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Abstract: In this paper, we establish a topological version of the notion of an Eilenberg–Mac Lane space.
If X is a pointed topological space, π1(X) has a natural topology coming from the compact-open topology
on the space of maps S1 → X. In general, the construction does not produce a topological group because it
is possible to create examples where the group multiplication π1(X)× π1(X)→ π1(X) is discontinuous.
This discontinuity has been noticed by others, for example Fabel. However, if we work in the category of
compactly generated, weakly Hausdorff spaces, we may retopologise both the space of maps S1 → X
and the product π1(X)× π1(X) with compactly generated topologies to see that π1(X) is a group object
in this category. Such group objects are known as k-groups. Next we construct the Eilenberg–Mac Lane
space K(G, 1) for any totally path-disconnected k-group G. The main point of this paper is to show
that, for such a G, π1(K(G, 1)) is isomorphic to G in the category of k-groups. All totally disconnected
locally compact groups are k-groups and so our results apply in particular to profinite groups, answering
a question of Sauer’s. We also show that analogues of the Mayer–Vietoris sequence and Seifert–van
Kampen theorem hold in this context. The theory requires a careful analysis using model structures
and other homotopical structures on cartesian closed categories as we shall see that no theory can be
comfortably developed in the classical world.
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1. Introduction

1.1. Background

Classically, algebraic topology is concerned with relating algebraic structures such as groups to
topological spaces, so that progress in one area can be brought to bear on questions in the other. The modern
study of this subject was initiated in the 1940s, when Whitehead introduced CW-complexes and proved
Whitehead’s theorem, essentially showing that CW-complexes are the ‘right spaces’ for studying weak
homotopy equivalence. Eilenberg and Mac Lane later used CW-complexes to construct spaces K(G, n)
with nth homotopy group G and all others trivial, for any group G with n = 1 and for an abelian group G
with n > 1.

Formalising these ideas into a notion of homotopical algebra took until Quillen’s 1967 work [1], when
model categories were first defined. This work allows the systematic study of derived functors, weak
equivalences, and fibrant and cofibrant objects in more general categories; from this perspective most of
classical algebraic topology may be seen as a special case.

This is relevant to the current paper, because the definition of homotopy groups of a space X
immediately lends itself to a definition of topological homotopy groups, by giving the set of maps from
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the n-sphere to X the compact-open topology—although, as noted in [2], this definition does not actually
give a topological group in general. At any rate, with this background it becomes clear that there ought to
be a general theory of ‘topological algebraic topology’. This should relate topological spaces to topological
groups by analogy to (abstract) algebraic topology.

The standard enrichment of the category of topological spaces with the compact-open topology is not
cartesian closed, and this is what causes some homotopy groups with this topology not to be topological
groups. However, here a remedy is available: k-spaces. Indeed, the categories of k-spaces and k-groups
deserve to be much better known: they are essential tools in any study of topological groups which makes
heavy use of category theory. The fundamental work in this topic was done in [3].

The general theory of topological algebraic topology is developed by the author in [4]. There we
develop a model structure, called the compact Hausdorff model structure, on the category U of compactly
generated, weakly Hausdorff spaces, and a model structure on the category sU of simplicial objects in U .
The role of the current paper is to continue the development of this theory, and to motivate its existence,
by showing that tools of classical algebraic topology, such as Eilenberg–Mac Lane spaces and the excision
theorem, can be successfully extended to topological algebraic topology. We should expect this work to
advance the study of topological groups and topological spaces, analogously to the classical situation.

1.2. Main Results

There are three constructions for discrete groups G that define the same classifying space BG. This
space is an Eilenberg–Mac Lane space K(G, 1); it represents cohomology H1(X, G); it classifies G-torsors.
This is described in detail in the preface to [5].

For topological groups, the third of these definitions makes sense, and indeed there are standard
constructions of BG for topological groups G that satisfy this definition. In fact there are two slightly
different definitions of classifying space possible in this context. A G-torsor is a map X → Y of spaces
together with a free G-action on X such that X/G ∼= Y; some definitions require also that the G-action be
locally trivial. With this local triviality condition, the classifying space for G-torsors is given by Milnor’s
construction. An alternative classifying space construction is given by Segal in [6]: by considering G as
a one-object topological category, we may take the geometric realisation of the nerve of G. The question
of what this space (usually also denoted BG) actually classifies is rather more subtle; see [7] for details
on this.

On the other hand, there has not previously been any way to apply the first two definitions to the situation
of topological groups. Here we construct Eilenberg–Mac Lane spaces for totally path-disconnected groups,
in Theorem 14. Being totally path-disconnected is crucial because such spaces lack any ‘higher-dimensional
homotopy’, allowing us to control the homotopy of the new spaces we will construct from them.

The paper is structured as follows. Section 2 gives some background on the category of compactly
generated, weakly Hausdorff spaces, and on group and module objects in this category.

Section 3 motivates our definition of homotopy groups and related structures, over a more common
definition in the literature. For a pointed topological space X, there is a natural compact-open topology
on the space of continuous pointed maps S1 → X, and we can give the fundamental group π1(X) the
quotient topology from this. In general the construction does not produce a topological group because it is
possible to create examples where the product map π1(X)× π1(X)→ π1(X) is discontinuous. This has
been noticed by other authors, including for example Fabel. The novelty in this paper is that our π1(X) is
a group object in the category of compactly generated weakly Hausdorff topological spaces. Such groups
are called k-groups. In particular, it is always the case that the group multiplication is continuous when
one retopologises the product π1(X)× π1(X) with the compactly generated topology. This raises the
prospect of constructing a topological space X with chosen homotopy groups.
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We take advantage of this better categorical behaviour by largely restricting attention in this paper to
the category U of compactly generated, weakly Hausdorff spaces.

Section 4 recalls the model category theory and homotopical structures we will need from [4]. We have
two different indispensable homotopical structures on the category of simplicial spaces sU , which we call
the compact Hausdorff structure and the regular structure; these are defined below. Weak equivalences
in the former structure are also weak equivalences in the latter, while weak equivalences in the regular
structure induce isomorphisms of the topological homotopy groups described above.

There we define the singular simplicial space functor Sing : U → sU and geometric realisation
|−| : sU → U . These form an adjoint pair analogously to the classical singular simplicial set functor and
geometric realisation. Understanding these functors, together with the left derived functor L|−| of |−|,
is crucial to our approach.

Sections 5 and 6 are the technical heart of the paper. In the former we prove a continuous analogue of
the Seifert–van Kampen Theorem:

Theorem 1 (Theorem 8). If C is an open cover of X ∈ U , write C′ for the poset of finite intersections of sets in C,
ordered by inclusion. Then Sing(X) is weakly equivalent (in the regular structure on sU ) to the homotopy colimit
(in the compact Hausdorff structure on sU ) of {Sing(U)}U∈C′ .

In the latter, we consider the topological singular homology groups of a space, defined analogously
to our topological homotopy groups. We prove an Excision Theorem and a Mayer–Vietoris sequence.

Theorem 2 (Theorem 10). Given subspaces A ⊆ B ⊆ X in U with A closed and B open, the inclusion (X \
A, B \ A)→ (X, B) induces isomorphisms of the homology group objects Hn(X \ A, B \ A)→ Hn(X, B) for all n.
Equivalently, for open subspaces A, B ⊆ X covering X, the inclusion (B, A ∩ B)→ (X, A) induces isomorphisms
of homology group objects Hn(B, A ∩ B)→ Hn(X, A) for all n.

Theorem 3 (Theorem 11). For open subspaces A, B ⊆ X covering X there is a long exact sequence of homology
group objects

· · · → Hn+1(X)→ Hn(A ∩ B)→ Hn(A)⊕ Hn(B)→ Hn(X)→ · · · .

We also show in Theorem 12 that this topological singular homology theory satisfies the axioms of
a generalised homology theory.

Finally in Section 7, we put all the work together to construct the promised Eilenberg–Mac Lane
spaces. Specifically, we show:

Theorem 4 (Theorem 13). Suppose X ∈ sU with Xn totally path-disconnected for all n. Then Sing ◦ L|X| is
weakly equivalent to X in the regular structure.

Now given a group object G in U , in [4] a simplicial space W̄G is constructed with π1(W̄G) = G
and all other homotopy groups trivial. When G is totally path-disconnected so is each W̄Gn. So we can
apply Theorem 4.

Theorem 5 (Theorem 14). If G is totally path-disconnected, L|W̄G| is an Eilenberg–Mac Lane space K(G, 1)
for G.

