

Article Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups

Veronika Pitrová D

Department of Mathematics, Faculty of Science, Jan Evangelista Purkyně University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic; veronika.pitrova@protonmail.com

Received: 29 June 2019; Accepted: 22 July 2019; Published: 24 July 2019

check for updates

Abstract: Let **A** be an epireflective subcategory of the category of all semitopological groups that consists only of abelian groups. We describe maximal hereditary coreflective subcategories of **A** that are not bicoreflective in **A** in the case that the **A**-reflection of the discrete group of integers is a finite cyclic group, the group of integers with a topology that is not T_0 , or the group of integers with the topology generated by its subgroups of the form $\langle p^n \rangle$, where $n \in \mathbb{N}$, $p \in P$ and P is a given set of prime numbers.

Keywords: semitopological group; abelian group; coreflective subcategory; hereditary subcategory

1. Introduction

By STopGr we denote the category of all semitopological groups and continuous homomorphisms. All subcategories of STopGr are assumed to be full and isomorphism-closed. All homomorphisms are assumed to be continuous. It is well-known that a subcategory A of **STopGr** is epireflective in **STopGr** if and only if it is closed under the formation of subgroups and products. A coreflective subcategory \mathbf{B} of \mathbf{A} is called monocoreflective (bicoreflective) if every \mathbf{B} -coreflection is a monomorphimsm (a bimorphism, i.e., simultaneously a monomorphism and an epimorphism). A subcategory **B** of **A** is monocoreflective in **A** if and only if it is closed under the formation of coproducts and extremal quotient objects. It is interesting to investigate coreflective subcategories of A closed under additional constructions, namely products or subgroups. Productive (closed under the formation of arbitrary products) coreflective subcategories were studied in [1-3]. In [4] the author investigated hereditary (closed under the formation of subgroups) coreflective subcategories of A. It is shown that in the categories **STopGr** and **QTopGr** (the category of all quasitopological groups), every hereditary coreflective subcategory that contains a group with a non-indiscrete topology is bicoreflective. Maximal hereditary coreflective subcategories of A that are not bicoreflective in A are described in the case that A is extremal epireflective (closed under the formation of products, subgroups and semitopological groups with finer topologies) in STopGr, it contains only abelian groups and the **A**-reflection $r(\mathbb{Z})$ of the discrete groups of integers is a finite discrete cyclic group \mathbb{Z}_n . In this paper we describe the maximal hereditary coreflective, not bicoreflective subcategories in other epireflective subcategories of STopGr.

2. Preliminaries and Notation

Recall that a semitopological group is a group with such topology that the group operation is separately continuous. A quasitopological group is a semitopological group with a continuous inverse. A paratopological group is a group with such topology that the group operation is continuous. The category of all paratopological groups will be denoted by **PTopGr**. The category of all topological groups will be denoted by **TopGr**. The subcategory of all abelian semitopological (paratopological) groups will be denoted by **STopAb** (**PTopAb**).

Let **A** be an epireflective subcategory of **STopGr**. Note that every hereditary coreflective subcategory of **A** is monocoreflective in **A** (see [4]). Hence a subcategory of **A** is hereditary and coreflective in **A** if and only if it is closed under the formation of coproducts, extremal quotients and subgroups.

Let **A** be an epireflective subcategory of **STopGr** consisting only of abelian groups and $\{G_i\}_{i \in I}$ be a family of groups from **A**. By $\bigoplus_{i \in I}^* G_i$ we denote the direct sum with the cross topology (see [5] (Example 1.2.6)). Let $i_0 \in I$, $H_{i_0} = G_{i_0}$ and $H_i = \{g_i\}$, where $g_i \in G_i$, for $i \neq i_0$. A subset U is open in $\bigoplus_{i \in I}^* G_i$ if and only if $U \cap \bigoplus_{i \in I}^* H_i$ is open in $\bigoplus_{i \in I}^* H_i$ for every choice of i_0 and g_i . The groups $\bigoplus_{i \in I}^* G_i$ and $\coprod_{i \in I}^* G_i$ (the coproduct of the family $\{G_i\}_{i \in I}$ in **A**) have the same underlying set and the identity considered as a map $\bigoplus_{i \in I}^* G_i \to \coprod_{i \in I}^* G_i$ is continuous.

