
axioms

Article

Gabor Frames and Deep Scattering Networks in
Audio Processing

Roswitha Bammer 1,*, Monika Dörfler 1 and Pavol Harar 1,2

1 NuHAG, Faculty of Mathematics, University of Vienna, 1090 Wien, Austria;
monika.doerfler@univie.ac.at (M.D.); pavol.harar@univie.ac.at (P.H.)

2 Department of Telecommunications, Brno University of Technology, 60190 Brno, Czech Republic
* Correspondence: roswitha.bammer@univie.ac.at; Tel.: +43-1-4277-50460

Received: 16 April 2019; Accepted: 20 September 2019; Published: 26 September 2019
����������
�������

Abstract: This paper introduces Gabor scattering, a feature extractor based on Gabor frames and
Mallat’s scattering transform. By using a simple signal model for audio signals, specific properties
of Gabor scattering are studied. It is shown that, for each layer, specific invariances to certain
signal characteristics occur. Furthermore, deformation stability of the coefficient vector generated
by the feature extractor is derived by using a decoupling technique which exploits the contractivity
of general scattering networks. Deformations are introduced as changes in spectral shape and
frequency modulation. The theoretical results are illustrated by numerical examples and experiments.
Numerical evidence is given by evaluation on a synthetic and a “real” dataset, that the invariances
encoded by the Gabor scattering transform lead to higher performance in comparison with just using
Gabor transform, especially when few training samples are available.

Keywords: machine learning; scattering transform; Gabor transform; deep learning; time-frequency
analysis; CNN

1. Introduction

During the last two decades, enormous amounts of digitally encoded and stored audio have
become available. For various purposes, the audio data, be it music or speech, need to be structured
and understood. Recent machine learning techniques, known as (deep) convolutional neural networks
(CNN), have led to state of the art results for several tasks such as classification, segmentation or
voice detection, cf. [1,2]. CNNs were originally proposed for images [1], which may be directly fed
into a network. Audio signals, on the other hand, commonly undergo some preprocessing to extract
features that are then used as input to a trainable machine. Very often, these features consist of one
or several two-dimensional arrays, such that the image processing situation is mimicked in a certain
sense. However, the question about the impact of this very first processing step is important and it is
not entirely clear whether a short-time Fourier transform (STFT), here based on Gabor frames, the most
common representation system used in the analysis of audio signals, leads to optimal feature extraction.
The convolutional layers of the CNNs can themselves be seen as feature extractors, often followed by
a classification stage, either in the form of one or several dense network layers or classification tools
such as support vector machine (SVM). Stéphane Mallat gave a first mathematical analysis of CNN as
feature extractor, thereby introducing the so called scattering transform, based on wavelet transforms
and modulus nonlinearity in each layer [3]. The basic structure thus parallels the one of CNNs, as these
networks are equally composed of multiple layers of local convolutions, followed by a nonlinearity
and, optionally, a pooling operator, cp., Section 1.1.

Axioms 2019, 8, 106; doi:10.3390/axioms8040106 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0001-6139-630X
https://orcid.org/0000-0001-5206-1794
http://dx.doi.org/10.3390/axioms8040106
http://www.mdpi.com/journal/axioms
https://www.mdpi.com/2075-1680/8/4/106?type=check_update&version=2

Axioms 2019, 8, 106 2 of 25

In the present contribution, we consider an approach inspired by Mallat’s scattering transform,
but based on Gabor frames, respectively, Gabor transform (GT). The resulting feature extractor is
called Gabor scattering (GS). Our approach is a special case of the extension of Mallat’s scattering
transform proposed by Wiatowski and Bölcskei [4,5], which introduces the possibility to use different
semi-discrete frames, Lipschitz-continuous nonlinearities and pooling operators in each layer. In [3,6,7],
invariance and deformation stability properties of the scattering transform with respect to operators
defined via some group action were studied. In the more general setting of [4,5], vertical translation
invariance, depending on the network depth, and deformation stability for band-limited functions
have been proved. In this contribution, we study the same properties of the GS and a particular class
of signals, which model simple musical tones (Section 2.2).

Due to this concrete setting, we obtain quantitative invariance statements and deformation
stability to specific, musically meaningful, signal deformations. Invariances are studied considering
the first two layers, where the feature extractor extracts certain signal features of the signal model
(i.e., frequency and envelope information), cp., Section 3.1.1. By using a low-pass filter and pooling
in each layer, the temporal fine structure of the signal is averaged out. This results in invariance
with respect to the envelope in the first and frequency invariance in the second layer output.
To compute deformation bounds for the GS feature extractor, we assume more specific restrictions
than band-limitation and use the decoupling technique, first presented in [4,8]. Deformation stability
is proven by only computing the robustness of the signal class w.r.t spectral shape and frequency
modulation, see Section 3.1.2. The robustness results together with contractivity of the feature extractor,
which is given by the networks architecture, yields deformation stability.

To empirically demonstrate the benefits of GS time-frequency representation for classification,
we have conducted a set of experiments. In a supervised learning setting, where the main aim is the
multiclass classification of generated sounds, we have utilized a CNN as a classifier. In these numerical
experiments, we compare the GS to a STFT-based representation. We demonstrate the benefits of GS in
a quasi-ideal setting on a self implemented synthetic dataset, and we also investigate if it benefits the
performance on a real dataset, namely, GoodSounds [9]. Moreover we focus on comparing these two
time-frequency representations in terms of performance on limited sizes of training data, see Section 4.

1.1. Convolutional Neural Networks (CNNs) and Invariance

CNNs are a specific class of neural network architectures which have shown extremely convincing
results on various machine learning tasks in the past decade. Most of the problems addressed using
CNNs are based on, often, big amounts of annotated data, in which case one speaks about supervised
learning. When learning from data, the intrinsic task of the learning architecture is to gradually extract
useful information and suppress redundancies, which always abound in natural data. More formally,
the learning problem of interest may be invariant to various changes of the original data and the machine
or network must learn these invariances in order to avoid overfitting. As, given a sufficiently rich
architecture, a deep neural network can practically fit arbitrary data, cp. [10,11], good generalization
properties depend on the systematic incorporation of the intrinsic invariances of the data. Generalization
properties hence suffer if the architecture is too rich given the amount of available data. This problem is
often addressed by using data augmentation. Here, we raise the hypothesis that using prior representations
which encode some potentially useful invariances will increase the generalization quality, in particular when using
a restricted size of data set. The evaluation of the performance on validation data in comparison to the
results on test data strengthens our hypothesis for the experimental problem presented in Section 4.

To understand the mathematical construction used within this paper, we briefly introduce the
principal idea and structure of a CNN. We shall see that the scattering transforms, in general, and the GS,
in particular, follow a similar concept of concatenating various processing steps, which ultimately leads to
rather flexible grades of invariances in dependence on the chosen parameters. Usually, a CNN consists of
several layers, namely, an input, several hidden (as we consider the case of deep CNN the number of
hidden layers is supposed to be ≥2) and one output layer. A hidden layer consists of the following steps:

Axioms 2019, 8, 106 3 of 25

first the convolution of the data with a small weighting matrix, often referred to as a kernel1, which can
be interpreted as localization of certain properties of the input data. The main advantage of this setup
is that only the size and number of these (convolutional) kernels are fixed, but their coefficients are
learned during training. So they reflect the structure of the training data in the best way w.r.t the task
being solved. The next building block of the hidden layer is the application of a nonlinearity function,
also called activation function, which signals if information of this neuron is relevant to be transmitted.
Finally, to reduce redundancy and increase invariance, pooling is applied. Due to these building blocks,
invariances to specific deformations and variations in the dataset are generated in dependence on
the specific filters used, whether they are learned, as in the classical CNN case, or designed, as in the
case of scattering transforms [13]. In this work, we will derive concrete qualitative statements about
invariances for a class of music signals and will show by numerical experiments that these invariances
indeed lead to a better generalization of the CNNs used to classify data.

Note that in a neural network, in particular in CNNs, the output, e.g., classification labels,
is obtained after several concatenated hidden layers. In the case of scattering network, the outputs of
each layer are stacked together into a feature vector, and further processing is necessary to obtain the
desired result. Usually, after some kind of dimensionality reduction, cf. [14], this vector can be fed into
a SVM or a dense NN, which performs the classification task.

1.2. Invarince Induced by Gabor Scattering

In this section, we give a motivation for the theory and underlying aim of this paper. In Figure 1,
we see sound examples from different classes, where Class 0 is a pure tone with 5 harmonics, Class 1
is an amplitude modulated version thereof, Class 2 is the frequency modulated version, and Class 3
contains the amplitude and frequency modulated signal. So, we have classes with different amplitudes,
as is clearly visible in the waveforms shown in the left-most plots. In this paper, we introduce GS,
as a new feature extractor that introduces certain invariances. GS has several layers, denoted by OutA,
OutB, and OutC, and each layer is invariant with respect to some features. The first layer, here OutA,
is the spectrogram of the waveform. So, we see the time-frequency content of the four classes. OutB can
be seen to be invariant with respect to amplitude changes, whereas the last layer, OutC, is invariant
with respect to to frequency content while encoding the amplitude information. With GS it is therefore
possible to separate different qualities of information contained in a spectrogram.

