t),

x0(0) + y0(0) + W0(0) = u0.

(10)
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Let be
˙̄ei(t) = ėi(tn) = ntn−1C1

i (t
n)ē1(t) + ntn−1C2

i (t
n)ē2(t), i = 1, 2.

Denote by C̄j
i (t) = ntn−1Cj

i (t
n), i, j = 1, 2. Then

˙̄ei(t) =
2

∑
j=1

C̄j
i (t)ēj(t), i = 1, 2.

System (10) takes the form:

(B(t)− λ̄1(t))x0(t) = (α̇1
−1(t) + C̄1

1(t)α
1
−1(t))ē1(t) + α1

−1(t)C̄
2
1(t)ē2(t),

(B(t)− λ̄2(t))y0(t) = (β̇2
−1(t) + C̄2

2(t)β2
−1(t))ē2(t) + β2

−1(t)C̄
1
2(t)ē1(t),

(B(t)− λ̄2(t))zi
0(t) = (γ̇i,2

−1(t) + C̄2
2(t)γ

i,2
−1(t))ē2(t) + γi,2

−1(t)C̄
1
2(t)ē1(t), i = 0, p− 1,

B(t)W0(t) = −tnh(tn) +
p−1

∑
i=0

tizi
−1(t),

x0(0) + y0(0) + W0(0) = u0.

(11)

The conditions for the solvability of System (11) and the initial conditions at the k = −1 step
imply that α1

−1(t) ≡ 0, β2
−1(t) ≡ 0. To determine zi

−1(t), we wrote by coordinate the equation for the
W0(t) of System (11):

λ̄1(t)W1
0 (t) ≡ tn−1λ1(tn)W1

0 (t) = −tn−1h1(tn),

λ̄2(t)W2
0 (t) ≡ tpa(tn)W2

0 (t) = −tn−1h2(tn) +
p−1

∑
i=0

tiγi,2
−1(t).

(12)

Then, W1
0 (t) = −

h1(tn)

λ1(tn)
. On the basis of the point-solvability theorem, we obtained:

γn−1,2
−1 (0) = h2(0), γ2n−1,2

−1 (0) = ḣ2(0), · · · , γ
(k+1)n−1,2
−1 (0) =

h(k)2 (0)
k!

e
−

t∫
0

C̄2
2(s)ds

,

where k = [m/n] is the integer part, so when order ord(ti) is equal to order ord(t(j+1)n−1) in the
expansion of tn−1h(tn) in Taylor–Maclaurin series, other γi,2

−1(0) = 0. Thus, the solution is determined
at step k = −1:

u−1(t, ε) =
[m/n]

∑
i=0

γ
(i+1)n−1,2
−1 (t)ē2(t)σ(i+1)n−1(t, ε), (13)

where γ
(i+1)n−1,2
−1 (t) =

h(i)2 (0)
i!

e
−

t∫
0

C̄2
2(s)ds

.
The solution at zero step k = 0 is written in the form

x0(t) = α1
0(t)ē1(t), y0(t) = β2

0(t)ē2(t),

zi
0(t) =


γi,2

0 (t)ē2(t), ord(ti) 6= ord(t(j+1)n−1),

γi,2
0 (t)ē2(t)− γi,2

−1(t)
C̄1

2(t)
λ̄1(t)−λ̄2(t)

ē1(t), ord(ti) = ord(t(j+1)n−1),

i = 0, p− 1, j = 0, [m/n],

W0(t) = −
h1(tn)

λ1(tn)
ē1(t) + tn−s H0(tn)ē2(t),

(14)

where

(a) s =
{

m
n

}
n is the remainder of dividing m by n;
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(b) tn−sH0(tn) ≡
−tn−1h(tn) +

[m/n]
∑

i=0
t(i+1)n−1γ

(i+1)n−1,2
−1 (t)

tpa(tn)
.

Arbitrary functions α1
0(t), β2

0(t), γi,2
0 (t) are determined from the conditions for the solvability of

the system at step k = 1:

(B(t)− λ̄1(t))x1(t) = (α̇1
0(t) + C̄1

1(t)α
1
0(t))ē1(t) + α1

0(t)C̄
2
1(t)ē2(t),

(B(t)− λ̄2(t))y1(t) = (β̇2
0(t) + C̄2

2(t)β2
0(t))ē2(t) + β2

0(t)C̄
1
2(t)ē1(t),

(B(t)− λ̄1(t))zi
1(t) = (γ̇i,2

0 (t) + C̄2
2(t)γ

i,2
0 (t))ē2(t) + γi,2

0 (t)C̄1
2(t)ē1(t),

ord(ti) 6= ord(t(j+1)n−1),

(B(t)− λ̄2(t))zi
1(t) =

(
γ̇i,2

0 (t) + C̄2
2(t)γ

i,2
0 (t)− γi,2

−1(t)
C̄1

2(t)C̄
2
1(t)