Note that monomorphisms in **A** are precisely the injective homomorphisms. However, epimorphisms do not need to be surjective.

3. Results

Let **A** be an epireflective subcategory of **STopGr** that contains only abelian groups. Our goal is to describe maximal hereditary coreflective subcategories of **A** that are not bicoreflective in **A**. It is well known that if a coreflective subcategory **B** of **A** contains the **A**-reflection $r(\mathbb{Z})$ of the discrete group of integers, then it is bicoreflective in **A** (see [6] (Proposition 16.4)). It is easy to see that also the converse holds if $r(\mathbb{Z})$ is a discrete group (see [4]). Now we show that it holds also in other cases. The case of discrete groups is included for the sake of completeness.

Lemma 1. Let **A** be an epireflective subcategory of **STopGr** such that the **A**-reflection of the discrete group of integers is one of the following:

- 1. *a finite cyclic group,*
- 2. the discrete group of integers,
- 3. the indiscrete group of integers,
- 4. the group of integers with the topology generated by its subgroups of the form $\langle p^n \rangle$, where $n \in \mathbb{N}$, $p \in P$ and P is a given set of prime numbers.

Then a coreflective subcategory **B** of **A** is bicoreflective in **A** if and only if it contains the group $r(\mathbb{Z})$.

Proof. Let **B** be a bicoreflective subcategory of **A**. We show that the **B**-coreflection of the group $r(\mathbb{Z})$ is homeomorphic to $r(\mathbb{Z})$. Let $r(\mathbb{Z})$ be the group Z_n for some $n \in \mathbb{N}$ and $c : cr(\mathbb{Z}) \to r(\mathbb{Z})$ be the **B**-coreflection of $r(\mathbb{Z})$. Assume it is not surjective. Then c(1) = k for some $k \in \mathbb{N}$, k > 1, k|n. Let $\langle \frac{n}{k} \rangle$ be the subgroup of $r(\mathbb{Z})$ generated by $\frac{n}{k}$. There exists a continuous homomorphism $f : r(\mathbb{Z}) \to \langle \frac{n}{k} \rangle$ such that $f(1) = \frac{n}{k}$. Let $g : r(\mathbb{Z}) \to \langle \frac{n}{k} \rangle$ be the trivial homomorphism. Then $f \neq g$ but $f \circ c = g \circ c$. Hence *c* is not an epimorphism, a contradiction. It follows that *c* is bijective. The identity considered as a map $r(\mathbb{Z}) \to cr(\mathbb{Z})$ is continuous, hence $r(\mathbb{Z}) \cong cr(\mathbb{Z})$.

Now let $r(\mathbb{Z})$ be the group of integers with one of the topologies specified in the lemma. Consider the **B**-coreflection $c : cr(\mathbb{Z}) \to r(\mathbb{Z})$. The image of $cr(\mathbb{Z})$ under c is a non-trivial subgroup of $r(\mathbb{Z})$ (otherwise c would not be an epimorphism). Note that the topologies on $r(\mathbb{Z})$ specified in the lemma (part 2–4) have the property that all the non-trivial subgroups of $r(\mathbb{Z})$ are homeomorphic to $r(\mathbb{Z})$. Hence the image of $cr(\mathbb{Z})$ is homeomorphic to $r(\mathbb{Z})$. It follows from the definition of reflection that the topology on $r(\mathbb{Z})$ is the finest topology on the group of integers in the subcategory **A**, therefore also $cr(\mathbb{Z})$ is homeomorphic to $r(\mathbb{Z})$. \Box

Corollary 1. Let **A** be an epireflective subcategory of **STopGr** such that $\mathbf{A} \subseteq$ **STopAb** and $r(\mathbb{Z})$ is the group of integers with the indiscrete topology. Let **B** be the subcategory of **A** consisting of all torsion groups from **A**. Then **B** is the largest hereditary coreflective subcategory of **A** that is not bicoreflective in **A**.

We will need also the following lemma:

Lemma 2. Let **A** be an epireflective subcategory of **STopGr** and **B** be a monocoreflective subcategory of **A**. Then **B** is bicoreflective in **A** if and only if the **B**-coreflection of $r(\mathbb{Z})$ is an **A**-epimorphism.