We introduce GS mathematically in Section 2.1 and elaborate on the resulting invariances in
different layers in Section 3.1.1. Numerical experiments, showing the benefit of GS, are discussed in
Section 4.

1 We point out that the term kernel as used in this work always means convolutional kernels in the sense of filterbanks. Both
the fixed kernels used in the scattering transform and the kernels used in the CNNs, whose size is fixed but whose elements
are learned, should be interpreted as convolutional kernels in a filterbank. This should not be confused with the kernels used
in classical machine learning methods based on reproducing kernel Hilbert spaces, e.g., the famous support vector machine,
c.f. [12]

Axioms 2019, 8, 106 4 of 25

C
la

ss
 0

Wave GS OutA (GT) GS OutB GS OutC

C
la

ss
 1

C
la

ss
 2

C
la

ss
 3

Figure 1. Wave Outputs A, i.e., GT; B; and C of Gabor scattering (GS) for all four classes of
generated sound.

2. Materials and Methods

2.1. Gabor Scattering

As Wiatowski and Bölcskei used general semi-discrete frames to obtain a wider class of window
functions for the scattering transform (cp. [4,5]), it seems natural to consider specific frames used
for audio data analysis. Therefore, we use Gabor frames for the scattering transform and study
corresponding properties. We next introduce the basics of Gabor frames, refer to [15] for more details.
A sequence (gk)

∞
k=1 of elements in a Hilbert spaceH is called frame if there exist positive frame bounds

A, B > 0 such that for all f ∈ H

A‖ f ‖2 ≤
∞

∑
k=1
|〈 f , gk〉|2 ≤ B‖ f ‖2. (1)

If A = B, then we call (gk)
∞
k=1 a tight frame.

Remark 1. In our context, the Hilbert spaceH is either L2(R) or `2(Z).

To define Gabor frames we need to introduce two operators, i.e., the translation and
modulation operator.

• The translation (time shift) operator:

– for a function f ∈ L2(R) and x ∈ R is defined as Tx f (t) := f (t− x) for all t ∈ R.
– for a function f ∈ `2(Z) and k ∈ Z is defined as Tk f (j) := (f (j− k))j∈Z.

• The modulation (frequency shift) operator:

– for a function f ∈ L2(R) and ω ∈ R is defined as Mω f (t) := e2πiωt f (t) for all t ∈ R.
– for a function f ∈ `2(Z) and ω ∈ [− 1

2 , 1
2] is defined as Mω f (j) := (e2πiωj f (j))j∈Z.

We use these operators to express the STFT of a function f ∈ H with respect to a given window
function g ∈ H as Vg f (x, ω) = 〈 f , MωTxg〉. To reduce redundancy, we sample Vg f on a separable

lattice Λ = αZ× I , where I = βZ in case ofH = L2(R), and I = {0, . . . , (M−1)
M } with β = 1

M in case
H = `2(Z). The sampling is done in time by α > 0 and in frequency by β > 0. The resulting samples
correspond to the coefficients of f with respect to a “Gabor system”.

Axioms 2019, 8, 106 5 of 25

Definition 1. (Gabor System) Given a window function 0 6= g ∈ H and lattice parameters α, β > 0, the set
of time-frequency shifted versions of g

G(g, α, β) = {MβjTαkg : (αk, βj) ∈ Λ}

is called a Gabor system.

This Gabor system is called Gabor frame if it is a frame, see Equation (1). We proceed to introduce
a scattering transform based on Gabor frames. We base our considerations on [4] by using a triplet
sequence Ω =

(
(Ψ`, σ`, S`)

)
`∈N, where ` is associated to the `-th layer of the network. Note that

in this contribution, we will deal with Hilbert spaces L2(R) or `2(Z); more precisely in the input
layer, i.e., the 0-th layer, we have H0 = L2(R) and, due to the discretization inherent in the GT,
H` = `2(Z) ∀` > 0.

We recall the elements of the triplet:

• Ψ` := {gλ`
}λ`∈Λ`

with gλ`
= Mβ` jTα`kg`, λ` = (α`k, β` j), is a Gabor frame indexed by a lattice Λ`.

• A nonlinearity function (e.g., rectified linear units, modulus function, see [4]) σ` : C → C,
is applied pointwise and is chosen to be Lipschitz-continuous, i.e., ‖σ` f − σ`h‖2 ≤ L`‖ f − h‖2 for
all f , h ∈ H. In this paper we only use the modulus function with Lipschitz constant L` = 1 for
all ` ∈ N.

• Pooling depends on a pooling factor S` > 0, which leads to dimensionality reduction. Mostly
used are max- or average-pooling, some more examples can be found in [4]. In our context,
pooling is covered by choosing specific lattices Λ` in each layer.

To explain the interpretation of GS as CNN, we write I(g)(t) = g(−t) and have

|〈 f , MβjTαkg〉| =
∣∣ f ∗ (I(Mβj(g)

))∣∣ (αk). (2)

Thus, the Gabor coefficients can be interpreted as the samples of a convolution.
We start by defining “paths” on index sets q := (q1, . . . , q`) = (β1 j1, . . . , β` j`) ∈ β1Z× . . . ×

β`Z =: B`, ` ∈ N.

Definition 2. (Gabor Scattering) Let Ω =
(
(Ψ`, σ`, Λ`)

)
`∈N be a given triplet sequence. Then,

the components of the `-th layer of the GS transform are defined to be the output of the operator U`[q`] :
H`−1 → H`, q` ∈ β`Z:

f (q1,...,q`)
` (k) = U`[β` j`] f (q1,...,q`−1)

`−1 (k) := σ`

(
〈 f (q1,...,q`−1)

`−1 , Mβ` j`Tα`kg`〉H`−1

)
j`, k ∈ Z, (3)

where f`−1 is some output-vector of the previous layer and f` ∈ H` ∀` ∈ N. The GS operator is defined as

U[q] f = U[(q1, . . . , q`)] f := U`[q`] · · ·U1[q1] f .

Similar to [4], for each layer, we use one atom of the Gabor frame in the subsequent layer as
output-generating atom, i.e., φ`−1 := g`. Note that convolution with this element corresponds to
low-pass filtering 2. We next introduce a countable set Q :=

⋃∞
`=0 B`, which is the union of all

possible paths of the net and the space (`2(Z))Q of sets of Q elements from `2(Z). Now we define the
feature extractor ΦΩ(f) of a signal f ∈ L2(R) as in ([4], Definition 3) based on chosen (not learned)
Gabor windows.

2 In general, one could take φ`−1 := gλ∗`
, λ∗` ∈ Λ`. As this element is the `-th convolution, it is an element of the `-th frame,

but because it belongs to the (`− 1)-th layer, its index is (`− 1).

Axioms 2019, 8, 106 6 of 25

Definition 3. (Feature Extractor) Let Ω =
(
(Ψ`, σ`, Λ`)

)
`∈N be a triplet sequence and φ` the

output-generating atom for layer `. Then the feature extractor ΦΩ : L2(R)→ (`2(Z))Q is defined as

ΦΩ(f) :=
∞⋃
`=0

{(U[q] f) ∗ φ`}q∈B` . (4)

In the following section we are going to introduce the signal model which we consider in this paper.

2.2. Musical Signal Model

Tones are one of the smallest units and simple models of an audio signal, consisting of one
fundamental frequency ξ0, corresponding harmonics nξ0, and a shaping envelope An for each
harmonic, providing specific timbre. Further, as our ears are limited to frequencies below 20 kHz,
we develop our model over finitely many harmonics, i.e., {1, . . . , N} ⊂ N.

The general model has the following form,

f (t) =
N

∑
n=1

An(t)e2πiηn(t), (5)

where An(t) ≥ 0 ∀n ∈ {1, . . . , N} and ∀t. For one single tone we choose ηn(t) = nξ0t. Moreover,
we create a space of tones T =

{
∑N

n=1 An(t)e2πinξ0t|An ∈ C∞
c (R)

}
and assume ‖An‖∞ ≤ 1

n .

3. Theoretical Results

3.1. Gabor Scattering of Music Signals

3.1.1. Invariance

In [6], it was already stated that due to the structure of the scattering transform the energy
of the signal is pushed towards low frequencies, where it is then captured by a low-pass filter
as output-generating atom. The current section explains how GS separates relevant structures of
signals modeled by the signal space T . Due to the smoothing action of the output-generating atom,
each layer expresses certain invariances, which will be illustrated by numerical examples in Section 3.2.
In Proposition 1, inspired by [6], we add some assumptions on the analysis window in the first layer
g1 : |ĝ1(ω)| ≤ Cĝ1(1 + |ω|s)−1 for some s > 1 and ‖tg1(t)‖1 = Cg1 < ∞.

Proposition 1 (Layer 1). Let f ∈ T with ‖A′n‖∞ ≤ Cn < ∞ ∀n ∈ {1, . . . , N}. For fixed j, for which
n0 = argmin

n∈{1,...,N}
|β1 j− ξ0n| such that |βj− ξ0n0| ≤ ξ0

2 , can be found, we obtain

U[β1 j](f)(k) = |〈 f , Mβ1 jTα1kg1〉| = An0(α1k)|ĝ1(β1 j− n0ξ0)|+ E1(k) (6)

E1(k) ≤ Cg1

N

∑
n=1
‖A′n · Tkχ[−α1; α1]‖∞ + Cĝ1

N−n0

∑
n=2−n0

1
n0 + n− 1

(
1 +

∣∣∣ξ0

∣∣∣s∣∣∣n− 1
2

∣∣∣s)−1
, (7)

where χ is the indicator function.

