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Abstract: The main ideas of F-transform came from representing expert rules. It would be therefore
reasonable to expect that the more accurately the membership functions describe human reasoning,
the more successful will be the corresponding F-transform formulas. We know that an adequate
description of our reasoning corresponds to complicated membership functions—however,
somewhat surprisingly, many successful applications of F-transform use the simplest possible
triangular membership functions. There exist some explanations for this phenomenon, which are
based on local behavior of the signal. In this paper, we supplement these local explanations by
a global one: namely, we prove that triangular membership functions are the only one that provide
the exact reconstruction of the appropriate global characteristic of the signal.
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1. Formulation of the Problem

1.1. F-Transforms: A Brief Reminder

In many application areas, it turned to be very useful to transform the original signal x(t) into the
values proportional to

xi =
∫

A
(

t− ti
h

)
· x(t) dt, (1)

where ti = t0 + i · h for appropriate t0 and h > 0, and A(t) is a non-negative function:

• which is equal to 0 outside the interval [−1, 1],
• which, starting at t = −1, increases to 1 until it reaches t = 0,
• which then decreases to 0, and
• for which

∑
i

A
(

t− ti
h

)
= 1 (2)

for all t; this last property is known as the fuzzy partition property.

This transformation is known as F-transform; see, e.g., [1–6].
This transform comes from the general fuzzy approach (see, e.g., [7–12]), namely, from the idea of

describing imprecise (fuzzy) expert knowledge of the type “if t is close to ti, then x(t) is close to x(ti)”.
From this viewpoint, the function A(t) is a membership function that corresponds to the word “close”.
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1.2. A Somewhat Unexpected Empirical Fact

Intuitively, one would expect that the closer the function A(t) to how we actually think, the more
successful would be the results. Empirical studies show that rather complex membership functions are
needed to represent our reasoning; see, e.g., [11]. However, surprisingly, in many of these applications,
many good results are obtained when researchers use a very simple triangular membership function
A(t) = 1− |t|. Why?

Comment

It is worth mentioning that triangular membership functions are successfully used in other
applications of fuzzy techniques; for example:

• in fuzzy control; see, e.g., an application to control of telerobots in space medicine [13];
• in information accessing systems such as information retrieval systems, filtering systems,

recommender systems, and web quality evaluation tools; see, e.g., [14] and references therein, etc.

Piecewise linear functions—similar to triangular membership functions—are also effectively used
in neural networks; see, e.g., [15–17].

1.3. It Is Desirable to Have Theoretical Explanations for This Empirical Fact

We strongly believe that every time there is an unexplained empirical fact about data processing
algorithms, it is desirable to come up with a theoretical explanation. Such an explanation makes the
resulting algorithms more reliable, thus decreasing the possibility that these algorithms will fail and,
correspondingly, increasing the chances that these efficient algorithms will be used by practitioners,
even in potentially high-risk situations. Sometimes, the corresponding analysis finds conditions under
which these methods work successfully, and even helps develop even more efficient techniques.

Moreover, since each theoretical justification increases our confidence in the corresponding
method, the more different explanations we have, the higher our confidence. Thus, it is better to have
as many different theoretical explanations as possible.

From this viewpoint, it is desirable to have as many theoretical explanations for possible for the
above empirical fact—that triangular membership functions, in spite of them being different from
what we elicit from the experts, have been successfully used in many applications of F-transforms (and
in other applications of fuzzy techniques).

1.4. How This Empirical Fact Is Explained Now

At present, there are several theoretical applications for the success of triangular
membership functions.

In [18–20], it is shown that these membership functions are the most robust—in the sense that
a given change in the input x to x′ ≈ x leads to the smallest possible change in the value A(x) of the
corresponding membership function; specifically:

• In [20], we describe this requirement in crisp terms—as minimizing the difference between the
values of A(x) and A(x′).

• In contrast, in [18,19], we consider this requirement in fuzzy terms—as the requirement that the
degree of closeness between A(x) and A(x′) should be the largest possible. In [18], this is done
with type-1 fuzzy techniques, and in [19], with type-2 fuzzy techniques.

In [21], an alternative explanation was proposed: namely, it was shown that the triangular
membership functions are the least vulnerable to noise.