λ̄1(t)−λ̄2(t)

)
ē2(t)+

+

(
γ̇i,2

0 (t)C̄1
2(t)−

(
γi,2
−1(t)

C̄1
2(t)

λ̄1(t)−λ̄2(t)

)·
−γi,2
−1(t)

C̄1
2(t)C̄

1
1(t)

λ̄1(t)−λ̄2(t)

)
ē1(t),

ord(ti) = ord(t(j+1)n−1), i = 0, p− 1, j = 0, [m/n],

B(t)W1(t) = Ẇ0(t) +
p−1

∑
i=0

tizi
0(t),

x1(0) + y1(0) + W1(0) = 0.

(15)

The solvability theorem of System (15) gives

α1
0(t) =

(
u0

1 +
h1(0)
λ1(0)

)
e
−

t∫
0

C̄1
1(s)ds

, β1
0(t) ≡ u0

2e
−

t∫
0

C̄2
2(s)ds

.

Consider the equation for W1(t). Given the expression for C̄j
i (t) = ntn−1Cj

i (t
n), this equation can

be written as follows:

B(t)W1(t) = tn−1(Ẇ0)1(t)ē1(t) + tn−1−s(Ẇ0)2(t)ē2(t) +
p−1

∑
i=0

tizi
0(t). (16)

Consider Equation (16) component-wise:
λ̄1(t)W1

1 (t) = tn−1(Ẇ0)1(t)−
[m/n]

∑
i=0

γ
(i+1)n−1,2
−1 (t)

C̄1
2(t)t

(i+1)n−1

λ̄1(t)− λ̄2(t)
,

λ̄2(t)W2
1 (t) = tn−1−s(Ẇ0)2(t) +

p−1

∑
i=0

tiγi,2
0 (t).

(17)

Solution of the first equation of System (17) is written as follows:

W1
1 (t) =

(Ẇ0)1(t)
λ1(tn)

−
[m/n]

∑
i=0

γ
(i+1)n−1,2
−1 (t)

nC1
2(t

n)tin

λ1(tn)(λ1(tn)− tma(tn))
.

For the solvability of the second equation of System (17), it is necessary and sufficient that

γ
(i+1)n−1−s,2
0 (0) = −

(Ẇ0)
(i)
2 (0)
i!

, i = 0,
[

m + s
n

]
,

here
[

m + s
n

]
=

[[
m
n

]
+

2s
n

]
=

[
m
n

]
+

[
2s
n

]
.



Axioms 2019, 8, 124 8 of 12

The other γ
j,2
0 (0) = 0, j 6= (i + 1)n − 1 − s, j = 0, p− 1. Defining γi,2

0 (0), we can write the
expression for zi

0(t):

(a) if j = (i + 1)n− 1− s, i = 0,
[

m
n

]
+

[
2s
n

]
, then

γ
j,2
0 (t) = −

(Ẇ0)
(i)
2 (0)
i!

e
−

t∫
0

C̄2
2(s)ds

, zj
0(t) = γ

j,2
0 (t)C̄2(t);

(b) if j 6= (i + 1)n− 1− s,j = (i + 1)n− 1, then

γ
j,2
0 (t) = e

−
t∫

0
C̄2

2(s)ds t∫
0

e

s∫
0

C̄2
2(z)ds

γ
j,2
−1(s)

C̄1
2(s)C̄

2
1(s)

λ̄1(s)− λ̄2(s)
ds,

zj
0(t) = γ

j,2
0 (t)ē2(t)− γ

j,2
−1(t)

C̄1
2(t)

λ̄1(t)− λ̄2(t)
ē1(t);

(c) if j 6= (i + 1)n− 1− s,j 6= (i + 1)n− 1, then

γ
j,2
0 (t) ≡ 0, zj,2

0 (t) ≡ 0.

The solution of the second equation of System (17) is written as follows:

W2
1 (t) = tn(1−{ 2s

n })H1(tn),

where H1(tn) =

tn−s−1(Ẇ0)2 −
p−1
∑

i=0
tiγi,2

0 (t)

tpa(tn)
.