Remark 2. Equation (6) shows that for slowly varying amplitude functions An, the first layer mainly captures
the contributions near the frequencies of the tone’s harmonics. Obviously, for time sections during which the
envelopes An undergo faster changes, such as during a tone’s onset, energy will also be found outside a small
interval around the harmonics’ frequencies and thus the error estimate Equation (7) becomes less stringent.
The second term of the error in Equation (7) depends only on the window g1 and its behavior is governed by
the frequency decay of g1. Note that the error bound increases for lower frequencies, as the separation of the
fundamental frequency and corresponding harmonics by the analysis window deteriorates.

Axioms 2019, 8, 106 7 of 25

Proof. Step 1: Using the signal model for tones as input, interchanging the finite sum with the integral
and performing a substitution u = t− α1k, we obtain

〈 f , Mβ1 jTα1kg1〉 = 〈
N

∑
n=1

Mnξ0 An, Mβ1 jTα1kg1〉

=
N

∑
n=1
〈An, Mβ1 j−nξ0 Tα1kg1〉

=
N

∑
n=1

∫
R

An(u + α1k)g1(u)e−2πi(β1 j−nξ0)(u+α1k)du.

After performing a Taylor series expansion locally around α1k :
An(u + α1k) = An(α1k) + uRn(α1k, u), where the remainder can be estimated by |Rn(α1k, u)| ≤
‖A′n · Tkχ[−α1; α1]‖∞, we have

〈 f , Mβ1 jTα1kg1〉 =
N

∑
n=1

[
e−2πi(β1 j−nξ0)α1k An(α1k)

∫
R

g1(u)e−2πi(β1 j−nξ0)udu

+
∫
R

uRn(α1k, u)g1(u)e−2πi(β1 j−nξ0)(u+α1k)du
]

.

Therefore, we choose n0 = argmin
n
|β1 j− ξ0n|, set

En(k) =
∫
R
uRn(α1k, u)g1(u)e−2πi(β1 j−nξ0)(u+α1k)du (8)

Ẽ(k) =
N

∑
n=1

n 6=no

e−2πi(β1 j−nξ0)α1k An(α1k)ĝ1(β1 j− nξ0) (9)

and split the sum to obtain

〈 f , Mβ1 jTα1kg1〉 = An0(α1k)e−2πi(β1 j−n0ξ0)α1k ĝ1(β1 j− n0ξ0) + Ẽ(k) +
N

∑
n=1
En(k).

Step 2: We bound the error terms, starting with Equation (8):∣∣∣∣∣ N

∑
n=1
En(k)

∣∣∣∣∣ =
∣∣∣∣∣ N

∑
n=1

∫
R

uRn(α1k, u)g1(u)e−2πi(β1 j−n0ξ0)(u+α1k)du

∣∣∣∣∣ .

Using triangle inequality and the estimate for the Taylor remainder, we obtain, together with the
assumption on the analysis window,∣∣∣∣∣ N

∑
n=1
En(k)

∣∣∣∣∣ ≤ N

∑
n=1
‖A′n · Tkχ[−α1; α1]‖∞

∫
R
|ug1(u)|du

≤ Cg1

N

∑
n=1
‖A′n · Tkχ[−α1; α1]‖∞.

For the second bound, i.e., the bound of Equation (9), we use the decay condition on ĝ1, thus

|Ẽ(k)| ≤ Cĝ1

N

∑
n=1

n 6=no

|An(α1k)|
(
1 + |β1 j− ξ0n|s

)−1.

Axioms 2019, 8, 106 8 of 25

Next we split the sum into n > n0 and n < n0. We estimate the error term for n > n0 :

∑N
n=n0+1 |An(α1k)|

(
1 + |β1 j− ξ0n|s

)−1
= ∑N−n0

n=1 |An0+n(α1k)|
(
1 + |β1 j− ξ0n0 − ξ0n|s

)−1. (10)

As n0 = argmin
n
|β1 j− ξ0n|, we have |β1 j− ξ0n0| ≤ ξ0

2 and, also, using ‖An‖∞ ≤ 1
n , we obtain

N−n0

∑
n=1
|An0+n(α1k)|

(
1 +

∣∣∣ ξ0

2
− ξ0n

∣∣∣s)−1
≤

N−n0

∑
n=1

1
n0 + n

(
1 +

∣∣∣ξ0

∣∣∣s∣∣∣n− 1
2

∣∣∣s)−1
. (11)

Further we estimate the error for n < n0 :

n0−1

∑
n=1
|An(α1k)|(1 + |β1 j− ξ0n|s)−1 ≤

n0−1

∑
n=1
|An(α1k)|(1 + |β1 j− ξ0n0 + ξ0n0 − ξ0n|s)−1,

where we added and subtracted the term ξ0n0. Due to the reverse triangle inequality and |β1 j− ξ0n0| ≤
ξ0
2 , we obtain ∣∣∣β1 j− ξ0n0 − ξ0(n− n0)

∣∣∣ ≥ ∣∣∣ξ0(n0 − n)− ξ0

2

∣∣∣.
For convenience, we call m = n − n0 and perform a little trick by adding and subtracting 1

2 ,

so
∣∣∣ξ0(n0 − n)− ξ0

2

∣∣∣ = |ξ0|
∣∣∣− (m + 1) + 1

2

∣∣∣. The reason for this steps will become more clear when
putting the two sums back together. Now, we have

n0−1

∑
n=1
|An(α1k)|(1 + |β1 j− ξ0n|s)−1 ≤

−1

∑
m=1−n0

|An0+m(α1k)|
(

1 +
∣∣∣ξ0

∣∣∣s∣∣∣(m + 1)− 1
2

∣∣∣s)−1
.

Shifting the sum, i.e., taking n = m + 1, and using ‖An‖∞ ≤ 1
n , we get

−1

∑
m=1−n0

|An0+m(α1k)|
(

1 +
∣∣∣ξ0

∣∣∣s∣∣∣(m + 1)− 1
2

∣∣∣s)−1
≤

0

∑
n=2−n0

1
n0 + n− 1

(
1 +

∣∣∣ξ0

∣∣∣s∣∣∣n− 1
2

∣∣∣s)−1
. (12)

Combining the two sums Equations (11) and (12) and observing that 1
n0+n < 1

n0+n−1 , we obtain

|Ẽ(k)| ≤ Cĝ1

N−n0

∑
n=2−n0

1
n0 + n− 1

(
1 +

∣∣∣ξ0

∣∣∣s∣∣∣n− 1
2

∣∣∣s)−1
. (13)

Summing up the error terms, we obtain Equation (7).

To obtain the GS coefficients, we need to apply the output-generating atom as in Equation (4).

Corollary 1 (Output of Layer 1). Let φ1 ∈ Ψ2 be the output-generating atom, then the output of the first
layer is (

U1[β1 j] f ∗ φ1
)
(k) = |ĝ1(β1 j− n0ξ0)|(An0 ∗ φ1)(k) + ε1(k),

where
ε1(k) ≤ ‖E1‖2

∞‖φ1‖2
1.

Here E1 is the error term of Proposition 1.

Axioms 2019, 8, 106 9 of 25

Remark 3. Note that we focus here on an unmodulated Gabor frame element φ1, and the convolution may be
interpreted as a low-pass filter. Therefore, in dependence on the pooling factor α1, the temporal fine-structure of
An0 corresponding to higher frequency content is averaged out.

Proof. For this proof, we use the result of Proposition 1. We show that the calculations for the first
layer are similar to those of the second layer:∣∣∣∣∑k

(
|〈 f , Mβ1 jTα1kg1〉| − |ĝ1(β1 j− ξ0n0)|An0(k)

)
· φ1(l − k)

∣∣∣∣2
=
∣∣∑k E1(k)φ1(l − k)

∣∣2 ≤ ‖E1‖2
∞‖φ1‖2

1

(14)

where E1(k) ≤ Cg1 ∑N
n=1 ‖A′n · Tkχ[−α1; α1]‖∞ + Cĝ1 ∑N−n0

n=2−n0
1

n0+n−1

(
1 + |ξ0|s|n− 1

2 |s
)−1

.

We introduce two more operators, first the sampling operator Sα

(
f (x)

)
= f (αx)

∀x ∈ R and second the periodization operator P1
α

(
f̂ (ω)

)
= ∑k∈Z f̂ (ω− k

α) ∀ω ∈ R. These operators

have the following relation F
(
Sα(f)

)
(ω) = P1

α
(f̂ (ω)). In order to see how the second layer captures

relevant signal structures, depending on the first layer, we propose the following Proposition 2. Recall
that g` ∈ H` ∀` ∈ N.

Proposition 2 (Layer 2). Let f ∈ T , ∑k 6=0 |Ân0(.− k
α1
)| ≤ εα1 and |ĝ2(h)| ≤ Cĝ2(1 + |h|s)−1. Then the

elements of the second layer can be expressed as

U2[β2h]U1[β1 j] f (m) =
∣∣ĝ1(β1 j− ξ0n0)

∣∣∣∣〈M−β2h An0 , Tα2mg2
〉∣∣+ E2(m), (15)

where
E2(m) ≤ εα1 Cĝ2 |ĝ1(β1 j− ξ0n0)|∑

r

(
1 + |β2h− r|s

)−1
+ ‖E1‖∞ · ‖g‖1.