It should be mentioned that these explanations are “local” in the sense that they consider:

• either values A(x) at nearby points x
• or the effect of noise—which is also added locally, for each x separately.
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1.5. What We Do in This Paper

In this paper, we provide an alternative “global” explanation for the successful use of triangular
membership functions: namely, we show that the triangular membership functions are the only ones
whose use enables us to correctly reconstruct an appropriate global characteristic. For this purpose:

• first, we consider the selection of an appropriate global characteristic, solve the resulting
optimization problem, and thus find the global characteristic that is optimal in some
reasonable sense;

• second, we prove that the triangular membership functions are the only ones that allow us to
uniquely reconstruct the optimal global characteristic of the original signal.

These two results are new. The second result is the main contributions of this paper. The first
result is auxiliary for this paper— but it may be useful for other applications.

1.6. The Structure of the Paper

We want to find all membership functions that allow us to exactly reconstruct the most adequate
global characteristic. This idea is described in Section 2. To find the resulting membership functions,
we first describe which characteristics to consider and which characteristics are the most adequate.
In Section 3, we provide a general description of what we mean by a global characteristic. In Section 4,
we use a general description of optimization problems to provide a natural formalization for what it
means for characteristics to be more (or less) adequate than others.

The resulting optimization problem is then solved in Section 5, where we describe the
global characteristics which are optimal with respect to the corresponding optimality criteria.
Finally, Section 6 contains the main result of this paper: that only triangular membership functions
enable us to uniquely reconstruct the most adequate global characteristic of the original signal from
its F-transform.

2. Local vs. Global Characteristics: Main Idea

2.1. What We Mean by Local and Global Characteristics

No measuring instrument can provide an instantaneous value of a physical quantity. No matter
at what time t we perform our measurement, the measurement result depends not only on the value of
the signal x(t) at this moment of time, but also on the values x(s) at nearby moments of time.

In some cases, we are interested in the local behavior of the signal. In this case, we try to measure
values which are as close to x(t) as possible. F-transform values are an example of such a local analysis.

In other cases, we are interested in the global trend. In such cases, instead of concentrating on
a short-term time interval, we deliberately measure the signal over a long period of time.

2.2. Resulting Idea

To most adequately reconstruct the signal, we should be able to adequately reproduce both its local
and its global characteristics. By definition, F-transform adequately represents the local characteristics,
no matter what membership function A(t) we select. Thus, it is reasonable to select a membership
function which most adequately represents global characteristics.

Let us describe this idea in precise terms.

3. Which Global Characteristics Should We Represent: Discussion

3.1. Need for Linearization

Signals are usually weak. Thus, for any quantity q that depends on this signal x(t)—be it local
or global—we should be able to ignore terms which are quadratic or higher order in terms of x(t)
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and thus retains only the linear terms in the corresponding dependence. As a result, we should only
consider linear quantities, i.e., quantities of the type

q =
∫

q(t) · x(t) dt. (3)

3.2. Which Linear Quantities Should We Select?

Of course, when we perform F-transform, we lose some information about the signal. Indeed,
on each time interval, we replace infinitely many values x(t) corresponding to infinitely many moments
of time t from this interval, with finite many values of the corresponding F-transform. Thus, we cannot
perfectly reconstruct all possible global characteristics q, since from the values of all these characteristics
(e.g., of the integrals

∫ t
−∞ x(s) ds) we would be able to uniquely reconstruct all the values x(t).

Thus, we need to select the most appropriate global characteristics.

3.3. How to Define What Is Most Appropriate?

In different situations, different global characteristics may be more appropriate. In this paper,
instead of trying to list specific notions of appropriateness, we will consider all possible optimality
criteria of this type.

Interestingly, it turns out that all reasonable optimality criteria of this type lead, in effect, to the
same family of optimal global characteristics—and the only way to reconstruct these characteristics
exactly is to use triangular membership functions.

Let us describe all this in precise terms.

4. Selecting the Most Adequate Global Characteristic: Towards Precise Formulation of
the Problem

4.1. Towards Describing What Is More Appropriate and What Is Less Appropriate

As we have mentioned, all global characteristics have the form q =
∫

q(t) · x(t) dt. Thus, selecting
a characteristic is equivalent to selecting the corresponding function q(t).

This function q(t) may be discontinuous, as in the above example of a characteristic
∫ t
−∞ x(s) ds.