Thus, the solution is determined at the zero iterative step:

u0(t, ε) = α1
0(t)ē1(t)e−ϕ1(t)/ε + β2

0(t)ē2(t)eϕ2(t)/ε +
[m

n ]+[
2s
n ]

∑
i=0

z(i+1)n−1−s
0 (t)σ(i+1)n−1−s(t, ε)

+
[m

n ]

∑
i=0

z(i+1)n−1
0 (t)σ(i+1)n−1(t, ε)− h1(tn)

λ1(tn)
ē1(t) + tn−sH0(tn)ē2(t).

Similarly, according to this scheme, the solutions of subsequent iteration problems are determined.
Thus, we can get an expression for any member of a regularized series.

We write the main term of the asymptotics of Problem (2):

umain =
1
ε

u−1(t, ε) + u0(t, ε).

4. Limit-Transition Theorem

To prove the asymptoticity of a regularized series, we prove a theorem on estimating the remainder
term for ε→ 0.

Let be u(t, ε) =
n

∑
k=−1

εkuk(t, ε) + εn+1Rn(t, ε), where

uk(t, ε) = xk(t)eϕ1(t)/ε + yk(t)eϕ2(t)/ε +
p−1

∑
i=0

zi
k(t)σi(t, ε) + Wk(t). (18)
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Substituting Problem (18) into Problem (1), we obtain the Cauchy problem for the remainder
Rn(t, ε): {

εṘn(t, ε) = B(t)Rn(t, ε) + H(t, ε),
R(0, ε) = 0,

(19)

where

H(t, ε) = −
(

ẋn(t)eϕ1(t)/ε + ẏn(t)eϕ2(t)/ε +
p−1

∑
i=0

żn(t)σi(t, ε) +

(
Ẇn(t) +

p−1

∑
i=0

tizi
n(t)

))
,

in this case, it is assumed that H(t, ε) satisfies the conditions of the solvability theorem.

Theorem 2. Let Cauchy Problem (1) be given and Conditions 1–9 be satisfied. Then, the estimate is correct∥∥∥∥∥u(t, ε)−
n

∑
k=−1

εkuk(t, ε)

∥∥∥∥∥ ≤ Cεn+1,

where C > 0 in the norm C[0, T] for any (t, ε) ∈ [0, T]× (0, ε0], ‖x(t)‖C[0,T] = max
t∈[0,T]

|x(t)|.

Proof of Theorem 2. Solution (19) is written as follows:

Rn(t, ε) =
1
ε

t∫
0

Uε(t, s)H(s, ε)ds, (20)

where Uε(t, s) is resolving operator (fundamental solution system) satisfying system{
εU̇ε(t, s) = B(t)Uε(t, s),
Uε(t, s)

∣∣
s=t= I.

(21)

Let S(t) be a matrix of eigenvectors ē1(t), ē2(t) of operator B(t). Then, System (21) is equivalent to
system {

εV̇ε(t, s) = Λ(t)Vε(t, s)− εS−1(t)Ṡ(t)Vε(t, ε),
Vε(t, s)

∣∣
s=t= S−1(0),

(22)

here, Λ(t) =

(
λ̄1(t) 0

0 λ̄2(t)

)
, Vε(t, s) = S−1(t)Uε(t, s). We reduce System (22) to an integral equation

Vε(t, s) = e
1
ε

t∫
s

Λ(s1)ds1
S−1(0)−

t∫
s

e
1
ε

t∫
s1

Λ(s2)ds2

S−1(s1)Ṡ(s1)Vε(s1, ε)ds1. (23)

Let us estimate Equation (23) at the norm C[0, T]. Using the conditions on the spectrum of operator
B(t), we obtain

‖Vε(t, s)‖ ≤ C1‖S−1(0)‖+ C2

t∫
s

‖Vε(s1, s)‖ds1.

Using the Bellman–Gronuola inequality, we obtain ‖Uε(t, s)‖ ≤ C on [0, T].
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To estimate the remaining term, it is important to take into account that operator B(t) is invertible on
vector functions that satisfy the conditions of the solvability theorem. Then, integrating over parts of
Solution (20), we obtain chain of equalities

Rn(t, ε) =
1
ε

t∫
0

Uε(t, s)H(s, ε)ds =
1
ε

t∫
0

Uε(t, s)B(s)B−1(s)H(s, ε)ds =

= −Uε(t, s)B−1(s)H(s, ε)
∣∣t
0+

t∫
0

Uε(t, s)
d
ds

B−1(s)H(s, ε)ds =

= −B−1(t)H(t, ε) + Uε(t, s)B−1(s)H(s, ε)
∣∣
s=0+

t∫
0

Uε(t, s)
d
ds

B−1(s)H(s, ε)ds.