Finally we construct in Example 2 a totally path-disconnected group object in U which is not totally
disconnected, to justify our use of the totally path-disconnected condition, rather than the stronger one of
being totally disconnected.
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2. Topological Groups and Modules

We work in U , the category of compactly generated, weakly Hausdorff spaces, enriched with
a modification of the compact-open topology on spaces of maps. This makes U into a cartesian closed
category; see [8] for a good general reference on this. We will write U (X, Y) for the space of maps X → Y
in U equipped with this topology. More generally, for a category C enriched over a category D, we will
write CD(X, Y) for the enriched hom-object, or C(X, Y) when there is no ambiguity.

Please note that the definitions in this section also make sense for spaces in K, the category of
compactly generated spaces, which is also cartesian closed; we restrict to U for compatibility with later
sections, where a model structure is only constructed on U .

We can define internal group objects in U : these are groups G with a topology on their underlying
set making multiplication G× G → G and inversion G → G continuous. Please note that the product
G× G here is the internal product in U . For ease of use we will refer to such group objects as topological
groups, although they are not topological groups in general: in particular, writing ×0 for the product in the
category of topological spaces, the map G×0 G → G may not be continuous. Indeed, ([3] Example 2.14)
shows that group objects G in U for which G×0 G → G is not continuous do arise in nature.

As for these topological groups, we can define a category of ring objects in U , which we will call
topological rings. Similarly, for a topological ring R, we write R-UMod for the category of left R-module
objects in U . All this includes as a special case UAb, the category of abelian group objects in U , which
is Z-UMod where Z is given the discrete topology. Indeed, results that apply analogously to R-UMod
will mostly be stated in this paper as results about UAb, with the generalisation being left to the reader.
For details on this module category, see [4] (Sections 7–8). In the rest of this section we summarise the
results we will need, without further reference.

Given A, B ∈ R-UMod, write UR(A, B) for the set of morphisms A → B: this naturally has the
structure of an abelian group, and the restriction of the topology on U (A, B) makes UR(A, B) into an abelian
topological group, so that R-UMod becomes an additive category enriched over UAb.

One generalisation of abelian categories is the concept of quasi-abelian categories. A quasi-abelian
category is an additive category with all kernels and cokernels, satisfying two additional properties:

(i) in any pull-back square

A′
f ′ //

��

B′

��
A

f // B,

if f is the cokernel of some map then so is f ′;
(ii) in any push-out square

A
f //

��

B

��
A′

f ′ // B′,

if f is the kernel of some map then so is f ′.

It turns out that R-UMod is a complete and cocomplete quasi-abelian category. R-UMod also has free
modules. That is, the forgetful functor R-UMod→ U has a left adjoint, which we will write as F.

See ([9] Section 1) for a complete account of homological algebra over quasi-abelian categories. For C
a quasi-abelian category, there is an abelian category LH(C) called the left heart of C whose objects



Axioms 2019, 8, 90 5 of 22

consist of monomorphisms in C. There is a fully faithful, exact embedding C → LH(C) which induces
an equivalence on the derived categories of chain complexes in the two categories. Thus for a chain
complex in C we can think of it as a chain complex in LH(C) and take homology there: the resulting nth
homology functor sends

· · · → Cn+1
fn−→ Cn

fn−1−−→ Cn−1 → · · ·

to the map coim( fn)→ ker( fn−1) in the left heart. Since the embedding C → LH(C) is exact, the family
LH∗ of functors takes a short exact sequence of chain complexes in C and gives a long exact sequence in
the left heart.

Please note that all this can be dualised to give a right heart and a right homology functor, which we
will not use in this paper.

The class of all kernel-cokernel pairs in R-UMod thus makes it into an exact category, in the sense
of Quillen. We will refer to this as the quasi-abelian structure, or the regular structure, by analogy to the
non-additive case below.

However, with this exact structure R-UMod does not have enough projectives, which is a serious
drawback in doing homological algebra. Since R-UMod has free modules (that is, the forgetful functor
to U has a left adjoint), we have various other structures available, which make R-UMod into a left exact
category (a generalisation of an exact category which requires a well-behaved class of deflations but not
inflations) with enough projectives. We are interested here in the case where the projectives are summands
of free modules on disjoint unions of compact Hausdorff spaces, and the deflations are the epimorphisms
A→ B such that the induced map UR(P, A)→ UR(P, B) is surjective for all projectives P. We will refer to
this as the compact Hausdorff exact structure.

3. Topological Homotopy Groups

Given a space X, a classical homotopy group, which we write as πabs
n (X, x), is calculated as a quotient

of the set of pointed maps Sn → X. This set of maps has a natural topology, the compact-open topology,
so the obvious approach to putting a topology on πabs

n (X, x) is to give it the quotient topology. Indeed
there is a literature using this definition; see for example [2].

This definition has a shortcoming: this topology does not always make πabs
n (X, x) into a topological

group, as shown in [2] for the case where X is the Hawaiian earring. Essentially this happens because
the category of topological spaces, together with the compact-open topology, is not cartesian closed.
Our solution is to restrict to a convenient category of spaces which is.

Using the same definitions inside the enriched category K of compactly generated spaces, πabs
n (X, x)

is made into a group object in K, as shown in [4]. We write πKn (X, x) for this. However, this definition
has a shortcoming too. Given a fibration in U (in the model structure defined below), we would like to
emulate the classical situation with a long exact sequence of topological homotopy groups; but such a
sequence does not hold here. The problem here is that U and K are regular, but not Barr-exact, categories.
See [4] for more on this. However, regular categories C have a well-behaved, canonical embedding into a
Barr-exact category: the objects of this category are equivalence relations in C. We will identify spaces in U
with their image in the exact completion Uex under this embedding.

Explicitly, given X ∈ U , the space U (Sn, X) of based maps Sn → X (for some choice of basepoint
x) has a natural topology in U , as before; so does the space H of based homotopies between such maps.
The inclusions

(id, 0), (id, 1) : Sn → Sn × [0, 1]
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induce a pair of maps H ⇒ U (Sn, X), or equivalently a map

H → U (Sn, X)×U (Sn, X).

Factoring this map as a quotient followed by an injection gives a injective map

H′ → U (Sn, X)×U (Sn, X),

and this is the equivalence relation we take to be the nth homotopy group πn(X, x): it is a group object
in Uex.

With this definition, a fibration in U , in the regular structure defined below, does give a long exact of
these homotopy groups: ([4] Section 5).

4. Model Structures

As for abstract groups, to construct spaces with some chosen topological homotopy group G, we must
develop some tools to allow the calculation of the homotopy groups of interesting spaces. In our context
the most important tools are the model structures defined in [4].

We recall here the pieces of machinery we will need. We use the definitions of model structures
and model categories given in ([10] Section 1.1). That is, a model category is a complete and cocomplete
category together with a model structure, and we require factorisations to be functorial.

Given two model categories C and D and an adjoint pair of functors F : C � D : G with F a G,
suppose F preserves cofibrations and trivial cofibrations, or equivalently G preserves fibrations and trivial
fibrations. We say that such a pair of functors forms a Quillen adjunction. Then we can define the left
derived functor LF of F and dually the right derived functor RG of G, such that these derived functors
preserve weak equivalences and hence induce functors on the associated homotopy categories. Explicitly,
LF can be constructed as the composite of F with the cofibrant replacement functor on C, and dually
for RG.

An important example of this idea is that of homotopy colimits (or dually homotopy limits): given
a small category E , the colimit functor colim : CE → C is left adjoint to the diagonal functor ∆ : C → CE .
We would like to put a model structure on CE that makes these functors into a Quillen adjunction.

Theorem 6. If C is class-cofibrantly generated in the sense of [4], the projective model structure defined in ([5]
Section A.2.8) exists on CE , is class-cofibrantly generated, and makes colim a ∆ a Quillen adjunction.

Proof. The proof of ([5] Proposition A.2.8.2) proves the existence of the projective model structure on
CE when C is cofibrantly generated: the hypothesis of combinatoriality is not used in this part of the
proof. However, in fact a careful reading shows that exactly the same proof works in our situation,
and shows that CE is class-cofibrantly generated. Then the final statement follows exactly as in ([5]
Proposition A.2.8.7(1)).

We now define homotopy colimits (of shape E ) to be the left derived functor hocolim : CE → C
of colim.