However, at least it should be measurable (non-measurable functions cannot be defined without using
the Axiom of Choice, which means that they are not definable).

Of course, if we can reconstruct the value
∫

q(t) · x(t) dt, then, for every real value c, we can also
reconstruct the related value

∫
(c · q(t)) · x(t) dt, since this related value is simply equal to

c ·
∫

q(t) · x(t) dt. (4)

Thus, strictly speaking, a characteristic is represented not by a single function, but by the entire family
{c · q(t)}c 6=0 of the related functions. Thus, we arrive at the following definition.

Definition 1. By a characteristic or, alternatively, a family, we mean a family of the type {c · q(t)}c 6=0,
where q(t) is a given measurable function, and c runs over all possible non-zero real numbers.

4.2. Discussion

To describe which families are most appropriate—i.e., to formulate the corresponding optimization
problem—we need to describe, in precise terms, what it means that some characteristic (family) is
more appropriate than the other one.

To come up with such a formalization, let us recall how optimization problems are (and can be)
described in general. In the general case, we have a set of alternatives A, and for alternatives from this
set, we have defined:
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• what it means for the alternative a to be better than the alternative b (we will denote it by
a ≺ b), and

• what it means for the alternatives a and b to be of the same quality (we will denote it by a ∼ b).

In these general terms, an alternative aopt is optimal if it is better than or equivalent to any other
alternatives, i.e., if for every alternative a ∈ A, we have either aopt < a or aopt ∼ a.

In the traditional formulation of an optimization problem, we have an objective function f (a)
defined on the set A of all possible alternatives. We want to minimize the value of this objective
function. (Sometimes, we want to maximize it; this case can be treated similarly.) In this case, the above
relations a ≺ b and a ∼ b can be naturally defined in terms of this objective function, namely:

• we have a ≺ b if and only if f (a) < f (b); and
• we have a ∼ b if and only if f (a) = f (b).

In this formulation, an alternative aopt is optimal if it attains the smallest possible value of the
objective function, i.e., if f (aopt) ≤ f (a) for all a ∈ A.

In some cases, there are several different alternatives which are all optimal in the sense of the
given criterion. For example, if the set A contains algorithms for solving a certain class of problems,
and f (a) is the average approximation error of the solution, we may have several different methods
that guaranteed the same smallest possible average approximation error.

In such cases, we can use this uncertainty to optimize some other objective function g(a).
For example, in the algorithms case, we can select, among all the algorithms with the smallest possible
average approximation error f (a), the one for which, e.g., the worst-case approximation error is the
smallest possible.

In such situations, the alternative a is better than the alternative b if:

• either a is better than b with respect to the original optimality criterion, i.e.,

f (a) < f (b), (5)

• or with respect to the original optimality criterion, the alternatives a and b are of equal quality,
but the alternative a is better with respect to the second objective function, i.e., if

f (a) = f (b) and g(a) < g(b). (6)

In other words, in such situations, we can have a more complex way of describing when
an alternative a is better than the alternative b:

• we have a ≺ b if and only if

f (a) < f (b) or ( f (a) = f (b) and g(a) < g(b)); (7)

and
• we have a ∼ b if and only if

f (a) = f (b) and g(a) = g(b). (8)

Even with this modified optimality criterion, we can still have several equally optimal alternatives.
For example, we may have several different algorithms which have the same smallest possible average
approximation error and the same smallest possible worst-case approximation error. In such cases,
we can use this non-uniqueness to optimize yet another objective function h(a)—e.g., the average
computation time, etc.

How can we describe such general optimization settings in precise terms? In all these cases,
what is important is which alternatives are better than others and which are of the same quality.
In other words, we need some criterion according to which, for every two alternatives a and b, we can
say one of the three things:
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• we can say that a is better than b in the sense of this criterion; we will denote this by

a ≺ b; (9)

• we can say that b is better than a in the sense of the given criterion; we will denote this by

b ≺ a; (10)

• or we can say that the two alternatives are equally good with respect to the given criterion; we will
denote this by a ∼ b.

No matter what the optimality criterion is, we have these relations. Thus, we can simply make
these relations the definition of an optimality criterion.

Of course, we need to make sure that these relations are consistent: e.g., if a is better than b and b
is better than c, then a should be better than c. Thus, we arrive at the following definition.