Remark 4. Note that, as the envelopes An are expected to change slowly except around transients, their Fourier
transforms concentrate their energy in the low frequency range. Moreover, the modulation term M−β2h pushes
the frequencies of An0 down by −β2h, and therefore they can be captured by the output-generating atom φ2

in Corollary 2. In Section 3.2, we show, by means of the analysis of example signals, how the second layer
output distinguishes tones that have a smooth onset (transient) from those that have a sharp attack, which leads
to broadband characteristics of An around this attack. Similarly, if An undergoes an amplitude modulation,
the frequency of this modulation can be clearly discerned, cf. Figure 5 and the corresponding example. This
observation is clearly reflected in expression Equation (15).

Proof. Using the outcome of Proposition 1, we obtain

U2[β2h]U1[β1 j] f (m) =

|〈Sα1(An0)|ĝ1(β1 j− ξ0n0)|+ E1, Mβ2hTα2mg2〉`2(Z)| ≤

|〈Sα1(An0)|ĝ1(β1 j− ξ0n0)|, Mβ2hTα2mg2〉`2(Z)|+ |〈E1, Mβ2hTα2mg2〉`2(Z)|.

For the error E1(k), we use the global estimate |〈E1, Mβ2hTα2mg2〉`2(Z)| ≤ ‖E1‖∞ · ‖g‖1. Moreover,
using the notation above and ignoring the constant term |ĝ1(β1 j− ξ0n0)|, we proceed as follows,

〈Sα1(An0), Mβ2hTα2mg2〉`2(Z) = ∑k∈Z Sα1(An0(k))Tα2mg2(k)e−2πiβ2hk =

F
(
Sα1(An0) · Tα2mg2

)
(β2h) = F

(
Sα1(An0)

)
∗ F

(
Tα2mg2

)
(β2h) =

P 1
α1

(
Ân0

)
∗
(

M−α2m ĝ2
)
(β2h) =

(
∑k∈Z Ân0

(
.− k

α1

))
∗
(

M−α2m ĝ2

)
(β2h).

(16)

Axioms 2019, 8, 106 10 of 25

As ĝ is concentrated around 0, the right-hand term in Equation (16) can only contain significant
values if An0 has frequency-components concentrated around β2h, therefore we consider the case k = 0
separately and obtain

〈Sα1(An0), Mβ2hTα2mg2〉`2(Z) =
(

Ân0 ∗M−α2m ĝ2
)
(β2h)

+
(

∑k∈Z\{0} Ân0

(
.− k

α1

))
∗
(

M−α2m ĝ2

)
(β2h).

(17)

It remains to bound the sum of aliases, i.e., the second term of Equation (17):∣∣∣∣(∑k∈Z\{0} Ân0

(
.− k

α1

))
∗
(

M−α2m ĝ2

)
(β2h)

∣∣∣∣ =∣∣∣∣∑r

(
∑k∈Z\{0} Ân0

(
r− k

α1

))
·
(

M−α2m ĝ2

)
(β2h− r)

∣∣∣∣ ≤
∑r ∑k∈Z\{0}

∣∣∣∣Ân0

(
r− k

α1

)∣∣∣∣ · ∣∣∣∣ĝ2(β2h− r)
∣∣∣∣

(18)

Using the assumption ∑k∈Z\{0} |Ân0(. − k
α1
)| ≤ εα1 and also the assumption on the analysis

window g2, namely, the fast decay of ĝ2, we obtain

∑r ∑k∈Z\{0}

∣∣∣∣Ân0

(
r− k

α1

) ∣∣∣∣ · ∣∣∣∣ĝ2(β2h− r)
∣∣∣∣ ≤ εα1 ∑r

∣∣ĝ2(β2h− r)
∣∣

≤ εα1 Cĝ2 ∑r
(
1 + |β2h− r|s

)−1.
(19)

We rewrite the first term in Equation (17) and make use of the operator I introduced in
Equation (2): (

Ân0 ∗M−α2m ĝ2
)
(β2h) = ∑r Ân0(r)

(
M−α2m ĝ2

)
(β2h− r) =

〈Ân0 , Tβ2hIM−α2m ĝ2〉 = −〈An0 , Mβ2hTα2mg2〉.
(20)

The last Equation (20) uses Plancherl’s theorem. Rewriting the last term, we obtain

−〈An0 , Mβ2hTα2mg2〉 = −〈M−β2h An0 , Tα2mg2〉.

Remark 5. For sufficiently big s the sum ∑r
(
1 + |β2h− r|s

)−1 decreases fast, e.g., taking s = 5 the sum is
approximately 2.

The second layer output is obtained by applying the output-generating atom as in Equation (4).

Corollary 2 (Output of Layer 2). Let φ2 ∈ Ψ3, then the output of the second layer is(
U2[β2h]U1[β1 j] f ∗ φ2

)
(m) =

(
|ĝ1(β1 j− ξ0n0)||

〈
M−β2h An0 , Tα2mg2

〉
| ∗ φ2

)
(m) + ε2(m)

where
ε2(m) ≤ ‖E2‖2

∞‖φ2‖2
1.

Here E2 is the error of Proposition 2.

Remark 6. Note that in the second layer, applying the output-generating atom φ2 ∈ Ψ3 removes the fine
temporal structure, and thus the second layer output reveals information contained in the envelopes An.

Proof. Proof is similar to the first layer output, see Corollary 1.

Axioms 2019, 8, 106 11 of 25

3.1.2. Deformation Stability

In this section, we study the extent to which GS is stable with respect to certain, small deformations.
This question is interesting, as we may often intuitively assume that the classification of natural signals,
be it sound or images, is preserved under mild and possibly local deformations. For the signal
class T , we consider musically meaningful deformations and show stability of GS with respect
to these deformations. We consider changes in spectral shape as well as frequency modulations.
Note that, as opposed to the invariance properties derived in Section 3.1.1 for the output of specific
layers, the derived stability results pertain to the entire feature vector obtained from the GS along
all included layers, cp. the definition and derivation of deformation stability in [3]. The method we
apply is inspired by the authors of [8] and uses the decoupling technique, i.e., to prove stability of the
feature extractor we first take the structural properties of the signal class into account and search for
an error bound of deformations of the signals in T . In combination with the contractivity property
‖ΦΩ(f)− ΦΩ(h)‖2 ≤ ‖ f − h‖2 of ΦΩ, see ([4] Proposition 4), which follows from B` ≤ 1 ∀` ∈ N,
where B` is the upper frame bound of the Gabor frame G(g`, α`, β`), this yields deformation stability
of the feature extractor.

Simply deforming a tone would correspond to deformations of the envelope An, n = 1, . . . , N.
This corresponds to a change in timbre, for example, by playing a note on a different instrument.
Mathematically this can be expressed as DAτ

(f)(t) = ∑N
n=1 An

(
t + τ(t)

)
e2πinξ0t.

Lemma 1 (Envelope Changes). Let f ∈ T and |A′n(t)| ≤ Cn(1 + |t|s)−1, for constants Cn > 0, n =

1, . . . , N and s > 1. Moreover let ‖τ‖∞ < 1
2 . Then

‖ f −DAτ
(f)‖2 ≤ D‖τ‖∞

N

∑
n=1

Cn,

for D > 0 depending only on ‖τ‖∞.

Proof. Setting hn(t) = An(t)−DAτ
(An(t)), we obtain

‖ f −DAτ
(f)‖2 ≤

N

∑
n=1
‖hn(t)‖2.

We apply the mean value theorem for a continuous function An(t) and get

|hn(t)| ≤ ‖τ‖∞ sup
y∈B‖τ‖∞ (t)

|A′n(y)|.

Applying the 2-norm on hn(t) and the assumption on A′n(t), we obtain

∫
R
|hn(t)|2dt ≤

∫
R
‖τ‖2

∞

(
sup

y∈B‖τ‖∞ (t)
|A′n(y)|

)2

dt

≤ C2
n‖τ‖2

∞

∫
R

sup
y∈B‖τ‖∞ (t)

(1 + |y|s)−2dt.

Splitting the integral into B1(0) and R\B1(0), we obtain

‖hn(t)‖2
2 ≤ C2

n‖τ‖2
∞

(∫
B1(0)

1dt +
∫
R\B1(0)

sup
y∈B‖τ‖∞ (t)

(1 + |y|s)−2dt
)

.

Axioms 2019, 8, 106 12 of 25

Using the monotonicity of (1 + |y|s)−1 and in order to remove the supremum, by shifting ‖τ‖∞,
we have

‖hn(t)‖2
2 ≤ C2

n‖τ‖2
∞

(∫
B1(0)

1dt +
∫
R\B1(0)

(1 + ||t| − ‖τ‖∞|s)−2dt
)

.

Moreover for t /∈ B1(0) we have |(1− ‖τ‖∞)t|s ≤ |(1− ‖τ‖∞
|t|)t|s. This leads to

‖hn(t)‖2
2 ≤ C2

n‖τ‖2
∞

(
2 +

∫
R\B1(0)

(1 + |(1− ‖τ‖∞)t|s)−2dt
)

.