Remark 1. The question of the existence of homotopy limits is more delicate here; the usual requirement for the
existence of an injective model structure is that C be combinatorial. It may be possible to pursue a definition of
class-combinatorial, analogously to the definition of class-cofibrantly generated, and construct homotopy limits in
that way. However, we will not need this here.
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We can now define the model structures we will need in this paper. First on U : a weak equivalence
(respectively, fibration) is a map X → Y such that the induced map U (K, X)→ U (K, Y) is a weak homotopy
equivalence (respectively, Serre fibration) for all compact, Hausdorff spaces K. A cofibration is a retract of
a composition of pushouts by maps of the form K× Dn × {0} → K× Dn × [0, 1], where Dn is the n-ball.

Next we consider the category of simplicial spaces sU = U∆op
. Here ∆ is the simplex category—see ([10]

Chapter 3) for details on ∆ and simplicial sets. This category is also cartesian closed by ([4] Proposition 3.2),
so in particular it is enriched, via a forgetful functor, over simplicial sets sSet and over U . We get for free
a projective model structure induced from the compact Hausdorff model structure on U , but here we consider
a different one. See [4] for more details.

Let Λn
k , ∂∆n and ∆n be the standard simplicial (n, k)-horn, n-sphere and n-simplex, respectively. Let I

be the class of maps in sU of the form

ι× idK : ∂∆n × K → ∆n × K,

K compact Hausdorff, and let J be the class of maps of the form

ι′ × idK : Λn
k × K → ∆n × K,

K compact Hausdorff, where ι : Λn
k → ∆n, ι′ : ∂∆n → ∆n are the inclusion maps. Then a map f in sU is

a cofibration if it is a retract of a composition of pushouts by maps in I, a fibration if it has the right lifting
property with respect to J, and a weak equivalence if sU sSet(disc K, f ) is a weak equivalence in sSet for all
compact Hausdorff K. Here disc is the constant simplicial space functor.

Finally, we also consider the categories of simplicial objects in R-UMod and chain complexes in
non-negative degrees in R-UMod. We write s(R-UMod) for the former category and c(R-UMod) for
the latter. By ([11] Theorem 1.2.3.7), these two categories are equivalent, and correspondingly we get
equivalent model structures on them. We give an explicit description of the structure on c(R-UMod): a map
is a weak equivalence if its mapping cone is exact in the compact Hausdorff exact structure, a cofibration if
it is a levelwise split monomorphism, and a fibration if it is a levelwise deflation in the compact Hausdorff
exact structure.

Theorem 7. These data define model structures on U , sU and c(R-UMod), which we call the compact Hausdorff
model structures. All three are class-cofibrantly generated.

Proof. ([4] Theorem 2.4, Theorem 4.19, Theorem 8.2)

These categories have various Quillen functors between them, as shown in the following diagram:

U �|−|Sing sU �F
U s(R-UMod) ∼= c(R-UMod).

here Sing is the singular simplicial space functor, |−| is geometric realisation, F is the free R-module
functor and U is the forgetful functor; |−| is left adjoint to Sing and F is left adjoint to U. See [4] for details.

We also need the standard Quillen model structures on U and sSet as defined in [10], where the weak
equivalences are weak homotopy equivalences.

Finally, we need one more homotopical structure on sU , which we call the regular structure. In [4] the
regular structure is referred to as (sU , reg). The regular structure is defined on internal Kan complexes
in sU , i.e., objects X such that Xn → Λn

k (X) is a regular epimorphism (that is, a quotient map) for all
n, k. On these objects X we can define homotopy group objects πn(X, x) in the exact completion of U , for
a choice of basepoint x. Here we say a map X → Y is a weak equivalence if it induces isomorphisms of all
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homotopy groups, a fibration if Xn → Λn
k (X)×Λn

k (Y)
Yn is a regular epimorphism for all n, k and a trivial

fibration if Xn → ∂∆n(X)×∂∆n(Y) Yn is a regular epimorphism for all n.
We would like to extend some of this structure to all of sU . Certainly the definition of fibrations and

trivial fibrations makes sense. As for abstract simplicial sets, there is a functor Ex∞ (see [12]).
It is stated in ([12] Theorem 2.8) that in a regular category, if finite limits commute with colimits

of sequences indexed by N, then Ex∞ preserves fibrations and trivial fibrations, Ex∞(X) is an internal
Kan complex for all X in sU , and if X is an internal Kan complex, the canonical map X → Ex∞(X) is
a weak equivalence.

This does not hold in U . However, we do have the following.

Lemma 1. Suppose D is a finite category and we have a sequence of functors (Fn : D → U )n∈N and natural
transformations Fn → Fn+1. Suppose that for all d ∈ D and all n the maps Fn(d)→ Fn+1(d) are closed inclusions.
Then the induced maps lim Fn → lim Fn+1 are closed inclusions and colimn limD Fn(D) = limD colimn Fn(D).

Proof. The induced maps of limits are closed inclusions because closed inclusions are equalisers in U and
limits commute.

When D is a pullback diagram A→ C ← B and all the maps Fn(B)→ Fn+1(B) and Fn(C)→ Fn+1(C)
are identities, the commuting of limit and colimit is a special case of ([13] Corollary 10.4). The general case
where D is a pullback diagram follows easily from this. Finite products commute with all colimits because
U is cartesian closed.

When D is an equaliser diagram f , g : A→ B, the equaliser of f , g : Fn(A)→ Fn(B) is the pullback of

Fn(A)
( f ,g)−−→ Fn(B)× Fn(B)

(idFn(B),idFn(B))←−−−−−−−−− Fn(B).

So

colimn lim
D

Fn(D) = colimn lim
D

Fn(A)→ Fn(B)× Fn(B)← Fn(B)

= lim
D

colimn Fn(A)→ Fn(B)× Fn(B)← Fn(B)

= lim
D

colimn Fn(D).

All finite limits can be constructed as equalisers of maps between finite products, so a similar argument
shows that the lemma holds for these too.

All the colimits indexed by N in the argument for ([12] Theorem 2.8) are colimits of closed inclusions,
because Xn → Ex(X)n is a split monomorphism, and hence a regular monomorphism. So its conclusions
hold here too, and we get:

Proposition 1. Ex∞ preserves fibrations and trivial fibrations, Ex∞(X) is an internal Kan complex for all X in sU ,
and if X is an internal Kan complex, the canonical map X → Ex∞(X) is a weak equivalence.

Then we can define regular weak equivalences in sU to be maps X → Y such that Ex∞(X)→ Ex∞(Y)
is a regular weak equivalence. It follows easily that weak equivalences in sU in the compact Hausdorff
structure are weak equivalences in the regular structure: see ([4] Lemma 5.16).

Just as we can define homotopy group objects for X ∈ U , we can now define homology group
objects too. To ensure that these are invariant under weak equivalence in the compact-Hausdorff structure,
we define Hn(X) to be LHn ◦ LF ◦ Sing(X) – where LF is the left derived functor of the free group functor
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F, calculated in the compact Hausdorff structure. This works because weak equivalences in c(UAb) in the
compact Hausdorff structure are weak equivalences in the regular structure.

5. Sing and |−|

Write Sing for the usual singular simplicial set functor. As for Sing, it has a geometric realisation
functor |−| : sSet → U as a left adjoint. It is a standard result of homotopical algebra that the
two compositions Sing|−| and |Sing(−)| are weakly equivalent to the identity. In fact the same is true of
L|Sing(−)|, by ([4] Proposition 4.29). However, it is easy to find counter-examples showing the same is
not true of the other composition. Much of the rest of the paper will go into showing a partial result in this
direction, Theorem 13. In fact the construction of Eilenberg–Mac Lane spaces for totally path-disconnected
groups follows quite easily from this result.

We can now state the main technical result of the paper. This can be thought of as a continuous
version of the Seifert–van Kampen Theorem.

Theorem 8. If C is an open cover of X ∈ U , write C′ for the poset of finite intersections of sets in C, ordered by
inclusion. Then Sing(X) is weakly equivalent (in the regular structure on sU ) to the homotopy colimit (in the
compact Hausdorff structure on sU ) of {Sing(U)}U∈C′ .

Remark 2. This mixture of the two homotopical structures is not beautiful, but it is a necessary evil. We will see
later in Example 1 that in general the homotopy colimit of {Sing(U)}U∈C′ is not weakly equivalent to Sing(X) in
the compact Hausdorff structure; on the other hand, without a well-behaved notion of cofibrations in the regular
structure, we have no way of defining homotopy colimits there—but see Section 6.