Proof. Clearly, if **B** is bicoreflective in **A**, then the **B**-coreflection of $r(\mathbb{Z})$ is an **A**-epimorphism. Assume that the **B**-coreflection $c : cr(\mathbb{Z}) \to r(\mathbb{Z})$ of $r(\mathbb{Z})$ is an epimorphism. We will show that the **B**-coreflection $c' : cG \to G$ for an arbitrary group G from **A** is an epimorphism. Let H be a group from **A** and $f_1, f_2 : G \to H$ be homomorphisms such that $f_1 \circ c' = f_2 \circ c'$. For every $g \in G$ let G_g be a group isomorphic to $r(\mathbb{Z})$ and $i_g : r(\mathbb{Z}) \cong G_g \to G$ be the homomorphism given by $i_g(1) = g$. Moreover, let $cG_g \to G_g$ be the **B**-coreflection of G_g . Then $h : \coprod_{g \in G} cG_g \to \coprod_{g \in G}^{\mathbf{A}} G_g \to G$ is an epimorphism. There exists a unique homomorphism $\bar{h} : \coprod_{g \in G}^{\mathbf{A}} cG_g \to cG$ such that the following diagram commutes:

$$cG \xrightarrow{c'} G \xrightarrow{f_1} H$$

$$\downarrow h \uparrow f_2 \xrightarrow{f_2} H$$

$$\coprod_{g \in G} cG_g$$

We have $f_1 \circ h = f_1 \circ c' \circ \bar{h} = f_2 \circ c' \circ \bar{h} = f_2 \circ h$. But *h* is an epimorphism, therefore $f_1 = f_2$ and *c'* is an epimorphism. \Box

In the following example we show that Lemma 1 does not hold in general.

Example 1. Let Z be the group of integers with the topology generated by the subgroup $\{2n : n \in Z\}$ and **A** be the smallest epireflective subcategory containing Z. Then **A** consists of subgroups of products of the form $\prod_{i \in I} G_i$, where each G_i is isomorphic to the group Z. Let **B** be the subcategory consisting of all indiscrete groups from **A**. The **B**-coreflection of $r(\mathbb{Z}) \cong Z$ is $c : cr(\mathbb{Z}) \to r(\mathbb{Z})$, where $cr(\mathbb{Z})$ is the indiscrete group of integers and c(1) = 2. Clearly, c is an **A**-epimorphism. Hence, by Lemma 2, **B** is bicoreflective in **A**, but it does not contain the group $r(\mathbb{Z})$.

Consider a finite cyclic semitpological group Z_n . The closure of $\{0\}$ in Z_n is a subgroup of Z_n and it is the smallest (with respect to inclusion) open neighborhood of 0. The same holds for the group of integers with a non- T_0 topology. Moreover, we have the following simple fact:

Lemma 3. Let *G* and *H* be cyclic semitopological groups, either finite or infinite and non-T₀. Let $n, k \in \mathbb{N}$ be such that $\overline{\{0\}} = \langle n \rangle$ in *G* and $\overline{\{0\}} = \langle k \rangle$ in *H*. Consider the subgroup $\langle (1,1) \rangle$ of $G \times^* H$. Then $\overline{\{(0,0)\}} = \langle (m,m) \rangle$, where *m* is the least common multiple of *n* and *k*.

Proof. Let *U* be an open neighborhood of (0, 0) in $G \times^* H$. Then $V = U \cap G \times^* \{0\}$ is open in $G \times^* \{0\}$. Therefore *V* (and hence also *U*) contains $\langle n \rangle \times^* \{0\}$. Analogously, *U* contains $\{0\} \times^* \langle k \rangle$. Hence *U* contains $\langle n \rangle \times^* \langle k \rangle$. Therefore every neighborhood of (0, 0) in $\langle (1, 1) \rangle$ contains $\langle (m, m) \rangle$. The subgroup $\langle (m, m) \rangle$ is open in $\langle (1, 1) \rangle$, since $\langle n \rangle \times \langle k \rangle$ is open in $G \times^* H$. \Box

Clearly, the above lemma can be generalized to any finite number of groups. The following proposition is a generalization of [4] (Proposition 4.9).