Definition 2 (see, e.g., [22]). Let A be a set; its elements will called alternatives. By an optimality criterion,
we mean a pair of relations 〈≺,∼〉 of the set A that satisfies the following properties:

• for every two alternatives a and b, we have one and only one of three options: a ≺ b, b ≺ a, and a ∼ b;
• if a ≺ b and b ≺ c, then a ≺ c;
• if a ≺ b and b ∼ c, then a ≺ c;
• if a ∼ b and b ≺ c, then a ≺ c;
• if a ∼ b and b ∼ c, then a ∼ c;
• a ∼ a, and
• if a ∼ b, then b ∼ a.

In these terms, an alternative is optimal if it is better than or of the same quality as any
other alternative:

Definition 3. We say that a characteristic aopt is optimal with respect to the optimality criterion 〈≺,∼〉 if for
every alternative a ∈ A, we have aopt ≺ a or aopt ∼ a.

4.3. Discussion

From the purely mathematical viewpoint, these conditions may be all we need; however, as we
will show, from the practical viewpoint, we need to impose some additional requirement on the
corresponding pair of relations.

Indeed, the whole purpose of selecting an optimality criterion is to use this optimality criterion
for selecting the best alternative, i.e., the alternative which is better—according to this criterion— than
any other alternative.

Thus, if for some pair of relations 〈≺,∼〉, there is no such optimal alternative, the corresponding
“optimality criterion” is, from the practical viewpoint, completely useless. Thus, we need to require
that there should be at least one optimal alternative.

What if there are several characteristics which are all the most appropriate according to the given
criterion? In this case, as we have mentioned earlier, we can use this non-uniqueness to optimize
something else. For example, if several characteristics are equally good in terms of accuracy with which
we can predict the future behavior of the signal, then we can select among them the characteristic
which is the easiest to compute. As a result, we get, in effect, a new optimality criterion, according to
which a is better than b if:

• either a is better than b according to the original optimality criterion,
• or a is equivalent to b in terms of the original optimality criterion but better according to the

additional optimality criterion.
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If, for the new optimality criterion, we still have several different optimal alternatives, we can
then optimize something else, etc., until we reach a final optimality criterion for which there is exactly
one optimal alternative.

Definition 4. We say that an optimality criterion is final if there exists exactly one alternative which is optimal
with respect to this criterion.

4.4. Need for Scale-Invariance

Let us apply the above general formulation to the problem of selecting the most adequate
global characteristic—or, to be more precise, for the problem of selecting the most adequate family
F = {c · q(t)}c 6=0 of such characteristics.

In our problem, we deal with signals x(t) that describe how the value of a physical quantity
x depends on time. We may have a starting point for the corresponding process, which provides
a natural starting point for measuring time, but, in general, the numerical value of time depends on
what unit we use for measuring time. We can use seconds or minutes or hours—the time interval will
be the same, but the numerical values will change.

When we replace the original unit for measuring time with a new unit which is λ times smaller,
then all numerical values of time are re-scaled, i.e., multiplied by λ. For example, if we go from
seconds to milliseconds, all numerical values are multiplies by 1000. The function q(t) in the new units
becomes q(λ · t).

It is reasonable to require that the relative quality of different characteristics should not change if
we simply change the unit used for measuring time, without changing anything of substance. In other
words, it is reasonable to require that the criterion be “scale-invariant”. Here is a precise definition.

Definition 5. We say that an optimality criterion 〈≺,∼〉 on the set of all possible families (in the sense of
Definition 1) is scale-invariant if, for every two functions q(t) and r(t) and for every λ > 0, the following two
conditions hold:

• if {c · q(t)}c ≺ {c · r(t)}c, then {c · q(λ · t)}c ≺ {c · r(λ · t)}c;
• if {c · q(t)}c ∼ {c · r(t)}c, then {c · q(λ · t)}c ∼ {c · r(λ · t)}c.

5. Which Characteristics Are the Most Adequate: Auxiliary Result

Discussion

In the previous section, we argued that the most adequate global characteristic must be optimal
with respect to some final scale-invariant optimality criterion. Let us describe all such characteristics.

Proposition 1. For every final scale-invariant optimality criterion, each optimal characteristic has the form
{c · xβ}c, for some real value β.