This may be thought of as a ‘continuous version’ of ([11] Proposition A.3.2), and we will start by
reproving the intermediate result ([11] Lemma A.3.3), using an approach that carries across better to the
current situation.

Lemma 2. ([11] Lemma A.3.3) Let X ∈ U , and let C be an open cover of X. Let Sing′(X) be the simplicial
subset of Sing(X) spanned by those n-simplices |∆n| → X which factor through some U ∈ C. Then the inclusion
i : Sing′(X)→ Sing(X) is a weak equivalence of simplicial sets.

Proof. Via the adjunction between Sing and |−|, we see that Ex(Sing′(X))n ∼= sU (sd ∆n, Sing′(X)) is
naturally isomorphic to the subset of U (|sd ∆n|, X) which maps each simplex of sd ∆n into some U ∈ C.
In this way we think of Ex(Sing′(X)) as a simplicial subset of Sing(X). Iterating this reasoning, we can
identify the limit Ex∞(Sing′(X)) as the simplicial subset of Sing(X) consisting of all maps |∆n| → X for
which there is some m ∈ N such that each simplex of sdm ∆n is mapped into some U ∈ C. By standard
arguments, e.g., ([14] Proof of Proposition 2.21), this is all of them. That is, Ex∞(Sing′(X)) = Sing(X).

There is a subtlety here. There is a canonical map e : S→ Ex S for a simplicial set S, but that is not the
inclusion map we are using here. It is well-known that e is a trivial cofibration, and hence e∞ : S→ Ex∞ S
is too – we want to show our inclusion maps are all trivial cofibrations, and the result will follow. Since all
our inclusion maps are injective and hence cofibrations of simplicial sets, it suffices to show each inclusion,
which we will write (by abuse of notation) as

i : Exm(Sing′(X))→ Exm+1(Sing′(X)),
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is a weak equivalence. We do this by showing i is homotopic to the weak equivalence

e : Exm(Sing′(X))→ Exm+1(Sing′(X)),

after which the result follows by standard model category theory.
This homotopy comes simply from understanding what the maps i and e are doing: i is induced by

the identity map |sdm ∆n| → |∆n|, while e is induced by the map which identifies one of the n-simplices
of |sdm ∆n| with |∆n|, and retracts all the other simplices onto faces of |∆n|. These two maps are clearly
homotopic, and a choice of homotopy induces a homotopy between i and e.

We can immediately prove a continuous version:

Lemma 3. Let X ∈ U , and let C be an open cover of X. Let Sing′(X) be the simplicial subspace of Sing(X) spanned
by those n-simplices |∆n| → X which factor through some U ∈ C. Then the inclusion i : Sing′(X)→ Sing(X) is
a weak equivalence of simplicial spaces in the compact Hausdorff structure.

Proof. It is an easy exercise to check that each Exm(Sing′(X)) has Exm(Sing′(X)) as its underlying set, and
that its topology is the subspace topology from its inclusion map into Sing(X), defined as in the previous
lemma. Hence Ex∞(Sing′(X)) = Sing(X) as before and we have to show the resulting map Sing′(X)→
Ex∞(Sing′(X)) is a weak equivalence. This works in exactly the same way as in ([4] Theorem 4.19 (ii)):
first, for any X ∈ U and Y ∈ sU , we have sU sSet(disc X, Ex(Y)) = Ex(sU sSet(disc X, Y), because

sU sSet(disc X, Ex(Y))n = U (X, (Ex(Y)n)

= {sd ∆n, sU sSet(disc X, Y)}
= Ex(sU sSet(disc X, Y)n.

Please note that each Exm(Sing′(X))n is open in U (∆n, X) via the inclusion i, by definition of the
compact-open topology: it is the subset consisting of the finite intersection (over simplices K of |sdm ∆n|)
of the unions (over open sets U in the cover C) of the open sets O(K, U). So the maps

in : Exm(Sing′(X))n → Exm+1(Sing′(X))n

are open inclusions. Since every compact Hausdorff space K is small with respect to open inclusions (that
is, any compact Hausdorff subspace of Sing(X)n must be contained in one of the sequence Exm(Sing′(X))n

of open subspaces), we get

sU sSet(disc K, Ex∞(Sing′(X))) = Ex∞(sU sSet(disc K, Sing′(X)))

for all K. By the previous lemma,

i : sU sSet(disc K, Sing′(X))→ Ex∞(sU sSet(disc K, Sing′(X)))

is a weak equivalence for all K, so the result follows.

We want a concrete model for the homotopy colimit of {Sing(U)}U∈C′ (in the compact Hausdorff
structure). The model structure on sU gives a cofibrant replacement functor Q: explicitly, for Y in sU ,
Q(Y)0 is the disjoint union of the compact subspaces of Y0 and Q(Y)n is the disjoint union of the compact
subspaces of the pullback ∂∆n(Q(Y))×∂∆n(Y) Yn. This gives each Q(Y)n a canonical decomposition as a
disjoint union of compact subspaces which we want to fix for later: call these compact subspaces ‘fat cells’.
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The intuition is that fat n-cells should be treated like single n-cells of simplicial sets which have been
fattened up.

Lemma 4. colimU∈C′ Q(Sing(U)) is a homotopy colimit for {Sing(U)}U∈C′ .

Proof. Let C′′ be the poset of all intersections of open sets in C. We will show {Q(Sing(U))}U∈C′′ is
cofibrant in the projective model structure induced from the compact Hausdorff model structure on sU ;
the colimit of {Q(Sing(U))}U∈C′′ is the colimit of {Q(Sing(U))}U∈C′ by cofinality, and the result follows.
The argument echoes the second part of the proof of ([11] Proposition A.3.2).

Write Q(Sing′(X)) as a transfinite colimit (Aα) of pushouts by maps of the form ∂∆n ×Kα → ∆n ×Kα

with Kα compact Hausdorff (that is, the generating cofibrations of the model structure), ordered by
dimension. Identify each Q(Sing(U)) with its image as a simplicial subspace of Q(Sing′(X)), consisting
of a subset of the fat cells. Then the result follows by showing that for each Aα → Aα+1 the induced map

{Q(Sing(U) ∩ Aα)}U∈C′′ → {Q(Sing(U) ∩ Aα+1)}U∈C′′

is a cofibration in the projective model structure, since these are closed under transfinite composition. Let
V ∈ C′′ be the intersection of sets in C which contain the image of ∆n × Kα: then this map is a pushout by
the projective cofibration F0 → F, where

F0(U) =

{
Kα × ∂∆n if V ⊆ U,

∅ otherwise,
F(U) =

{
Kα × ∆n if V ⊆ U,

∅ otherwise.

It remains to show that colimU∈C′ Q(Sing(U)) is weakly equivalent in the regular structure to Sing(X).
However, first we will give an example to show that it is not a weak equivalence in general in the compact
Hausdorff structure.

Factor the canonical map colimU∈C′ Q(Sing(U)) → Sing(X) using the functorial factorisation into
a trivial cofibration followed by a fibration

colimU∈C′ Q(Sing(U))→ Z → Sing(X).

Example 1. Let X be the pseudo-arc, as defined in [15]. This is a compact Hausdorff space (so in U ) which is
connected and totally path-disconnected. Let C be any open cover of X which does not contain X itself.

To show the fibration Z → Sing(X) is not a trivial fibration it is enough to show that Z0 → Sing(X)0 is not
CH-split, in the terminology of [4]: that is, not every map from a compact Hausdorff space to Sing(X)0 lifts to a
map to Z0. More specifically, since Sing(X)0 = X is itself compact Hausdorff, it is enough to show Z0 → X does
not split.

Indeed, in the functorial factorisation, Z is the colimit of a sequence Zn ∈ sU where new 0-cells in Zn are
attached via spaces of 1-cells in Sing(X) (or equivalently via spaces of paths in X) with one end in Zn−1, and
Z0 = colimU∈C′ Q(Sing(U)). Since all paths in X are constant, and all spaces of 0-cells in Z0 are disjoint unions
of spaces whose image is contained in some U ∈ C, the same is true of Z. So Z0 is a disjoint union of spaces whose
image is not the whole of X. Therefore any splitting X → Z0 would disconnect X, giving a contradiction.

We will prove the theorem by showing that Z → Sing(X) is a trivial fibration in the regular structure.
To do this we must first understand Z better. We set Z0 = colimU∈C′ Q(Sing(U)). Given Zm−1, for all
n ∈ N, for all 0 ≤ k ≤ n, for every compact subspace K of Λn

k (Zm−1)×Λn
k (Sing(X)) Sing(X)n, we attach K
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(n− 1)-cells and K n-cells filling in this space of n-horns, and call the resulting space Zm. Then Z is the
colimit of the sequence Z0 → Z1 → · · · with the obvious inclusion maps.