Proposition 1. Let **A** be an epireflective subcategory of **STopGr** such that $\mathbf{A} \subseteq \mathbf{STopAb}$ and $r(\mathbb{Z}) = Z_n$, where $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ is the prime factorization of n. For $i \in \{1, \ldots, k\}$, consider the group $Z_{p_i^{\alpha_i}}$ with the subspace topology induced from $r(\mathbb{Z})$. Let m_i be the natural number such that $\overline{\{0\}} = \langle p_i^{m_i} \rangle$ in $Z_{p_i^{\alpha_i}}$. We define the subcategories \mathbf{B}_i and \mathbf{C}_i of \mathbf{A} as follows:

- 1. If every cyclic group from **A** of order $p_i^{\alpha_i}$ is homeomorphic to $Z_{p_i^{\alpha_i}}$ with the subspace topology induced from $r(\mathbb{Z})$ or there exists a cyclic group $Z_{p_i^{\beta_i}}$ (where $\beta_i < \alpha_i$) from **A** such that $\overline{\{0\}} = \langle p_i^{m_i} \rangle$ in $Z_{p_i^{\beta_i}}$, then let **B**_i be the subcategory consisting precisely of those groups from **A** that do not have an element of order $p_i^{\alpha_i}$.
- 2. If the subgroup $Z_{p_i^{\alpha_i}}$ of $r(\mathbb{Z})$ is not indiscrete, let C_i be the subcategory consisting precisely of such groups *G* from **A** that if *H* is a cyclic subgroup of *G* of order $p_i^{\beta_i}$, where $\beta_i \leq \alpha_i$, then the index of $\overline{\{e_H\}}$ in *H* is less than $p_i^{m_i}$.

Then \mathbf{B}_i and \mathbf{C}_i are maximal hereditary coreflective subcategories of \mathbf{A} that are not bicoreflective in \mathbf{A} .

Note that there does not need to be a subcategory \mathbf{B}_i or \mathbf{C}_i for every $i \in \{1, ..., k\}$.

Proof. Clearly, the subcategories \mathbf{B}_i and \mathbf{C}_i are hereditary and, by Lemma 1, they are not bicoreflective in **A**. The subcategories \mathbf{B}_i are coreflective in **A**.

We need to show that also the subcategories C_i are coreflective in **A**. Let $\{G_j\}_{j\in I}$ be a family of groups from C_i for some $i \in \{1, ..., k\}$, $\coprod_{j\in I} G_j \to G$ be an extremal **A**-epimorphism and f be the homomorphism $\bigoplus_{j\in I}^* G_j \to \coprod_{j\in I} G_j \to G$. Assume that G has a subgroup H homeomorphic to $Z_{p_i^{\alpha_i}}$ with the subspace topology induced from $r(\mathbb{Z})$. Let x be an element of $\bigoplus_{j\in I}^* G_j$ such that $\langle f(x) \rangle = H$. Then the subgroup $\langle x \rangle$ is also homeomorphic to $Z_{p_i^{\alpha_i}}$. Without loss of generality we may assume that $\langle x \rangle = \langle (x_1, \ldots, x_m) \rangle$ is a subgroup of $\langle x_1 \rangle \times^* \cdots \times^* \langle x_m \rangle$, where each x_l belongs to some $G_{j_l} \in \{G_j\}_{j\in I}$. By Lemma 3, the topology of $\langle x \rangle$ is coarser then the topology of $Z_{p_i^{\alpha_i}}$, a contradiction.

Lastly we show that every hereditary coreflective subcategory of **A** that is not bicoreflective in **A** is contained in one of the subcategories **B**_i or **C**_i. If a subcategory **D** is hereditary and coreflective in **A**, but not bicoreflective in **A**, then it does not contain the group $r(\mathbb{Z})$. Therefore it does not contain one of its subgroups $Z_{p_i^{\alpha_i}}$. Hence, it either does not contain a cyclic group of order $p_i^{\alpha_i}$ (and then $\mathbf{D} \subseteq \mathbf{B}_i$) or it does not contain the group $Z_{p_i^{\alpha_i}}$ with $\overline{\{0\}} = \langle p_i^{m_i} \rangle$. Then it also does not contain a cyclic group $Z_{p_i^{\beta_i}}$, where $\beta_i \leq \alpha_i$, with $\overline{\{0\}} = \langle p_i^{m_i} \rangle$, and then $\mathbf{D} \subseteq \mathbf{C}_i$. \Box