Since, by virtue of Conditions 1–9, H(t, ε) admits estimate ‖H(t, ε)‖ ≤ C1 in norm C[0, T], then
remainder Rn(t, ε) satisfies estimate

‖Rn(t, ε)‖ ≤ C2 ∀(t, ε) ∈ [0, T]× (0, ε0].

Therefore, the asymptoticity of series
∞

∑
k=−1

εkuk(t, ε) is proved.

Theorem 3 (The limit theorem). Let Cauchy Problem (1) be given and have satisfied the conditions:

(1) Conditions 1–9;
(2) h(i)2 (0) = 0, i = 0, [m/n], where h2(t) is the second coordinate in the expansion of h(t) = h1(t)e1(t) +

h2(t)e2(t) in eigenvectors of the original matrix.

Then,

(1) for any δ > 0 t ∈ [δ, T], Reλi(t) ≤ −α < 0

lim
ε→0

u(t, ε) = −A−1(t)h(t);

(2) if Reλi(t) = 0, then
u(t, ε)

weak−→
ε→0
−A−1(t)h(t) in a weak sense.

Proof of Theorem 3. (1) Conditions h(i)2 (0) = 0, i = 0, [m/n] cause u−1(t, ε) = 0. Then,

umain(t) = u0(t, ε).

By virtue of the singularity estimates described in the lemma, it follows that for any δ > 0 t ∈ [δ, T]

lim
ε→0

u0(t, ε) = −B−1(t)tn−1h(tn),

equivalent in source variables lim
ε→0

u0(t, ε) = −A−1(t)h(t).

(2) If Reλi(t) ≡ 0, i = 1, 2, then singularities are rapidly oscillating exponents as ε → 0. From here,
according to Lebesgue’s lemma, for any ϕ(t) ∈ C(0, T)

T∫
0

(u0(t, ε) + A−1(t)h(t))ϕ(s)dt −→
ε→0

0.
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Example 1. Consider the Cauchy problem for a parabolic equation ε
∂u
∂t
− ε2 ∂2u

∂x2 = −
√

tu + h(x, t),

u(x, 0) = ϕ(x), −∞ < x < ∞,

where ϕ(x), h(x, t) ∈ C∞
0 (−∞, ∞) are smooth functions with compact support.

Using the technique of the regularization method outlined above, we obtain the principal term of the asymptotics
of the solution:

u(x, t) =
1
ε

h(x, 0)e−
2
3ε t3/2

t∫
0

e
2s3/2

3ε ds + ϕ(x)e−
2t3/2

3ε − ḣ(x, 0)
2

e−
2t3/2

3ε

t∫
0

e
2s3/2

3ε
ds√

s
+

+th′′(x, 0)e−
2t3/2

3ε

t∫
0

e
2s3/2

3ε ds +
h(x, t)− h(x, 0)√

t
.

5. Conclusions

In this paper, the regularization method was developed into the class of singularly perturbed
Cauchy problems in the case of a simple rational turning point for the limit operator (for ε = 0).
The main singularities of the solution are highlighted:

eϕ1(t)/ε, eϕ2(t)/ε, σi(t, ε) = eϕ2(t)/ε

t∫
0

e−ϕ2(s)/εs(i+1−n)/nds, i = 0, p− 1,

which allowed us to present the solution in the form:

u(t, ε) = x(t, ε)eϕ1(t)/ε + y(t, ε)eϕ2(t)/ε +
p−1

∑
i=0

zi(t, ε)σi(t, ε) + W(t, ε),

where x(t, ε), y(t, ε), W(t, ε), zi(t, ε), i = 0, p− 1 are t smooth functions that depend on power ε.
Estimates of the main singularities for ε → 0 were given, and theorems on the solvability of

iterative problems were proved. A theorem on the asymptotic convergence of the solution of the
problem was proved, and conditions on the right-hand side of h(t) were described, under which the
passage to the limit theorem is valid. An example of solving the Cauchy problem for a parabolic
equation with a fractional turning point λ(τ) = τ1/2 was given.
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Nomenclature

u(t), x(t), y(t), zi(t), i = 0, m + n− 1, w(t), h(t) a vector of a function of a real variable
A(t), B(t) matrices of order 2× 2
λ1, λ2 eigenvalues of matrix A
λ̄1, λ̄2 eigenvalues of matrix B
e1, e2 eigenvectors of matrix A
ē1, ē2 eigenvectors of matrix B
ε a small task parameter
S(t) a matrix of eigenvectors ē1, ē2

Λ(t) a matrix of eigenvalues of matrix B
Rn the remainder term of the asymptotic series
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