The strategy is to show that the map

Zn → ∂∆n(Z)×∂∆n(Sing(X)) Sing(X)n

is a β-epimorphism for all n, in the terminology of [8]: that is, that for every compact subspace of the
pullback there is a compact subspace of Zn mapping onto it. The theorem will follow since β-epimorphisms
are regular epimorphisms by ([8] Proposition 3.12).

We do this by proving a slightly stronger result. Instead of just considering the standard n-simplex ∆n,
we wish to consider every finite triangulation Σ of the n-ball. Just as for ∆n, we may consider its boundary
∂Σ, which is a finite triangulation of the n-sphere. Just as we may speak of spaces of n-boundaries ∂∆n(Z)
in a simplicial space Z, we may define ∂Σ(Z) = {∂Σ, Z}, the weighted limit of Z over ∂Σ; for more detail
on weighted limits see [16].

Theorem 8 will follow once we prove:

Proposition 2. For all such Σ, the map

{Σ, Z} → {∂Σ, Z} ×{∂Σ,Sing(X)} {Σ, Sing(X)}

is a β-epimorphism.

We prove this in several steps.
By Lemma 1, for each finite triangulation Σ, {Σ, Z} is a finite limit, so it is the union of the closed

subspaces {Σ, Zm}, so any compact subspace of {Σ, Z} is contained in some {Σ, Zm}. Similarly using ∂Σ.
This allows us to use an inductive argument; we start with the base case.

Suppose we have a compact subspace K of {∂Σ, Z} ×{∂Σ,Sing(X)} {Σ, Sing(X)}. Label the canonical
maps from the pullback

{∂Σ, Z} f←− {∂Σ, Z} ×{∂Σ,Sing(X)} {Σ, Sing(X)} g−→ {Σ, Sing(X)}.

We can assume that each simplex of f (K) (that is, the image of f (K) under the map {∂Σ, Z} → {∆m, Z}
induced by a simplex inclusion ∆m → ∂Σ) is contained in a single fat cell, since K is the disjoint union of
finitely many spaces of this form.

Proposition 3. If f (K) is contained in the subspace {∂Σ, Z0}, there is a compact cover K1, . . . , Kj of K such that
the inclusion map of each Ki into {∂Σ, Z} ×{∂Σ,Sing(X)} {Σ, Sing(X)} lifts to a map Ki → {Σ, Z}.

Proof. We will start by replacing K with an associated subspace A(K) of {∂Σ, Z} ×{∂Σ,Sing(X)}
{Σ, Sing(X)}. For each m-cell D of Σ, K has a space KD of m-cells in Z0 = colimC′ Q(Sing(U), which by
hypothesis is contained in a single fat cell, i.e., some compact subspace of some U ∈ C. The image of KD in
Sing(U) is compact, so it corresponds to some fat cell K′D in Z0. Replacing KD with K′D is functorial in the
cells of ∂Σ, so together these spaces of cells give a subspace K′ of {∂Σ, Z}, homeomorphic to f (K) whose
image in {∂Σ, Sing(X)} is the same. Then let A(K) be the pullback of K′ → {∂Σ, Sing(X)} ← g(K). This is
canonically homeomorphic to K, and it is not hard to see that there is a series of simplicial homotopies in
Z0 between A(K) and K.
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Now consider g(A(K)) = g(K). We use the same compactness argument as Lemma 3: applying
barycentric subdivision k times to Σ, each {sdk Σ, Sing′(X)} is an open subspace of {Σ, Sing(X)} and⋃

k{sdk Σ, Sing′(X)} = {Σ, Sing(X)}. Since g(K) is compact there must be some {sdk Σ, Sing′(X)}
containing it. In the compact-open topology, the space {sdk Σ, Sing′(X)} = {maps from sdk Σ to X such
that each simplex maps into some U ∈ C} has an open cover by sets of the form

⋂
D∈sdk Σ

⋃
U∈C O(D, U).

This gives an open cover of g(K) which pulls back to an open cover of A(K); pick a finite subcover
V1, . . . , Vj. By the Shrinking Lemma of ([17] Exercise 4.36.4), we can find a cover of A(K) by compact
subspaces K1, . . . , Kj such that Ki ⊆ Vi for each i. For each simplex D in sdk Σ, there is some U ∈ C such
that every element of g(Ki) maps D into U. Therefore the inclusion Ki → {∂ sdk Σ, Z0} ×{∂ sdk Σ,Sing(X)}

{sdk Σ, Sing(X)} lifts to a map Ki → {sdk Σ, Z0}. Because Z → Sing(X) is a fibration, we can stick all
these spaces of cells together to get a lift Ki → {Σ, Z}.

Because Z → Sing(X) is a fibration in the compact Hausdorff structure, we may now use the series of
simplicial homotopies between A(K) and K to get a compact cover K′1, . . . , K′j of K whose inclusion maps
into {∂Σ, Z} ×{∂Σ,Sing(X)} {Σ, Sing(X)} lift to maps K′i → {Σ, Z}.

Proof of Proposition 2. Now suppose we have a compact subspace K of {∂Σ, Z} ×{∂Σ,Sing(X)}
{Σ, Sing(X)}: f (K) is contained in some {∂Σ, Zm}, m > 0. Suppose we have shown, for every compact
subspace K′ of {∂Σ, Z} ×{∂Σ,Sing(X)} {Σ, Sing(X)} such that f (K′) is contained in {∂Σ, Zm−1}, that there is
a compact cover K′1, . . . , K′j of K′ such that the inclusion map of each K′i into the pullback lifts to a map
K′i → {Σ, Z}.

Suppose Σ is a triangulation of the (n + 1)-ball. In the process of constructing Z, there are two
possibilities: a fat k-cell in Zm can be added by a (k + 1)-horn and have all its faces in Zm−1, or it can be
added by a k-horn and have one face in Zm \ Zm−1, and all other faces in Zm−1. Therefore f (K) can only
have fat n-cells and fat (n− 1)-cells in Zm \ Zm−1; moreover, any of its fat (n− 1)-cells in Zm \ Zm−1 is
only the face of one fat n-cell in Zm, but it is the face of two fat n-cells in f (K), so these two fat cells must
be the same. So there are two situations to deal with:

(i) a fat n-cell in Zm \ Zm−1 with all its faces in Zm−1;
(ii) two copies of the same fat n-cell in Zm \ Zm−1 stuck together at one face in Zm \ Zm−1.

(i) For each fat n-cell D in case (i), we have a fat (n + 1)-cell D′ that has D as one face and all other
faces in Zm−1. Write Σ′ for the triangulation of the (n + 1)-ball obtained by attaching a new
(n + 1)-cell to Σ at the face σ corresponding to D. Consider the new compact subspace K′ of
{∂Σ′, Z} ×{∂Σ′ ,Sing(X)} {Σ′, Sing(X)}: for each element of K, change its image in {Σ, Sing(X)}
by attaching a new (n + 1)-cell via the map attaching D′ at D, and change its image in {∂Σ, Z}
by replacing the image of σ with an (n + 1)-horn via the map attaching D′ at D. Please note
that f (K′) has fewer fat n-cells in Zm \ Zm−1 than f (K). Note too that, if we can find a compact
cover K′1, . . . , K′j of K′ such that the inclusion map of each K′i into the pullback lifts to a map
K′i → {Σ′, Z}, we can use the fact that Z → Sing(X) is a fibration in the compact Hausdorff
structure to get a compact cover K1, . . . , Kj of K such that the inclusion map of each Ki into
{∂Σ, Z} ×{∂Σ,Sing(X)} {Σ, Sing(X)} lifts to a map Ki → {Σ, Z}.

So by applying this procedure finitely many times we reduce to the case where f (K) has no fat
n-cells of this type in Zm \ Zm−1.