Performing a change of variables, i.e., x = (1− ‖τ‖∞)t with dx
dt = 1− ‖τ‖∞ > 1

2 we obtain

‖hn(t)‖2
2 ≤ C2

n‖τ‖2
∞

(
2 + 2

∫
R
(1 + |x|s)−2dx

)
= C2

n‖τ‖2
∞

(
2 + 2

∥∥∥∥ 1
1 + |x|s

∥∥∥∥2

2

)
.

Setting D2 := 2
(
1 + ‖ 1

1+|x|s ‖
2
2
)

and summing up we obtain

‖ f −DAτ
(f)‖2 ≤ D‖τ‖∞

N

∑
n=1

Cn.

Remark 7. Harmonics’ energy decreases with increasing frequency, hence Cn � Cn−1, hence the sum ∑N
n=1 Cn

can be expected to be small.

Another kind of sound deformation results from frequency modulation of f ∈ T . This corresponds
to, for example, playing higher or lower pitch, or producing a vibrato. This can be formulated as

Dτ : f (t) 7→
N

∑
n=1

An(t)e
2πi
(

nξ0t+τn(t)
)

.

Lemma 2 (Frequency Modulation). Let f ∈ T . Moreover let ‖τn‖∞ <
arccos(1− ε2

2)
2π . Then,

‖ f −Dτ(f)‖2 ≤ ε
N

∑
n=1

1
n

.

Proof. We have

‖ f −Dτ f ‖2 ≤
N

∑
n=1
‖hn(t)‖2,

with hn(t) = An(t)(1− e2πiτn(t)). Computing the 2-norm of hn(t), we obtain∫
R
|hn(t)|2dt =

∫
R
|An(t)(1− e2πiτn(t))|2dt ≤ ‖1− e2πiτn(t)‖2

∞‖An(t)‖2
∞.

We rewrite

|1− e2πiτn(t)|2 =
∣∣1− (cos

(
2πτn(t)

)
+ i sin

(
2πτn(t)

))∣∣2 = 2
(
1− cos

(
2πτn(t)

))
.

Axioms 2019, 8, 106 13 of 25

Setting ‖1 − e2πiτn(t)‖2
∞ ≤ ε2, this term gets small if ‖τn(t)‖∞ ≤ arccos(1− ε2

2)
2π . Using the

assumptions of our signal model on the envelopes, i.e., ‖An‖∞ < 1
n , we obtain

‖ f −Dτ(f)‖2 ≤ ε
N

∑
n=1

1
n

.

Proposition 3 (Deformation Stability). Let ΦΩ : L2(R) → (`2(Z))Q, f ∈ T and |A′n(t)| ≤ Cn(1 +

|t|s)−1, for constants Cn > 0, n = 1, . . . , N and s > 1. Moreover let ‖τ‖∞ < 1
2 and ‖τn‖∞ <

arccos(1− ε2
2)

2π .
Then the feature extractor Φ is deformation stable with respect to

• envelope changes DAτ

(
f
)
(t) = ∑N

n=1 An
(
t + τ(t)

)
e2πinξ0t :

∥∥ΦΩ
(

f
)
−ΦΩ

(
DAτ

(f)
)∥∥

2 ≤ D‖τ‖∞

N

∑
n=1

Cn,

for D > 0 depending only on ‖τ‖∞.

• frequency modulation Dτ

(
f
)
(t) = ∑N

n=1 An(t)e
2πi
(

nξ0t+τn(t)
)

:

∥∥ΦΩ
(

f
)
−ΦΩ

(
Dτ(f)

)∥∥
2 ≤ ε

N

∑
n=1

1
n

.

Proof. The Proof follows directly from a result of ([4] Proposition 4), called contractivity property
‖ΦΩ(f)−ΦΩ(h)‖2 ≤ ‖ f − h‖2 of ΦΩ, which follows from B` ≤ 1 ∀` ∈ N, where B` is the upper frame
bound of the Gabor frame G(g`, α`, β`) and deformation stability of the signal class in Lemmas 1 and 2.

3.2. Visualization Example

In this section, we present some visualizations based on two implementations, one in MATLAB,
which we call the GS implementation, and the other one in Python, which is the channel averaged GS
implementation. The main difference between these implementations is an averaging step of Layer 2 in
the case of the Python implementation; averaging over channels is introduced in order to obtain a 2D
representation in each layer. Furthermore, the averaging step significantly accelerates the computation
of the second layer output.

Referring to Figure 2, the following nomenclature will be used. Layer 1 (L1) is the GT, which, after
resampling to the desired size, becomes Out A. Output 1 (O1) is the output of L1, i.e., after applying the
output-generating atom. Recall that this is done by a low-pass filtering step. Again, Out B is obtained
by resampling to the desired matrix size.

Axioms 2019, 8, 106 14 of 25

signal L1 L2

O1

L2avg

O2

Out B

 resampling

 Gabor transform

 time averaging

 channel averaging

 reassignment

Out C

Out A

Figure 2. Diagram explaining the naming of the GS building blocks of the Python implementation in
the following sections.

Layer 2 (L2) is obtained by applying another GT for each frequency channel. In the MATLAB

code, Output 2 (O2) is then obtained by low-pass filtering the separate channels of each resulting
spectrogram. In the case of Python implementation (see Figure 2), we average all the GT of L2 to
one spectrogram (for the sake of speed) and then apply a time averaging step in order to obtain O2.
Resampling to the desired size yields Out C.

As input signal for this section we generate single tones following the signal model from
Section 2.2.

3.2.1. Visualization of Different Frequency Channels within the GS Implementation

Figures 3 and 4 show two tones, both having a smooth envelope but different fundamental
frequencies and number of harmonics. The first tone has fundamental frequency ξ0 = 800 Hz and
15 harmonics, and the second tone has fundamental frequency ξ0 = 1060 Hz and 10 harmonics.

0

200

400

600
Layer 1

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Time [s]

0

200

400

600
Output 1

Fr
eq

ue
nc

y
ch

an
ne

ls

Figure 3. First layer (i.e., GT) and Output 1 of two tones with different fundamental frequencies.

Axioms 2019, 8, 106 15 of 25

0

50

100

150

200
Output 2 evaluated at 800 Hz, i.e. frequency channel 38 of Layer 1

0

50

100

150

200
Output 2 evaluated at 1060 Hz, i.e. frequency channel 50 of Layer 1

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Time [s]

0

50

100

150

200
Output 2 evaluated at 3200 Hz, i.e. frequency channel 150 of Layer 1Fr

eq
ue

nc
y

ch
an

ne
ls

Figure 4. Output 2 of two tones with different fundamental frequencies, at different fixed frequency
channels of Layer 1.

Content of Figures 3 and 4:

• Layer 1: The first spectrogram of Figure 3 shows the GT. Observe the difference in the fundamental
frequencies and that these two tones have a different number of harmonics, i.e., tone one has
more than tone two.

• Output 1: The second spectrogram of Figure 3 shows Output 1, which is is time averaged version
of Layer 1.

• Output 2: For the second layer output (see Figure 4), we take a fixed frequency channel from
Layer 1 and compute another GT to obtain a Layer 2 element. By applying an output-generating
atom, i.e., a low-pass filter, we obtain Output 2. Here, we show how different frequency
channels of Layer 1 can affect Output 2. The first spectrogram shows Output 2 with respect
to, the fundamental frequency of tone one, i.e., ξ0 = 800 Hz. Therefore no second tone is visible in
this output. On the other hand, in the second spectrogram, if we take as fixed frequency channel
in Layer 1 the fundamental frequency of the second tone, i.e., ξ0 = 1060 Hz, in Output 2, the first
tone is not visible. If we consider a frequency that both share, i.e., ξ = 3200 Hz, we see that for
Output 2 in the third spectrogram both tones are present. As GS focuses on one frequency channel
in each layer element, the frequency information in this layer is lost; in other words, Layer 2 is
invariant with respect to frequency.

3.2.2. Visualization of Different Envelopes within the GS Implementation

Here, Figure 5 shows two tones, played sequentially, having the same fundamental frequency
ξ0 = 800 Hz and 15 harmonics, but different envelopes. The first tone has a sharp attack, maintains
and goes softly to zero, the second starts with a soft attack and has some amplitude modulation.
An amplitude modulated signal would, for example, correspond to f (t) = ∑N

n=1 sin(2π20t)e2πinξ0t;
here, the signal is modulated by 20 Hz. The GS output of these signals are shown in Figure 5.

Axioms 2019, 8, 106 16 of 25

0

200

400

600
Layer 1

0

200

400

600
Output 1

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Time [s]

0

50

100

150

200
Output 2Fr

eq
ue

nc
y

ch
an

ne
ls

Figure 5. Layer 1 (i.e., GT), Output 1, and Output 2 of the signal having a sharp attack and afterwards
some modulation.

• Layer 1: In the spectrogram showing the GT, we see the difference between the envelopes and we
see that the signals have the same pitch and the same harmonics.

• Output 1: The output of the first layer is invariant with respect to the envelope of the signals. This is
due to the output-generating atom and the subsampling, which removes temporal information of
the envelope. In this output, no information about the envelope (neither the sharp attack nor the
amplitude modulation) is visible, therefore the spectrogram of the different signals look almost
the same.