Comment

Note that we did not select any specific optimality criterion. We could select an optimality criterion
and find out which characteristic is better for this particular criterion. However, there are many
possible optimality criteria. Thus, if we restrict ourselves to single optimality criteria, we would need
to repeatedly solve the corresponding optimization problem for all these different optimality criteria.

Instead, Proposition 1 provides a general result that covers all (reasonable) optimality criteria.
According to this result, no matter what optimality criterion we choose, the optimal characteristic
always has the form c · xβ. For different optimality criteria, we may have different β, but the form is
always the same.



Axioms 2019, 8, 95 8 of 11

Proof of Proposition 1. Let us denote the scaling transformation that transforms a family
F = {c · q(t)}c into a re-scaled family {c · q(λ · t)}c by Tλ. In terms of this notation, scale-invariance
means that:

• if F ≺ G, then Tλ(F) ≺ Tλ(G); and
• if F ∼ G, then Tλ(F) ∼ Tλ(G).

Let 〈≺,∼〉 be the final scale-invariant criterion. Since this criterion is final, there exists
exactly one optimal characteristic Fopt. Let us prove that this characteristic is scale-invariant,
i.e., that Tλ(Fopt) = Fopt for all λ > 0. (This proof is similar to the one given in [22].)

Indeed, since Fopt is optimal, it is better than or equivalent to any other characteristic. In particular,
for every G, the characteristic Fopt is better than or equivalent to T1/λ(G): T1/λ(G) ≺ Fopt or
T1/λ(G) ∼ Fopt. By applying scale-invariance, we conclude that either Tλ(T1/λ(G)) ≺ Tλ(Fopt) or
Tλ(T1/λ(G)) ∼ Tλ(Fopt). However, one can easily check that Tλ(T1/λ(G)) = G.

Thus, for every characteristic G, we have either G ≺ Tλ(Fopt) or G ∼ Tλ(Fopt). By definition
of an optimal characteristic, this means that the characteristic Tλ(Fopt) is optimal. However, for the
final criterion, there is only one optimal characteristic, so we conclude that Tλ(Fopt) = Fopt.
Thus, the optimal characteristic is indeed scale-invariant.

By definition, each characteristic has the form {c · q(t)}c. Let us denote the function q(t)
corresponding to the optimal characteristic by qopt(t). The fact that the optimal family is scale-invariant
means, in particular that, for every λ > 0, the function qopt(λ · t)—which belongs to the re-scaled
family Tλ(Fopt)— also belongs to the original family, i.e., has the form c(λ) · qopt(t) for some value c(λ):
qopt(λ · t) = c(λ) · qopt(t). It is known that the only measurable functions satisfying this functional
equation are functions of the type C · tβ; see, e.g., [23].

The proposition is proven.

6. Main Result: A New Justification of Triangular Membership Functions

Now that we know which global characteristics are the most adequate, let us now find out which
membership functions can allow us to uniquely reconstruct the most adequate characteristic of a signal
from its F-transform. We will start with a precise definition.

Definition 6. We say that, for a membership function A(t), it is possible to always reconstruct a global
characteristic

∫
q(t) · x(t) dt if for every t0 and h, the value of this characteristic can be uniquely determined

once we know all the values

xi =
∫

A
(

t− ti
h

)
· x(t) dt, (11)

where ti
def
= t0 + i · h.

6.1. Case of β = 0

A particular case of the most adequate global characteristic is the case β = 0, when q(t) = const
and the corresponding global characteristic is simply the integral

∫
x(t) dt = 1. This characteristic can

always be reconstructed from the F-transform, since we require that ∑
i

A
(

t− ti
h

)
= 1 for all t and

thus ∫
x(t) dt = ∑

i

∫
A
(

t− ti
h

)
· x(t) dt = ∑

i
xi. (12)

6.2. General Case

Thus, we should worry only about the case when β 6= 0. In this case, we have the following result.
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Proposition 2. The only membership function A(t) for which it is possible to always reconstruct a most
adequate global characteristic with β 6= 0 is the triangular membership function—it can reconstruct the
characteristic

∫
t · x(t) dt corresponding to β = 1.

Comment

This result provides the desired global explanation of why triangular membership functions work
so well in F-transform applications.