(ii) For each fat n-cell D in case (ii), the approach is similar. Let Σ′ be the triangulation given by
attaching a new (n + 1)-cell to Σ at the two faces corresponding to D. Consider the new compact
subspace K′ of {∂Σ′, Z} ×{∂Σ′ ,Sing(X)} {Σ′, Sing(X)}: for each element of K, change its image in
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{Σ, Sing(X)} by attaching a new degenerate (n + 1)-cell coming from the degeneracy maps on D
to the faces corresponding to σ1 and σ2, and change its image in {∂Σ, Z} by replacing the images
of σ1 and σ2 with the other faces of the new (n + 1)-cell. These other faces are the degeneracies
of (n− 2)-cells in f (K), so they are in Zm−1; so, as before, we reduce the number of fat cells in
Zm \ Zm−1. As before, if we can find a compact cover K′1, . . . , K′j of K′ such that the inclusion map
of each K′i into the pullback lifts to a map K′i → {Σ′, Z}, we can use the fact that Z → Sing(X) is
a fibration in the compact Hausdorff structure to get a compact cover K1, . . . , Kj of K such that the
inclusion map of each Ki into {∂Σ, Z} ×{∂Σ,Sing(X)} {Σ, Sing(X)} lifts to a map Ki → {Σ, Z}.

So by applying this procedure finitely many times we reduce to the case where f (K) has no fat
n-cells in Zm \ Zm−1, and we are done.

6. Excision

If the weak equivalence in the regular structure proved in Theorem 8 were a weak equivalence the
CH structure, an excision theorem for homology would be an easy corollary: since left derived functors
preserve homotopy colimits, we could apply LF to get a result analogous to ([14] Proposition 2.21),
and deduce excision from there exactly as in [14]. As it is not, we have to work a bit harder.

As before, let C be an open cover of X ∈ U , and write C′ for the poset of finite intersections of sets
in C, ordered by inclusion. The idea here is that the map colimU∈C′ Q(Sing(U)) → Q(Sing′(X)) looks
a lot like a trivial cofibration, even though it is not one in general. We can produce Q(Sing′(X)) from
colim Q(Sing(U)) by attaching collections of cells which are close enough to trivial cofibrations that they
behave nicely under F.

Let Y0 = colim Q(Sing(U)). We will create Yα, for ordinals α, by adding spaces of cells to Yα−1 when
α is a successor, and by taking Yα = colimβ<α Yβ for α a limit. At each step Yα will be a simplicial subspace
of Q(Sing′(X)) consisting of a subset of the fat cells.

We need two new operations: filling empty horns and gluing fat cells together.
An empty n-horn in Yα is a fat n-cell K of Q(Sing′(X)) which is not in Yα, such that all but one of its

face maps K → Q(Sing′(X))n−1 factors through Yα but there is some k such that its kth face map does not.
We can attach K (n− 1)-cells and K n-cells to Yα via these maps, and refer to this as filling an empty horn
in Yα.

Suppose we have a fat n-cell K of Q(Sing′(X)) which is not in Yα, but all of its face maps factor through
Yα. Suppose there is a finite cover of K by compact subspaces K1, . . . , Kj, such that there are fat n-cells Di in
Yα for each i and Di and Ki have the same image in the pullback ∂∆n(Yα)×∂∆n(Q(Sing′(X))) Q(Sing′(X))n

for each i. We want to glue the Kis together to get K, but it is not yet clear whether this can be done
without changing Yα homotopically ‘too much’, in a sense which will become clear later. For now, call this
a 1-valid opportunity.

If, for each non-empty intersection Ki ∩ Kj, Yα has a fat cell Di,j of Ki ∩ Kj (n + 1)-cells filling the
space of (n + 1)-boundaries created by the subspaces Ki ∩ Kj of cells of Di and Dj, we say the opportunity
is 2-valid.

Similarly, we inductively say an (r − 1)-valid opportunity is r-valid if, for each non-empty
intersection Ki1 ∩ · · · ∩ Kir , Yα has a fat cell Di1,...,ir of Ki1 ∩ · · · ∩ Kir (n + r − 1)-cells filling the space
of (n + r− 1)-boundaries created by the subspaces Ki1 ∩ · · · ∩ Kir of cells of Di1,...,is−1,is+1,...,ir for 1 ≤ s ≤ r.
If an opportunity is r-valid for all r (equivalently, if it is j-valid), we say it is valid, and call n its dimension.

Given a valid opportunity, we can glue fat cells together. Attach D to Yα. For each i, attach a fat
cell Ei of Ki (n + 1)-cells to the space of (n + 1)-boundaries created by Di and the subspace Ki of cells
of D. Continue inductively: for each non-empty intersection Ki1 ∩ · · · ∩ Kir , attach a fat cell Ei1,...,ir
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of Ki1 ∩ · · · ∩ Kir (n + r)-cells to the space of (n + r)-boundaries created by Di1,...,ir and the subspaces
Ki1 ∩ · · · ∩ Kir of cells of Ei1,...,is−1,is+1,...,ir for 1 ≤ s ≤ r. Please note that this process terminates after at most
j steps.

Now we can define Yα inductively: for α a successor, if Yα−1 has any empty horns, pick one, fill it,
and call the result Yα. If it has no empty horns, but has valid opportunities to glue fat cells together, pick
one of minimal dimension, take it, and call the result Yα. For α a limit we let Yα = colimβ<α Yβ.

Please note that when Yα is a simplicial subspace of Q(Sing′(X)) consisting of a subset of the fat cells,
Yα+1 is too, so we can see inductively that this is true for all Yα. So this process must terminate: there is
some ordinal γ such that Yγ has no empty horns and no valid opportunities.

As we are building Yγ, we can label each fat cell K with a finite compact cover l(K) of the space of
cells. For fat cells in Y0, take l(K) = {K}, and assume we have labelled all the fat cells in Yβ for all β < α.
Assume that all the labels for β < α have the following two properties. First, any face map of a fat cell K
in Yγ sends any Ki ∈ l(K) into some element of the label of the face. Second, for any fat cell K in Yγ and
Ki ∈ l(K), the image of the subspace Ki in Sing′(X) is contained in some Sing(U).

For α a limit there is no more to do; suppose it is a successor. When we create Yα from Yα−1 by filling
an empty k-horn, each face map except the kth on the new fat cell pulls back to a finite compact cover of
K; pick a common refinement of all of these: that is, a finite compact cover K1, . . . , Kj such that the image
of every Ki under every face map except the kth is contained in one of the compact spaces in the finite
cover labelling that space. For each Ki, we get an open cover by sets of the form {x ∈ Ki : the image of
{x} in K → Sing′(X) is contained in Sing(U), U ∈ C}. Pick a finite subcover of this, and then a compact
refinement Ki,1, . . . , Ki,li , which exists by the Shrinking Lemma, ([17] Exercise 4.36.4). The compact cover
of K given by {K1,1, . . . , K1,l1 , . . . , Kj,1, . . . , Kj,lj

} has the required properties, showing such a cover exists.
Now take a compact cover of K of minimal size satisfying these properties to be the labels of K and its
kth face.

If Yα comes from Yα−1 by gluing cells, we are attaching finitely many fat cells by filling spaces
of boundaries. For each of these fat cells K, we pick some finite compact cover which is a common
refinement of all the finite compact covers induced by the face maps. We refine it further, as above, to show
a label satisfying the required properties exists; then we label K with a label of minimal size satisfying
these properties.

Proposition 4. Consider a fat cell K in Q(Sing′(X)) whose image in Sing(X) is contained in some Sing(U),
whose image under each face map is in some Yα, and each such image is contained in a single element of the label of
a single fat cell. Then K is in some Yβ, β ≥ α, obtained from Yα just by filling empty horns.

Proof. This is proved by induction on α; thanks to our hypotheses on the labels, everything works when
we imitate the proof of Proposition 2.

Proposition 5. Yγ = Q(Sing′(X)).

Proof. Suppose not. Let n be the minimal dimension of a fat cell of Q(Sing′(X)) which is not in Yγ, and let
K be such a fat cell. For simplicity we can assume that every simplex of K (that is, the image of K under
any sequence of face maps) is contained in a single fat cell, since K is the disjoint union of finitely many
spaces of cells of this form.