• Output 2: For the second layer output we took as input a time vector at fixed frequency of 800 Hz
(i.e., frequency channel 38) of the first layer. Output 2 is invariant with respect to the pitch,
but differences on larger scales are captured. Within this layer we are able to distinguish the
different envelopes of the signals. We first see the sharp attack of the first tone and then the
modulation with a second frequency is visible.

The source code of the MATLAB implementation and further examples can be found in [16].

3.2.3. Visualization of How Frequency and Amplitude Modulations Influence the Outputs Using the
Channel Averaged Implementation

To visualize the resampled transformation in a more structured way, we created an interactive
plot (see Figure 6), which shows 25 different synthetic audio signals side by side, transformed into
Out A, Out B, and Out C with chosen GS parameters. Each signal consists of one or more sine waves
modulated in amplitude and frequency with 5 Hz steps.

Axioms 2019, 8, 106 17 of 25

Figure 6. Example output of the interactive plot.

The parameters can be adjusted by sliders and the plot is changed accordingly. The chosen
parameters to be adjusted were number of frequency channels in Layer 1, number of frequency
channels in Layer 2, sampling rate, and number of harmonics of the signal. The code for the interactive
plot is available as a part of the repository [16].

4. Experimental Results

In the numerical experiments, we compare the GS to a GT representation, which is one of the
standard time-frequency representations used in a preprocessing phase for training neural networks
applied to audio data. We compare these two time-frequency representations with respect to the
performance on limited size of the training dataset.

To convert the raw waveform into the desired representations (GS and GT), we have used the
Gabor-scattering v0.0.4 library [17], which is our Python implementation of the GS transform based on
the Scipy v1.2.1 [18–20] implementation of STFT.

To demonstrate the beneficial properties of GS, we first create synthetic data in which we have
the data generation under a full control. In this case, we generate four classes of data that reflect the
discriminating properties of GS. Second, we investigate whether the GS representation is beneficial when
using a “real” dataset for training. For this purpose, we have utilized the GoodSounds dataset [9].

Axioms 2019, 8, 106 18 of 25

4.1. Experiments with Synthetic Data

In the synthetic dataset, we created four classes containing 1 s long signals, sampled at 44.1 kHz
with 16 bit precision. All signals consist of a fundamental sine wave and four harmonics. The whole
process of generating sounds is controlled by fixed random seeds for reproducibility.

4.1.1. Data

We describe the sound generator model for one component of the final signal by the
following equation,

f (t) = A · sin
(

2π
(
ξt + cw f m(t, A f m, ξ f m, ϕ f m)

)
+ ϕ

)
· cwam(t, Aam, ξam, ϕam), (21)

where cw f m(t, A f m, ξ f m, ϕ f m) = A f m · sin(2πξ f mt + ϕ f m) is the frequency modulation and

cwam(t, Aam, ξam, ϕam) =

{
Aam · sin(2πξamt + ϕam) if Aam > 0 and

(
ϕam > 0 or ξam > 0

)
1 else

}
is

the amplitude modulation. Here, A is the amplitude, ξ denotes the frequency and ϕ denotes the
phase. Furthermore, the amplitude, frequency, and phase of the frequency modulation carrier wave is
denoted by A f m, ξ f m, and ϕ f m, respectively, and for the case of amplitude modulation carrier wave
we have Aam, ξam, and ϕam.

To generate five component waves using the sound generator described above, we needed
to decide upon the parameters of each component wave. We started by randomly generating the
frequencies and phases of the signal and the carrier waves for frequency and amplitude modulation
from given intervals. These parameters describe the fundamental sine wave of the signal. Next we
create harmonics by taking multiples (from 2 to 5) of the fundamental frequency ξ, where A of each next
harmonic is divided by a factor. Afterwards, by permuting the two parameters, namely, by turning the
amplitude modulation and frequency modulation on and off, we defined four classes of sound. These
classes are indexed starting from zero. The 0th class has neither amplitude nor frequency modulation.
Class 1 is just amplitude modulated, Class 2 is just modulated in frequency, and Class 3 is modulated
in both amplitude and frequency, as seen in Table 1. At the end, we used those parameters to generate
each harmonic separately and then summed them together to obtain the final audio file.

Table 1. Overview of classes.

Aam = 0 Aam = 1

A f m = 0 class 0 class 1
A f m = 1 class 2 class 3

The following parameters were used to obtain GS; n_fft = 500—number of frequency channels,
n_perseg = 500—window length, n_overlap = 250—window overlap were taken for Layer 1,
i.e., GT, n_fft = 50, n_perseg = 50, n_overlap = 40 for Layer 2, window_length of the time averaging
window for Output 2 was set to 5 with mode set to “same”. All the shapes for Output A, Output B,
and Output C were 240× 160. Bilinear resampling [21] was used to adjust the shape if necessary.
The same shape of all of the outputs allows the stacking of matrices into shape 3× 240× 160, which
is convenient for CNN, because it can be treated as a 3-channel image. Illustration of the generated
sounds from all four classes transformed into GT and GS can be seen in Section 1.2 and Figure 1.

With the aforementioned parameters, the mean time necessary to compute the GS was 17.4890 ms,
whereas the mean time necessary to compute the GT was 5.2245 ms, which is approximately 3 times
less. Note that such comparison is only indicative, because the time is highly dependent on chosen
parameters, hence the final time depends on the specific settings.

Axioms 2019, 8, 106 19 of 25

4.1.2. Training

To compare the discriminating power of both GS and GT, we have generated 10,000 training
samples (2500 from each class) and 20,000 (5000 from each class) validation samples. As the task at
hand is not as challenging as some real-world datasets, we assume these sizes to be sufficient for both
time-frequency representations to converge to very good performances. To compare the performance
of GS and GT on a limited set of training data, we have altogether created four scenarios in which the
training set was limited to 400, 1000, 4000, and 10,000 samples. In all of these scenarios, the size of
the validation set remained at its original size of 20,000 samples and we have split the training set
into smaller batches each containing 100 samples with the same number of samples from each class.
Batches were used to calculate the model error based on which the model weights were updated.

The CNN consisted of the batch normalization layer, which acted upon the input data separately
for each channel of the image (we have three channels, namely Out A, Out B, and Out C), followed by
four stacks of 2D convolution with average pooling. The first three convolutional layers were identical
in the number of kernels, which was set to 16 of the size 3× 3 with stride 1× 1. The last convolutional
layer was also identical apart from using just 8 kernels. Each convolutional layer was initialized by
a Glorot uniform initialization [22], and followed by a ReLu nonlinearity [23] and an average pooling
layer with a 2× 2 pool size. After the last average pooling the feature maps were flattened and fully
connected to an output layer with 4 neurons and a softmax activation function [24]. For more details
about the networks architecture, the reader should consult the repository [16]. There one also finds the
exact code in order to reproduce the experiment.

The network’s categorical cross-entropy loss function was optimized using the Adam
optimizer [25] with lr = 0.001, β1 = 0.9, and β2 = 0.999. To have a fair comparison, we limit each of the
experiments in terms of computational effort as measured by a number of weight updates during the
training phase. One weight update is made after each batch. Each experiment with synthetic data was
limited to 2000 weight updates. To create the network, we used Python 3.6 programming language
with Keras framework v2.2.4 [26] on Tensorflow backend v1.12.0 [27]. To train the models, we used
two GPUs, namely, NVIDIA Titan XP and NVIDIA GeForce GTX 1080 Ti, on the OS Ubuntu 18.04
based system. Experiments are fully reproducible and can be obtained by running the code in the
repository [16].

4.1.3. Results

The results are shown in Table 2, listing the accuracies of the model’s best weight update on
training and validation sets. The best weight update was chosen based on the performance on the
validation set. More detailed tables of the results can be found in the aforementioned repository. In this
experiment, we did not use any testing set, because of the synthetic nature of the data. Accuracy is
computed as a fraction of correct predictions to all predictions.

The most important observation is visible in Figure 7, where it is shown that in the earlier phases
of the training, GS reaches higher accuracies after less weight updates than GT. This effect diminishes
with bigger training sets and vanishes completely in case of 100 training batches. In case of very
limited data, i.e., with only 400 training samples, the results show that GS even outperformed GT.
With more training samples, i.e., 1000 and 4000, the best performances of GT and GS are nearly the
same. In this case we could hypothesize that the prior knowledge of the intrinsic properties of a time
series signal shown by GS (in the invariances of Layer 1 and Layer 2) is not needed anymore and the
network is able to learn the necessary transformation itself.

Axioms 2019, 8, 106 20 of 25

Table 2. Performance of the convolutional neural network (CNN) trained using GS and GT data.

TF N Train N Valid BWU Train Valid

GS 400 20,000 280 1.0000 0.9874
GT 400 20,000 292 1.0000 0.9751

GS 1000 20,000 650 0.9990 0.9933
GT 1000 20,000 1640 1.0000 0.9942

GS 4000 20,000 1640 0.9995 0.9987
GT 4000 20,000 1720 0.9980 0.9943

GS 10,000 20,000 1800 0.9981 0.9968
GT 10,000 20,000 1800 0.9994 0.9985

Table notation: TF—Time-frequency representation. N train and N valid—Number of samples in training and
validation sets. BWU—Weight update after which the highest performance was achieved on the validation
set. Train and valid—accuracy on training and validation sets.