In [4] we presented examples of such epireflective subcategories **A** of **STopGr** that every hereditary coreflective subcategory of **A** that contains a group with a non-indiscrete topology is bicoreflective in **A**. Here we give another example of subcategories of **STopGr** with this property. Note that if the subcategory **A** from the following example consists only of abelian groups, then we easily obtain the following result from the above proposition.

Example 2. Let **A** be an epireflective subcategory of **STopGr** such that $r(\mathbb{Z})$ is the discrete cyclic group \mathbb{Z}_p , where *p* is a prime number. Then every hereditary coreflective subcategory **B** of **A** that contains a group with a non-indiscrete topology is bicoreflective in **A**. Let *G* be a non-indiscrete group from **B** and *U* be an open neighborhood of e_G such that $U \neq G$. Choose an element $x \in G \setminus U$. The order of *x* is *p* and the subgroup $\langle x \rangle$ of *G* is discrete, therefore $\langle x \rangle \cong \mathbb{Z}_p$ belongs to **B** and **B** is bicoreflective in **A**.

Proposition 2. Let \mathbf{A} be an epireflective subcategory of \mathbf{STopGr} such that $\mathbf{A} \subseteq \mathbf{PTopAb}$ and $r(\mathbb{Z})$ is the group of integers with the topology generated by its subgroups of the form $\langle p^n \rangle$, where $n \in \mathbb{N}$, $p \in P$ and P is a given set of prime numbers. Let $p \in P$ and \mathbf{B}_p be the subcategory of \mathbf{A} consisting precisely of such groups G from \mathbf{A} that if H is an infinite cyclic subgroup of G then there exists an $n \in \mathbb{N}$ such that the subgroup of index p^n is not open in H. Then those \mathbf{B}_p that contain a group with an element of infinite order are maximal hereditary coreflective subcategories of \mathbf{A} that are not bicoreflective in \mathbf{A} . If all \mathbf{B}_p contain only torsion groups, then they are all equal to the subcategory \mathbf{B} of all torsion groups from \mathbf{A} and \mathbf{B} is the largest hereditary coreflective subcategory of \mathbf{A} .

Proof. Obviously, the subcategory **B** is hereditary and coreflective, but not bicoreflective in **A**. If all subcategories \mathbf{B}_p contain only torsion groups, then for every group *G* from **A** and every element $g \in G$

of infinite order we have $\langle g \rangle \cong r(\mathbb{Z})$. Therefore every hereditary coreflective subcategory of **A** that is not bicoreflective in **A** is contained in **B** and the subcategory **B** is maximal with this property.

Now assume that at least one of the subcategories \mathbf{B}_p contains a group with an element of infinite order. Clearly, every subcategory \mathbf{B}_p is hereditary. It does not contain the group $r(\mathbb{Z})$, and therefore, by Lemma 1, it is not bicoreflective in **A**.

We show that the subcategories \mathbf{B}_p are coreflective in \mathbf{A} . Let $p \in P$, $\{G_i\}_{i \in I}$ be a family of groups from \mathbf{B}_p and $f : \coprod_{i \in I}^{\mathbf{A}} G_i \to G$ be an extremal \mathbf{A} -epimorphism. Let x be an element of $\coprod_{i \in I}^{\mathbf{A}} G_i$ such that the subgroup of index p^n is open in $\langle f(x) \rangle$ for every $n \in \mathbb{N}$. Then also the subgroup of index p^n of $\langle x \rangle$ is open in $\langle x \rangle$ for every $n \in \mathbb{N}$. Without loss of generality we may assume that $\langle x \rangle = \langle (x_1, \ldots, x_k) \rangle$ is a subgroup of $\langle x_1 \rangle \sqcup \cdots \sqcup \langle x_k \rangle = \langle x_1 \rangle \times \cdots \times \langle x_k \rangle$, where $\langle x_1 \rangle \times \cdots \times \langle x_k \rangle$ is the product with the usual topology and each x_j belongs to some $G_{i_j} \in \{G_i\}_{i \in I}$. For every $j \in \{1, \ldots, k\}$ there exists a natural number n_j such that the subgroup of index p^{n_j} is not open in $\langle x_j \rangle$. Then the subgroup of $\langle x \rangle$ of index $p^{n_{j_0}}$, where n_{j_0} is the largest from n_1, \ldots, n_k , is not open in $\langle x \rangle$, a contradiction.