By hypothesis, all the faces d0(K), . . . , dn(K) of K are in Yγ, and already labelled. We can label
l(K) = {K1, . . . , Kj} as above, so that any face map of K sends any Ki into some element of the label of
the face, and the image of each Ki in Sing′(X) is contained in some Sing(U). We will show that K can be
added to Yγ by gluing cells together, giving a contradiction.
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For every Ki ∈ K, the corresponding fat cell Di such that Di and Ki have the same image in the
pullback ∂∆n(Yα)×∂∆n(Q(Sing′(X))) Q(Sing′(X))n has a single element in its label, since we have chosen
the labels to have minimal size. So by the previous proposition, Di is in Yγ. Moreover, we see inductively
that for every non-empty intersection Ki1 ∩ · · · ∩ Kir , every Di1,...,is−1,is+1,ir has a single element in its label,
and the subspaces Ki1 ∩ · · · ∩ Kir of the cells of each Di1,...,is−1,is+1,ir form the boundary in Q(Sing′(X)) of
a space of degenerate (n + r− 1)-cells whose image in Sing′(X) is contained in the image of Ki1 ∩ · · · ∩ Kir .
By the previous proposition again, Di1,...,ir is in Yγ. Since this holds for all non-empty Ki1 ∩ · · · ∩ Kir ,
we have a valid opportunity to add K to Yγ by gluing fat cells, giving a contradiction.

Lemma 5. Colimits of sequences of closed inclusions are exact in UAb in the regular structure; that is, given short
exact sequences An � Bn � Cn in the regular structure on UAb, and commutative diagrams

An // //
��

��

Bn // //
��

��

Cn��

��
An+1 // // Bn+1 // // Cn+1,

the induced sequence colim An → colim Bn colim Cn is exact.

Proof. Given any diagram of groups {Gi} in UAb, the colimit in Ab with the colimit topology (if this
is in U ) becomes an object in UAb. Indeed, the only non-trivial thing to check is that multiplication is
continuous: (colim Gi)× (colim Gi) = colim(Gi × Gi) → colim Gi is continuous because finite products
commute with colimits in U . It follows immediately that this is the colimit in UAb.

Clearly in the current situation the colimit topologies on the Ans, Bns and Cns are in U , so the sequence
colim An → colim Bn colim Cn is an exact sequence of the underlying groups. We know colim is right
exact because it is a left adjoint, so we only need to check colim An → colim Bn is a closed inclusion of
spaces. Each An → Bn is a closed inclusion, which is an equaliser in U , so the result follows because finite
limits commute with colimits of sequences of closed inclusions in U by Lemma 1.

Theorem 9. LF(Sing(X)) is weakly equivalent (in the regular structure on sUAb) to the homotopy colimit of
{LF(Sing(U))}U∈C′ (in the compact Hausdorff structure on sUAb).

Proof. We already know that LF(Sing(X)) is weakly equivalent (in the compact Hausdorff structure) to
LF(Sing′(X)) = F(Q(Sing′(X))) = F(Yγ). We also have that the homotopy colimit of {LF(Sing(U))}U∈C′ is

F(colimU∈C′ Q(Sing(U)) = F(Y0)

by Lemma 4. We will show inductively that F(Yα) is weakly equivalent to F(Y0), in the regular structure,
for all α ≤ γ; the result follows.

When α is a limit ordinal this follows immediately from Lemma 5. When α is a successor and
Yα−1 → Yα is a trivial cofibration, it is trivial. When α is a successor and Yα−1 → Yα comes from
an n-dimensional opportunity to glue cells together in the notation used at the beginning of the section,
use the Dold-Kan correspondence of ([11] Theorem 1.2.3.7) and think of the F(Yα) as chain complexes in
UAb. The mapping cone of F(Yα−1)→ F(Yα) is homotopic to the complex M with

Mn+r =
⊕

Ki1
∩···∩Kir 6=∅

F(Ki1 ∩ · · · ∩ Kir )
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with maps induced by the face maps between the Ei1,...,ir , so we just need to show this is exact in the
regular structure. It is not hard to check on the elements that the homology groups of the underlying
abstract chain complex are trivial; it follows as in ([3] Proposition 2.32) (using free abelian groups instead
of free groups) that the induced maps coim(Mk+1 → Mk)→ ker(Mk → Mk−1) are isomorphisms in UAb,
as required.

Remark 3. Pushing out by these collections of cells, which look provocatively like finite length exact sequences of
projectives, ought to be a trivial cofibration in some nice homotopical structure on sU , but I do not know what that
structure should be.

From Theorem 9 we may deduce the usual form of the Excision Theorem as in ([14] p.124), using
mapping cones (i.e., homotopy cokernels) instead of quotient complexes.

Theorem 10 (Excision Theorem). Given subspaces A ⊆ B ⊆ X in U with A closed and B open, the inclusion
(X \ A, B \ A) → (X, B) induces isomorphisms of the homology group objects Hn(X \ A, B \ A) → Hn(X, B)
for all n. Equivalently, for open subspaces A, B ⊆ X covering X, the inclusion (B, A ∩ B) → (X, A) induces
isomorphisms of homology group objects Hn(B, A ∩ B)→ Hn(X, A) for all n.

Proof. We prove the second formulation. Write Q(Sing(A + B)) for the pushout of Q(Sing(A)) ←
Q(Sing(A ∩ B))→ Q(Sing(B)). The square

LF(Sing(A ∩ B)) //

��

LF(Sing(B))

��
LF(Sing(A)) // F ◦Q(Sing(A + B))

is a pushout, so the cokernels of the two rows are isomorphic, so the maps induced on their homology
group objects are isomorphisms. By Theorem 9, the canonical map F ◦Q(Sing(A + B))→ LF(Sing(X)) is
a weak equivalence in the regular structure, so the maps induced on their homology group objects are
isomorphisms too. Now we can use the long exact sequence in homology to see that the maps of homology
group objects induced by

coker(LF(Sing(A))→ F ◦Q(Sing(A + B)))

→ coker(LF(Sing(A))→ LF(Sing(X)))

are isomorphisms, and the result follows.

Much of the rest of Chapter 2 of Hatcher’s textbook [14] can be carried across to our topological
homology theory fairly painlessly from this point; we give a few highlights.

Theorem 11 (Mayer–Vietoris sequence). For open subspaces A, B ⊆ X covering X there is a long exact sequence
of homology group objects

· · · → Hn+1(X)→ Hn(A ∩ B)→ Hn(A)⊕ Hn(B)→ Hn(X)→ · · · .

Proof. Think of the rows of the commutative square in the proof of Theorem 10 as a chain complex of
chain complexes; the vertical maps give a map between these chain complexes of chain complexes. This
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square is a pushout and a pullback; it is a standard result of commutative alebra in quasi-abelian categories
that the mapping cone of this square is then a short exact sequence of chain complexes

0→ LF(Sing(A ∩ B))→ LF(Sing(A))⊕ LF(Sing(B))→ F ◦Q(Sing(A + B))→ 0

in the regular structure. Taking homology and applying Theorem 9 gives the result.

In constructing a homology theory on U , we would like certain axioms to be satisfied: those of
a generalised homology theory. These axioms are usually listed for homology theories from spaces to
abelian groups, but they make sense in our context. A generalised homology theory is here taken to
be a functor E from pairs (X, Y) of spaces Y ⊆ X in U to chain complexes in R-UMod, with the regular
structure, satisfying:

(i) homotopy invariance: homotopies in U induce homotopies in R-UMod;
(ii) exactness: associated naturally to a pair (X, Y) is an exact triangle E(Y, ∅) → E(X, ∅) →

E(X, Y)→;
(iii) additivity: if (X, A) is a disjoint union of pairs (

⊔
Xi,

⊔
Ai), then the canonical map

⊕
E(Xi, Ai)→

E(X, A) is a weak equivalence;
(iv) dimension: E(∗, ∅) is exact in non-zero dimensions;
(v) excision: for A ⊆ B ⊆ X with A closed and B open, the canonical map E(X \ A, B \ A)→ E(X, A)

is a weak equivalence.

Given our definitions, the excision axiom was the only non-trivial thing to check, and this is provided
by Theorem 10. So we have:

Theorem 12. Singular homology LF ◦ Sing is a generalised homology theory.

7. Eilenberg–Mac Lane Spaces

Finally, we may use Theorem 8 to construct certain Eilenberg–Mac Lane spaces for topological groups.

Lemma 6. For all n, Sing ◦ |∆n| is weakly equivalent to ∆n in the compact Hausdorff structure.

Proof. Any map ∆0 → ∆n is a trivial cofibration; |∆n| is homotopy equivalent to a point, so Sing ◦ |∆n| is
homotopy equivalent to ∆0.

Suppose X ∈ sU . As usual, each Q(X)n comes with a canonical decomposition as a disjoint union of
compact fat cells: write S for the set of fat cells. For each fat n-cell K ∈ S, consider the diagram DK in sU
given by objects K× ∆m indexed by the m-cells of ∆n and maps indexed by the face and degeneracy maps
of ∆n. Write Q(X) as the colimit of a sequence (Yα) of pushouts Yα ← K× ∂∆n → K× ∆n attaching fat
cells in order of dimension: these attaching maps induce maps from the copies of K× ∆m in DK to copies
of K′ × ∆m in DK′ wherever an m-face of K is attached to an m-face of K′. The set of diagrams DK, K ∈ S,
together with these maps between objects of the diagrams, give a bigger diagram D.