101 102 103
60

70

80

90

100

Va
lid

 a
cc

 [%
]

4 train batches (400 samples)

GT (best w.u.292: 97.51%)
GS (best w.u.280: 98.74%)

101 102 103

10 train batches (1000 samples)

GT (best w.u.1640: 99.42%)
GS (best w.u.650: 99.33%)

101 102 103

Weight updates (log)

60

70

80

90

100

Va
lid

 a
cc

 [%
]

40 train batches (4000 samples)

GT (best w.u.1720: 99.43%)
GS (best w.u.1640: 99.87%)

101 102 103

Weight updates (log)

100 train batches (10000 samples)

GT (best w.u.1800: 99.85%)
GS (best w.u.1800: 99.68%)

Figure 7. CNN performance milestone reached over number of weight updates—Synthetic
data. Figure notation: Valid acc—Accuracy performance metric measured on the validation set.
Best w.u.—Weight update after which the highest performance was reached.

4.2. Experiments with GoodSounds Data

In the second set of experiments, we used the GoodSounds dataset [9]. It contains monophonic
audio recordings of single tones or scales played by 12 different musical instruments. The main
purpose of this second set of experiments is to investigate whether GS shows superior performance to
GT in a classification task using real-life data.

4.2.1. Data

To transform the data into desired form for training, we removed the silent parts using the SoX
v14.4.2 library [28,29]; next, we split all files into 1 s long segments sampled at a rate of 44.1 kHz
with 16 bit precision. A Tukey window was applied to all segments to smooth the onset and the offset
of each with the aim to prevent undesired artifacts after applying the STFT.

The dataset contains 28.55 h of recordings, which is a reasonable amount of audio data to be used
in training of Deep Neural Networks considering the nature of this task. Unfortunately, the data are
distributed into classes unevenly, half of the classes are extremely underrepresented, i.e., half of the

Axioms 2019, 8, 106 21 of 25

classes together contain only 12.6% of all the data. In order to alleviate this problem, we decided upon
an equalization strategy by variable stride.

To avoid extensive equalization techniques, we have discarded all classes that spanned less
than 10% of the data. In total we used six classes, namely, clarinet, flute, trumpet, violin, sax alto,
and cello. To equalize the number of segments between these classes, we introduced the aforementioned
variable stride when creating the segments. The less data a particular class contains, the bigger is the
overlap between segments, thus more segments are generated and vice versa. The whole process of
generating sounds is controlled by fixed random seeds for reproducibility. Detailed information about
the available and used data, stride settings for each class, obtained number of segments and their split
can be seen in Table 3.

Table 3. Overview of available and used data.

All Available Data Obtained Segments

Class Files Dur Ratio Stride Train Valid Test

Used

Clarinet 3358 369.70 21.58% 37,988 12,134 4000 4000
Flute 2308 299.00 17.45% 27,412 11,796 4000 4000

Trumpet 1883 228.76 13.35% 22,826 11,786 4000 4000
Violin 1852 204.34 11.93% 19,836 11,707 4000 4000

Sax alto 1436 201.20 11.74% 19,464 11,689 4000 4000
Cello 2118 194.38 11.35% 15,983 11,551 4000 4000

Not used

Sax tenor 680 63.00 3.68%
Sax soprano 668 50.56 2.95%
Sax baritone 576 41.70 2.43%

Piccolo 776 35.02 2.04%
Oboe 494 19.06 1.11%
Bass 159 6.53 0.38%

Total 16,308 1713.23 100.00% 70,663 24,000 24,000

Table notation: Files—Number of available audio files. Dur—Duration of all recordings within one class in
minutes. Ratio—Ratio of the duration to total duration of all recordings in the dataset. Stride—Step size
(in samples) used to obtain segments of the same length. Train, Valid, Test—Number of segments used to
train (excluding the leaking segments), validate, and test the model.

As seen from the table, the testing and validation sets were of the same size comprising the same
number of samples from each class. The remaining samples were used for training. To prevent leaking
of information from validation and testing sets into the training set, we have excluded all the training
segments originating from the audio excerpts, which were already used in validation or testing set.
More information can be found in the repository [16].

The following parameters were used to obtain GS; n_fft = 2000—number of frequency channels,
n_perseg = 2000—window length, n_overlap = 1750—window overlap were taken for Layer 1,
i.e., GT, n_fft = 25, n_perseg = 25, n_overlap = 20 for Layer 2, window_length of the time averaging
window for Output 2 was set to 5 with mode set to ‘same’. All the shapes for Output A, Output B and
Output C were 480× 160. Bilinear resampling [21] was used to adjust the shape if necessary. The same
shape of all the outputs allows the stacking of matrices into shape 3× 480× 160. Illustration of the
sounds from all six classes of musical instruments transformed into GT and GS can be found in the
repository [16].

4.2.2. Training

To make the experiments on synthetic data and the experiments on GoodSounds data comparable,
we again used the CNN as a classifier trained in a similar way as described in Section 4.1.2. We have
also preprocessed the data, so the audio segments are of the same duration and sampling frequency.
However, musical signals have different distribution of frequency components than the synthetic data,
therefore we had to adjust the parameters of the time-frequency representations. This led to a change

Axioms 2019, 8, 106 22 of 25

in the input dimension to 3 × 480 × 160. These changes and the more challenging nature of the task
led to slight modification of the architecture in comparison to the architecture in the experiment with
synthetic data:

The number of kernels in the first three convolutional layers was raised to 64. The number of
kernels in the last convolutional layer was raised to 16. The output dimension of this architecture was
set to 6, as this was the number of classes. The batch size changed to 128 samples per batch. The number
of weight updates was set to 11,000. To prevent unnecessary training, this set of experiments was set
to terminate after 50 consecutive epochs without an improvement in validation loss as measured by
categorical cross-entropy. The loss function and optimization algorithm remained the same as well
as the used programming language, framework, and hardware. Experiments are fully reproducible
and can be obtained by running the code in the repository [16]. Consider this repository also for more
details about the networks architecture.

In this set of experiments, we have trained 10 models in total with five scenarios with limited
training set (5, 11, 55, 110, and 550 batches each containing 128 samples) for each time-frequency
representation. In all of these scenarios, the sizes of the validation and testing sets remained at their
full sizes each consisting of 188 batches containing 24,000 samples.

4.2.3. Results

Table 4 shows the accuracies of the model’s best weight update on training, validation, and testing
sets. The best weight update was chosen based on the performance on the validation set. As before,
more details can be found in the aforementioned repository. In this experiment using GoodSounds
data, a similar trend as for the synthetic data is visible. GS performs better than GT if we are limited in
training set size, i.e., having 640 training samples, the GS outperformed GT.

Table 4. Performance of CNN: GoodSounds data.

TF N Train N Valid N Test BWU Train Valid Test

GS 640 24,000 24,000 485 0.9781 0.8685 0.8748
GT 640 24,000 24,000 485 0.9766 0.8595 0.8653

GS 1408 24,000 24,000 1001 0.9773 0.9166 0.9177
GT 1408 24,000 24,000 1727 0.9943 0.9194 0.9238

GS 7040 24,000 24,000 9735 0.9996 0.9846 0.9853
GT 7040 24,000 24,000 8525 0.9999 0.9840 0.9829

GS 14,080 24,000 24,000 10,780 0.9985 0.9900 0.9900
GT 14,080 24,000 24,000 9790 0.9981 0.9881 0.9883

GS 70,400 24,000 24,000 11,000 0.9963 0.9912 0.9932
GT 70,400 24,000 24,000 8800 0.9934 0.9895 0.9908

Table notation: TF—Time-frequency representation. N train, N valid and N test—Number of samples in
training, validation and testing sets. BWU—Weight update after which the highest performance was achieved
on the validation set. Train, valid and test—accuracy on training, validation, and testing sets.

In Figure 8, we again see that in earlier phases of the training, GS reaches higher accuracies after
less weight updates than GT. This effect diminishes with bigger training sets and vanishes in case
of 550 training batches.

Axioms 2019, 8, 106 23 of 25

101 102 103 104
50

60

70

80

90

100

Te
st

 a
cc

 [%
]

5 train batches (640 samples)

GT (best w.u.485: 86.53%)
GS (best w.u.485: 87.48%)

101 102 103 104

11 train batches (1408 samples)

GT (best w.u.1727: 92.38%)
GS (best w.u.1012: 91.81%)

101 102 103 104
50

60

70

80

90

100

Te
st

 a
cc

 [%
]

55 (7040)

GT (best w.u.10010: 98.42%)
GS (best w.u.9735: 98.53%)

101 102 103 104

Weight updates (log)

110 (14080)

GT (best w.u.11000: 98.95%)
GS (best w.u.10780: 99.00%)

101 102 103 104

550 (70400)

GT (best w.u.9900: 99.15%)
GS (best w.u.11000: 99.32%)

Figure 8. CNN performance milestone reached over number of weight updates—GoodSounds data.
Figure notation: Test acc—Accuracy performance metric measured on the testing set. Best w.u.—Weight
update after which the highest performance was reached.

5. Discussion and Future Work

In the current contribution, a scattering transform based on Gabor frames has been introduced,
and its properties were investigated by relying on a simple signal model. Thereby, we have been able
to mathematically express the invariances introduced by GS within the first two layers.