Proof of Proposition 2. Let us assume that, for some β 6= 0, the membership function A(t) enables us
to always uniquely reconstruct the corresponding characteristic∫

tβ · x(t) dt. (13)

Let us first consider the case when t0 = 0, h = 1, and the signal x(t) is equal to 0 everywhere
except for the interval [0, 1]. Then, only two F-transform values are different from 0:

• the value x0 =
∫ 1

0 A(t) · x(t) dt, and
• the value x1 =

∫ 1
0 A(t− 1) · x(t) dt.

The fuzzy partition requirement implies that A(t) + A(t− 1) = 1, so

A(t− 1) = 1− A(t). (14)

The only way to be able to always reconstruct the value
∫ 1

0 tβ · x(t) dt from these two values,
no matter how the signal x(t) behaves on the interval [0, 1], is to have tβ equal to a linear combination
of A(t) and A(t− 1) = 1− A(t). Thus, the function tβ is a linear combination of A(t) and 1, and, hence,
A(t) is a linear combination of tβ and 1, i.e., A(t) = a + b · tβ.

For t = 1, we must have A(t) = 0, so a + b = 0 and thus A(t) = a · (1− tβ). For t = 0, we must
have A(0) = 1, so we have a = 1 and A(t) = 1− tβ for t ∈ [0, 1]. Correspondingly, for s ∈ [−1, 0],
due to A(t− 1) = 1− A(t), we have

A(s) = 1− A(s + 1) = (s + 1)β. (15)

Let us now consider a signal which is different from 0 only on the interval [1, 2]. For this
signal, the desired global characteristic has the form

∫ 2
1 tβ · x(t) dt, and the only non-zero values of

F-transform are x1 =
∫ 2

1 (1− (t− 1)β) · x(t) dt and x2 =
∫ 2

1 (t− 1)β · x(t) dt. Thus, the only way to
exactly reconstruct the global characteristic is to have tβ to be a linear combination of 1− (t− 1)β and
(t− 1)β, i.e., as a linear combination of (t− 1)β and 1: tβ = a · (t− 1)β + b.

Let us show that β = 1. For this, we need to show that cases when β > 1 and β < 1 are impossible.
Indeed, differentiating both sides by t, we get β · tβ−1 = a · β · (t− 1)β−1. If β > 1, then for t = 1,

we get β = 0, which contradicts the assumption that β > 1. If β < 1, then for t = 1, we get β = ∞—also
a contradiction.

Thus, β = 1, so A(t) = 1 − |t|, i.e., we indeed have a triangular membership function.
The proposition is proven.

Comment

Once we have a triangular membership function, it is easy to combine the F-transform values
to get an integral of a linear function. For simplicity, assume that we start with the signal which is
0 for t < 0, and that h = 1. Then, the values x(t) corresponding to t ∈ [0, 1], affect the value x0,
with the weight 1− t, and the value x1, with weight t. If we take the difference x1 − x0, this difference
corresponds to the weight 2t− 1 on [0, 1] (and the weight 2− x for x ∈ [1, 2]).
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We can normalize the difference x1 − x0 to get the coefficient at t on [0, 1] to be equal to 1. For the

resulting normalized linear combination
1
2
· (x1 − x0), on [0, 1], we have the weight t− 1

2
, and on

[1, 2], the weight 1− t
2

.

On the interval [1, 2], the next F-transform value x2 corresponds to the coefficient t− 1 (and 0
before that). Thus, by adding x2 with the appropriate coefficient, we can make sure that the linear
combination continues to have t with coefficient 1 on the interval [1, 2] as well. For that, we need to

add x2 with coefficient
3
2

. Then, the resulting linear combination
1
2
· (x1 − x0) +

3
2
· x2 is equal to t− 1

2
on the whole interval [0, 2].

On [2, 3], this combination is equal to
3
2
· (3 − t). Thus, to make sure that we get a linear

combination which is equal to t− 1
2

on the interval [2, 3] as well, we need to add x3 with coefficient
5
2

, etc. At the end, when we reach the end of the time interval on which the signal is defined,
the corresponding linear combination gives us the integral

∫ (
t− 1

2

)
· x(t) dt =

∫
t · x(t) dt− 1

2
·
∫

x(t) dt. (16)

Since, as we have mentioned, we can easily determine the integral
∫

x(t) dt by adding all the
values of the F-transform, we can thus indeed determine the value of the desired global characteristic∫

t · x(t) dt.
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