Proposition 6. Q(X) is the homotopy colimit of D.

Proof. The colimit of D is the colimit of the Yα, since we can get each K× ∂∆n as the colimit (and in fact
the homotopy colimit) of all the objects of DK except K× ∆n itself, and then the maps between the DK′s
induce the map Yα ← K× ∂∆n from the pushout. And we know the colimit of the Yα is Q(X).
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Since we are adding fat cells in order of dimension, for each n there is some αn such that Yαn is the
n-skeleton of Y. Then Yαn is the homotopy colimit of the pushout

Yαn−1 ←
⊔

αn−1≤α<αn

Kα × ∂∆n →
⊔

αn−1≤α<αn

Kα × ∆n

because all three objects are cofibrant and the second map is a cofibration, by ([5] Proposition A.2.4.4).
Then Y is the colimit of a sequence (Yαn) of cofibrant objects with cofibrations between them, so it is the
homotopy colimit by ([16] Example 11.5.11). It follows that colimit Q(X) is the homotopy colimit of D.

Since we can change a diagram by a weak equivalence without changing the homotopy colimit, we
can change D to a diagram D′ of the same shape where we replace each K× ∆m with disc(K) = K× ∆0;
the maps in D′ are the obvious ones induced by those of D. We conclude that Q(X) is the homotopy
colimit of D′.

We denote the points of Dn × Xn by the coordinates (r, θ, x), where (r, θ) parametrises the closed unit
ball in spherical coordinates and x ∈ Xn. For each n, we have a map Φn from Dn × Xn to the n-skeleton
|X|n of |X| which restricts to a homeomorphism from (Dn \ Sn)× Xn to |X|n \ |X|n−1, in the same way as
for CW-complexes.

Theorem 13. Suppose X ∈ sU with Xn totally path-disconnected for all n. Then Sing ◦ L|X| is weakly equivalent
to X in the regular structure.

Proof. By replacing X with Ex(X) (which gives a weak equivalence in the compact Hausdorff structure),
if necessary, we may assume for simplicity that for any fat cell in Q(X) the images of its face maps are
pairwise disjoint.

Q(X) is weakly equivalent to X in the compact Hausdorff structure, and if the Xn are totally
path-disconnected, so are the Q(X)n.

|Q(X)| is then a KW-complex, as defined in ([4] Section 2), and we construct an open cover inductively
on the skeleta: on the 0-skeleton we take an open cover whose open sets are the fat cells of Q(X)0. Suppose
we have an open cover Cn−1 of the (n− 1)-skeleton. For each fat cell K of Q(X)n, we have the open space
UK of open n-cells K× (Dn \ Sn). Also, for every open U ∈ Cn−1, think of (Φn)−1(U) as an open subset of
Sn × Xn; in spherical coordinates as before, define

U′ = (1− δ, 1]× (Φn)−1(U) ∪U

for some small δ > 0. Take Cn to be the the open cover of the n-skeleton given by the UKs and the U′s.
Taking limits over n, we get a cover C of |Q(X)|.

Let C′ be the set of finite intersections of open sets in C. We can see directly that any non-empty
element of C′ is homotopic to some fat cell K of Q(X). Since K is totally path-disconnected, all singular
maps into K are constant and Sing(K) is just the constant simplicial space on K. By Theorem 8, Sing ◦ L|X|
is weakly equivalent (in the regular structure on sU ) to the homotopy colimit of {Sing(U)}U∈C′ , which
is the homotopy colimit of {disc(K)}U∈C′ . However, this diagram is easily seen to be isomorphic to D′,
so its homotopy colimit is X.

Given a group object G in sU , a construction is given in ([4] Section 6) for W̄G ∈ sU such that
πn(W̄G) = πn−1(G) for n > 0, and π0(W̄G) = {∗}. In this construction W̄Gn = Gn × · · · × G0.

Now if G is a topological group in U , disc G is a group object in sU , and πn(W̄G) is G for n = 1
and trivial otherwise. Note too that if G is totally path-disconnected, every W̄Gn is too. So we can apply
Theorem 13.
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Theorem 14. If G is totally path-disconnected, L|W̄G| is an Eilenberg–Mac Lane space K(G, 1) for G.

Similarly, when G is totally path-disconnected and abelian, L|W̄nG| is a K(G, n).
Please note that totally disconnected spaces are totally path-disconnected, so totally disconnected

groups are included as a special case. Here is a totally path-disconnected topological group in U which is
not totally disconnected.

Example 2. Let X be the pseudo-arc, as in Example 1. Let F(X) be the free group object (in U ) on X: see ([3]
Notation 2.10) for the construction. F(X) is not totally disconnected because X is connected and the canonical map
X → F(X) is a closed embedding by ([3] Theorem 2.12).

Suppose there is a non-constant map p : [0, 1]→ F(X). In the notation of [3], topologically F(X) is the colimit
of the closed subspaces π(

⊔
i≤n Mi) by ([3] Proposition 2.16). So by compactness, there is some n such that the

image of p is contained in π(
⊔

i≤n Mi) but not π(
⊔

i≤n−1 Mi); in particular there is some open subspace

U = p−1(π(
⊔
i≤n

Mi) \ π(
⊔

i≤n−1

Mi))

of [0, 1] on which p is not constant, or else for x ∈ Ū we would have p(x) ∈ π(
⊔

i≤n Mi) \ π(
⊔

i≤n−1 Mi),
implying U = Ū = [0, 1] and p is not constant on [0, 1] by hypothesis. Then pick a closed interval [a, b] ⊆ U on
which p is not constant.

From the construction, Mi is the disjoint union of spaces of the form

MS = {(x1, . . . , xn) ∈ (X t X∗)n : xi ∈ X for i ∈ S, xi ∈ X∗ for i /∈ S}

where S ranges over subsets of {1, . . . , n}. Observe that if we restrict to the subspaces

M′S = MS ∩ π−1(π(
⊔
i≤n

Mi) \ π(
⊔

i≤n−1

Mi)),

we have
π(

⊔
i≤n

Mi) \ π(
⊔

i≤n−1

Mi) =
⊔

S⊆{1,...,n}
π(M′S).

So p([a, b]) must be contained in some π(M′S).
It follows from ([3] Proposition 2.16), by the same argument as ([3] Corollary 2.18), that π : M′S → F(X)

is an embedding. So p|[a,b lifts to a non-constant map p : [a, b] → M′S, but M′S is totally path-disconnected as
a subspace of a product of copies of X, giving a contradiction, and implying that F(X) is totally path-disconnected.

As a final application, we return to singular homology. Generalise the definition of ∆-complexes
given in ([14] p.103) to allow totally path-disconnected spaces of cells: as in the classical case, the definition
ensures that such a ∆-complex X′ ∈ U is the geometric realisation of some X ∈ sU such that every Xn

is totally path-disconnected. Call such spaces generalised simplicial complexes. As in the classical case,
we define the simplicial homology HSimp(X′) of X′ to be the singular homology of X.

Proposition 7. The singular and simplicial homology theories for generalised ∆-complexes are naturally isomorphic.
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Proof. We showed in the proof of Theorem 13 that X is weakly equivalent, in the compact Hausdorff
structure, to {Sing(U)}U∈C′ , where C′ is the open cover of |X| described there. So LF(X) is weakly
equivalent in the compact Hausdorff structure to LF({Sing(U)}U∈C′), which is weakly equivalent to
LF(Sing(|X|)) in the regular structure by Theorem 9. So all three have the same homology.

8. Conclusions

The start of the subject of algebraic topology was the proof of fundamental results like Whitehead’s
theorem, the excision theorem, the Mayer–Vietoris sequence and the construction of Eilenberg–Mac Lane
spaces. This area of mathematics has had many great successes and influence on other areas, and remains
a fruitful field for research.

In this paper, we have proved topological analogues of these results. It remains to be seen what other
results of algebraic topology can be proved in this more general context – the existence of a Hurewicz
theorem, for example, remains unclear, and should be the subject of future work. However, these ideas
provide the foundations for a new approach to the study of topological algebra, and a strategy for the
study of local behaviour in topological spaces too fine to be captured by weak homotopy equivalence.
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