The hypothesis raised in Section 1.1, that explicit encoding of invariances by using an adequate
feature extractor is beneficial when a restricted amount of data is available, was substantiated in the
experiments presented in the previous section. It was shown that in the case of a limited dataset the
application of a GS representation improves the performance in classification tasks in comparison to
using GT.

In the current implementation and with parameters described in Section 4.1.1, the GS is
approximately 3 times more expensive to compute than GT. However, this transformation needs
to be done only once—in the preprocessing phase. Therefore, the majority of computational effort is
still spent during training, e.g., in the case of the GoodSounds experiment, the training with GS is
2.5 times longer than with GT. Note that this is highly dependent on the used data handling pipeline,
network architecture, software framework, and hardware, which all can be optimized to alleviate this
limitation. Although GS is more computationally-expensive, the obtained improvement justifies its
use in certain scenarios; in particular, for classification tasks which can be expected to benefit from the
invariances introduced by GS. In these cases, the numerical experiments have shown that by using GS
instead of GT a negative effect of a limited dataset can be compensated.

Hypothetically, with enough training samples, both GS and GT should perform equally assuming
sufficient training, i.e., performing enough weight updates. This is shown in the results of both
numerical experiments presented in this article (see Tables 2 and 4). This is justified by the fact that
GS comprises exclusively the information contained within GT, only separated into three different

Axioms 2019, 8, 106 24 of 25

channels. We assume it is easier for the network to learn from such a separated representation. The
evidence to support this assumption is visible in the earlier phases of the training, where GS reaches
higher accuracies after less weight updates than GT (see Figures 7 and 8). This effect increases with
smaller datasets while with very limited data GS even surpasses GT in performance. This property
can be utilized in restricted settings, e.g., in embedded systems with limited resources or in medical
applications, where sufficient datasets are often too expensive or impossible to gather, whereas the
highest possible performance is crucial.

We believe that GT would eventually reach the same performance as GS, even on the smallest
feasible datasets, but the network would need more trainable parameters, i.e., more complex
architecture to do the additional work of finding the features that GS already provides. Unfortunately,
in such a case, it remains problematic to battle the overfitting problem. This opens a new
question—whether the performance boost of GS would amplify on lowering the number of trainable
parameters of the CNN. This is out of the scope of this article and will be addressed in the future work.

In another paper [30], we extended GS to mel-scattering (MS), where we used GS in combination with
a mel-filterbank. This MS representation reduces the dimensionality, and therefore it is computationally
less expensive compared to GS.

It remains to be said that the parameters in computing GS coefficients have to be carefully chosen
to exploit the beneficial properties of GS by systematically capturing data-intrinsic invariances.
Future work will consist of implementing GS on the GPU, to allow for fast parallel computation. At the
same time, more involved signal models, in particular, those concerning long-term correlations, will be
studied analytically to the end of achieving results in the spirit of the theoretical results presented in
this paper.

Author Contributions: Equal contribution of authors.

Funding: This work was supported by the Uni:docs Fellowship Programme for Doctoral Candidates in Vienna,
the Vienna Science and Technology Fund (WWTF) project SALSA (MA14-018), the International Mobility of
Researchers (CZ.02.2.69/0.0/0.0/16 027/0008371), and the project LO1401. Infrastructure of the SIX Center was
used for computation. Open Access Funding by the University of Vienna.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105.

2. Grill, T.; Schlüter, J. Music Boundary Detection Using Neural Networks on Combined Features and
Two-Level Annotations. In Proceedings of the 16th International Society for Music Information Retrieval
Conference (ISMIR 2015), Malaga, Spain, 26–30 October 2015.

3. Mallat, S. Group Invariant Scattering. Comm. Pure Appl. Math. 2012, 65, 1331–1398. [CrossRef]
4. Wiatowski, T.; Bölcskei, H. A Mathematical Theory of Deep Convolutional Neural Networks for Feature

Extraction. IEEE Trans. Inf. Theory 2017, 64, 1845–1866. [CrossRef]
5. Wiatowski, T.; Bölcskei, H. Deep Convolutional Neural Networks Based on Semi-Discrete Frames.

In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Hong Kong, China,
14–19 June 2015; pp. 1212–1216.

6. Andén, J.; Mallat, S. Deep Scattering Spectrum. IEEE Trans. Signal Process. 2014, 62, 4114–4128. [CrossRef]
7. Andén, J.; Lostanlen, V.; Mallat, S. Joint time-frequency scattering for audio classification. In Proceedings

of the 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP),
Boston, MA, USA, 17–20 September 2015; pp. 1–6.

8. Grohs, P.; Wiatowski, T.; Bölcskei, H. Deep convolutional neural networks on cartoon functions.
In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain,
10–15 July 2016; pp. 1163–1167.

http://dx.doi.org/10.1002/cpa.21413
http://dx.doi.org/10.1109/TIT.2017.2776228
http://dx.doi.org/10.1109/TSP.2014.2326991

Axioms 2019, 8, 106 25 of 25

9. Romani Picas, O.; Parra Rodriguez, H.; Dabiri, D.; Tokuda, H.; Hariya, W.; Oishi, K.; Serra, X. A real-time
system for measuring sound goodness in instrumental sounds. In Audio Engineering Society Convention 138;
Audio Engineering Society: New York, NY, USA, 2015.

10. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking
generalization. arXiv 2016, arXiv:1611.03530.

11. Kawaguchi, K.; Kaelbling, L.P.; Bengio, Y. Generalization in Deep Learning. arXiv 2017, arXiv:1710.05468.
12. Hofmann, T.; Schölkopf, B.; Smola, A. Kernel Methods in Machine Learning. Ann. Stat. 2008, 36, 1171–1220.

[CrossRef]
13. Mallat, S. Understanding deep convolutional networks. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.

2016, 374. [CrossRef] [PubMed]
14. Wiatowski, T.; Tschannen, M.; Stanic, A.; Grohs, P.; Bölcskei, H. Discrete deep feature extraction: A theory

and new architectures. In Proceedings of the International Conference on Machine Learning (ICML),
New York, NY, USA, 19–24 June 2016.

15. Gröchenig, K. Foundations of Time-Frequency Analysis; Applied and Numerical Harmonic Analysis; Birkhäuser:
Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2001.

16. Harar, P.; Bammer, R. gs-gt. Available online: https://gitlab.com/hararticles/gs-gt (accessed on
20 June 2019).

17. Harar, P. Gabor Scattering v0.0.4. Available online: https://gitlab.com/paloha/gabor-scattering
(accessed on 20 June 2019).

18. Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. 2001. Available online:
http://www.scipy.org/ (accessed on 1 February 2019).

19. Oppenheim, A.V. Discrete-Time Signal Processing; Pearson Education India: Uttar Pradesh, India, 1999.
20. Griffin, D.; Lim, J. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech

Signal Process. 1984, 32, 236–243. [CrossRef]
21. Kirkland, E.J. Bilinear interpolation. In Advanced Computing in Electron Microscopy; Springer:

Berlin/Heidelberg, Germany, 2010; pp. 261–263.
22. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. Aistats

2010, 9, 249–256.
23. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on

ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 7–13 December 2015.

24. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
25. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
26. Chollet, F. Keras. Available online: https://keras.io (accessed on 19 August 2019).
27. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, C.; Davis, A.; Dean, J.;

Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015. Available
online: https://www.tensorflow.org (accessed on 1 February 2019)

28. Bagwell, C. SoX—Sound Exchange the Swiss Army Knife of Sound Processing. Available online: https:
//launchpad.net/ubuntu/+source/sox/14.4.1-5 (accessed on 31 October 2018).

29. Navarrete, J. The SoX of Silence Tutorial. Available online: https://digitalcardboard.com/blog/2009/08/
25/the-sox-of-silence (accessed on 31 October 2018).

30. Bammer, R.; Breger, A.; Dörfler, M.; Harar, P.; Smékal, Z. Machines listening to music: The role of signal
representations in learning from music. arXiv 2019, arXiv:1903.08950.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/009053607000000677
http://dx.doi.org/10.1098/rsta.2015.0203
http://www.ncbi.nlm.nih.gov/pubmed/26953183
https://gitlab.com/hararticles/gs-gt
https://gitlab.com/paloha/gabor-scattering
http://www.scipy.org/
http://dx.doi.org/10.1109/TASSP.1984.1164317
https://keras.io
https://www.tensorflow.org
https://launchpad.net/ubuntu/+source/sox/14.4.1-5
https://launchpad.net/ubuntu/+source/sox/14.4.1-5
https://digitalcardboard.com/blog/2009/08/25/the-sox-of-silence
https://digitalcardboard.com/blog/2009/08/25/the-sox-of-silence
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Convolutional Neural Networks (CNNs) and Invariance
	Invarince Induced by Gabor Scattering

	Materials and Methods
	Gabor Scattering
	Musical Signal Model

	Theoretical Results
	Gabor Scattering of Music Signals
	Invariance
	Deformation Stability

	Visualization Example
	Visualization of Different Frequency Channels within the GS Implementation
	Visualization of Different Envelopes within the GS Implementation
	Visualization of How Frequency and Amplitude Modulations Influence the Outputs Using the Channel Averaged Implementation

	Experimental Results
	Experiments with Synthetic Data
	Data
	Training
	Results

	Experiments with GoodSounds Data
	Data
	Training
	Results

	Discussion and Future Work
	References