Next we show that every hereditary coreflective subcategory of **A** that is not bicoreflective in **A** is contained in some **B**_{*p*}. Let **C** be a hereditary coreflective subcategory of **A** that is not bicoreflective in **A**. Then **C** does not contain the group $r(\mathbb{Z})$. If **C** contains only torsion groups, then **C** \subseteq **B**_{*p*} for every $p \in P$. Otherwise **C** contains the group of integers with a topology such that its subgroup of index p^n is not open for some $p \in P$ and $n \in \mathbb{N}$. Therefore **C** is contained in **B**_{*p*}.

Proposition 3. Let **A** be an epireflective subcategory of **STopGr** such that $\mathbf{A} \subseteq \mathbf{STopAb}$ and $r(\mathbb{Z})$ is the group of integers with a non- T_0 topology. Let the closure of $\{0\}$ in $r(\mathbb{Z})$ be the subgroup $\langle n \rangle$. Then the following holds:

- 1. If the embedding $\langle n \rangle \to r(\mathbb{Z})$ is an **A**-epimorphism, then the subcategory **B** of all torsion groups from **A** is the largest hereditary coreflective subcategory of **A** that is not bicoreflective in **A**.
- 2. For every minimal natural number k such that k|n and the embedding $\langle k \rangle \to r(\mathbb{Z})$ is not an **A**-epimorphism let **B**_k be the subcategory consisting of such groups G from **A** that if H is a cyclic subgroup of G then the index of $\overline{\{e_H\}}$ in H is at most $\frac{n}{k}$. The subcategories **B**_k are maximal hereditary coreflective subcategories of **A** that are not bicoreflective in **A**.

Assume that for every minimal natural number k such that k|n and the embedding $\langle k \rangle \rightarrow r(\mathbb{Z})$ is not an **A**-epimorphism, **A** contains a finite cyclic group G_k such that the index of $\{e_{G_k}\}$ in G_k is greater than $\frac{n}{k}$. Then the subcategory **B** of all torsion groups from **A** is also a maximal hereditary coreflective subcategory of **A** that is not bicoreflective in **A**.

Proof. Assume that the closure of $\{0\}$ in $r(\mathbb{Z})$ is the subgroup $\langle n \rangle$ and the embedding $i : \langle n \rangle \rightarrow r(\mathbb{Z})$ is an **A**-epimorphism. Clearly, the subcategory **B** is hereditary and coreflective, but not bicoreflective in **A**. We need to show that it is maximal with this property. Let **C** be a hereditary coreflective subcategory of **A** that contains the group *Z* with some topology and $c : cr(\mathbb{Z}) \rightarrow r(\mathbb{Z})$ be the **B**-coreflection of $r(\mathbb{Z})$. Assume that c(1) = k. Let $f : Z \rightarrow r(\mathbb{Z})$ be the homomorphism given by f(1) = n. Then *f* is continuous. There exists a unique homomorphism $\overline{f} : Z \rightarrow cr(\mathbb{Z})$ such that $f = c \circ \overline{f}$. Hence k > 0 and k | n. Therefore *c* is an **A**-epimorphism and, by Lemma 2, the subcategory **B** is bicoreflective in **A**.

Now assume that the embedding $i : \langle n \rangle \to r(\mathbb{Z})$ is not an **A**-epimorphism. The subcategory **B** is hereditary and coreflective in **A**, but not bicoreflective in **A**. Let *k* be minimal such that k|n and the embedding $\langle k \rangle \to r(\mathbb{Z})$ is not an **A**-epimorphism. Clearly, the subcategory **B**_k is hereditary. For the **B**_k-coreflection $c : cr(\mathbb{Z}) \to r(\mathbb{Z})$ we have $c(1) \ge k$. Therefore it is not an epimorphism and **B**_k is not bicoreflective in **A**.

We need to show that \mathbf{B}_k is coreflective in \mathbf{A} . Let $\{G_i\}_{i \in I}$ be a family of groups from $\mathbf{B}_k, \coprod_{i \in I}^{\mathbf{A}} G_i \to G$ be an extremal \mathbf{A} -epimorphism and f be the homomorphism $\bigoplus_{i \in I}^* G_i \to \coprod_{i \in I}^{\mathbf{A}} G_i \to G$. Assume that x is an element of $\bigoplus_{i \in I}^* G_i$ such that the index of $\overline{\{e_{\langle f(x) \rangle}\}}$ in $\langle f(x) \rangle$ is greater than $\frac{n}{k}$. Then also the index of $\overline{\{e_{\langle x_i \rangle}\}}$ in $\langle x \rangle$ is greater than $\frac{n}{k}$. Without loss of generality we may assume that $\langle x \rangle = \langle (x_1, \dots, x_m) \rangle$ is a subgroup of $\langle x_i \rangle \times^* \cdots \times^* \langle x_m \rangle$, where each x_j is an element of some G_{i_j} . The index of $\overline{\{e_{\langle x_i \rangle}\}}$ in

 $\langle x_j \rangle$ is a divisor of $\frac{n}{k}$ for every $j \in \{1, ..., m\}$. Then, by Lemma 3, the index of $\overline{\{e_{\langle x \rangle}\}}$ in $\langle x \rangle$ is at most $\frac{n}{k}$, a contradiction.

Lastly, we show that every hereditary coreflective subcategory of **A** that is not bicoreflective in **A** is contained in **B** or **B**_k. Let **C** be a hereditary coreflective subcategory of **A** that is not bicoreflective in **A**. Let $c : cr(\mathbb{Z}) \to r(\mathbb{Z})$ be the **C**-coreflection of $r(\mathbb{Z})$. If it is a trivial homomorphism, then **C** is contained in **B**. Otherwise $c(1) \ge k$, where k is minimal such that k|n and the embedding $\langle k \rangle \to r(\mathbb{Z})$ is not an **A**-epimorphism. Assume that G is a cyclic group from **C** that does not belong to **B**_k. Then the index of $\overline{\{e_G\}}$ in G is greater than $\frac{n}{k}$. Then **C** contains the group of integers Z with a topology such that the index of $\overline{\{0\}}$ in Z is greater than $\frac{n}{k}$ (a subgroup of $cr(\mathbb{Z}) \sqcup G$). Then there exists a homomorphism $f : Z \to r(\mathbb{Z})$ such that f(1) < k. Then also c(1) < k, a contradiction. Therefore **C** is contained in **B**_k. Note that if for some minimal natural number k such that k|n and the embedding $\langle k \rangle \to r(\mathbb{Z})$ is not an **A**-epimorphism, **A** does not contain a finite cyclic group G such that the index of $\overline{\{e_G\}}$ in G is greater than n is contained in **B**_k, and therefore it is not maximal. \Box

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

- Batíková, B.; Hušek, M. Productivity numbers in paratopological groups. *Topol. Appl.* 2015, 193, 167–174. [CrossRef]
- Batíková, B.; Hušek, M. Productivity of coreflective subcategories of semitopological groups. *Appl. Categor. Struct.* 2016, 24, 497–508. [CrossRef]
- Herrlich, H.; Hušek, M. Productivity of coreflective classes of topological groups. *Comment. Math. Univ. Carol.* 1999, 40, 551–560.
- 4. Pitrová, V. Hereditary coreflective subcategories in epireflective subcategories of semitopological groups. *Topol. Appl.* **2019**, 252, 9–16. [CrossRef]
- 5. Arhangelskii, A.V.; Tkachenko, M. *Topological Groups and Related Structures*; Atlantis Studies in Mathematics; Atlantis Press: Amsterdam, The Netherlandsand; World Scientific: Paris, France, 2008; Volume 1.
- 6. Adámek, J.; Herrlich, H.; Strecker, G.E. Abstract and Concrete Categories. Available online: http://katmat. math.uni-bremen.de/acc (accessed on 15 May 2019).

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).