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Abstract

:

We will prove the generalized Hyers–Ulam stability and the hyperstability of the additive functional equation f(x1+y1,x2+y2,…,xn+yn)=f(x1,x2,…,xn)+f(y1,y2,…,yn). By restricting the domain of a mapping f that satisfies the inequality condition used in the assumption part of the stability theorem, we partially generalize the results of the stability theorems of the additive function equations.
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1. Introduction


In 1940, Ulam [1] gave the question concerning the stability of homomorphisms in a conference of the mathematics club of the University of Wisconsin as follows:



Let (G,·) be a group, and let (G′,·,d) be a metric group with the metric d. Given δ>0, does there exist ϵ>0 such that if a mapping h:G→G′ satisfies the inequality


d(h(xy),h(x)h(y))≤δ








for all x,y∈G, then there is a homomorphism H:G→H with


d(h(x),H(x))≤ϵ








for all x∈G?



Next year, the Ulam’s conjecture was partially solved by Hyers [2] for the additive functional equation.



Theorem 1.

[2], Let X and Y be Banach spaces. Suppose that the mapping f:X→Y satisfies the inequality


f(x+y)−f(x)−f(y)≤ε,∀x,y∈X,ε:constant.








Then, there exists a unique additive mapping


A(x+y)=A(x)+A(y),








such that ||f(x)−A(x)||≤ε, where the limit A(x)=limn→∞2−nf(2nx).





Thereafter, this phenomenon has been called the Hyers–Ulam stability.



Theorem 2.

Let X and Y be Banach spaces. Suppose that the mapping f:X→Y satisfies the inequality


f(x+y)−f(x)−f(y)≤θ(xp+yp)



(1)




for all x,y∈X\{0}, where θ and p are constants with θ>0 and p≠1. Then, there exists a unique additive mapping T:X→Y such that


f(x)−T(x)≤θ|1−2p−1|xp



(2)




for all x∈X\{0}.





Theorem 2 is due to Aoki [3] and Rassias [4] for 0<p<1, Gajda [5] for p>1, Hyers [2] for p=0, and Rassias [6] for p<0.



In 1994, Găvruta [7] generalized these results for additive mapping by replacing θ(xp+yp) in (1) by a general function φ(x,y), which is called the ‘generalized Hyers–Ulam stability’ in this paper.



In 2001, the term hyperstability was used for the first time probably by G. Maksa and Z. Páles in [8]. However, in 1949, it seems to have created by D. G. Bourgin [9] that the first hyperstability result concerned the ring homomorphisms.



We say that a functional equation D(f)=0 is hyperstable if any function f satisfying the equation D(f)=0 approximately is a true solution of D(f)=0, which is a phenomenon called hyperstability.



The hyperstability results for the additive (Cauchy) equation were investigated by Brzdȩk [10,11].



In this paper, let V and W be vector spaces, X be a real normed space, and Y be a real Banach space. We denote the set of natural numbers by N and the set of real numbers by R.



For a given mapping f:Vn→W, where Vn denotes V×V×⋯×V, let us consider the additive functional equation


f(x1+y1,x2+y2,…,xn+yn)=f(x1,x2,…,xn)+f(y1,y2,…,yn),



(3)




for all xi,yi∈V (i=1,2,…,n).



Each solution of the additive functional Equation (3) is called an n-variable additive mapping. A typical example for the solutions of Equation (3) is the mapping f:Rn→Rl given by f(x1,x2,…,xn)=(∑i=1na1ixi,∑i=1na2ixi,…,∑i=1nalixi) with real constants aij.



In this paper, we will prove the generalized Hyers–Ulam stability of the additive functional Equation (3) in the spirit of Găvruta [7], and the hyperstability of the additive functional Equation (3).




2. Main Results


For a given mapping f:Vn→W, we use the following abbreviation:


Df(x1,y1,x2,y2,…,xn,yn):=f(x1+y1,x2+y2,…,xn+yn)−f(x1,x2,…,xn)−f(y1,y2,…,yn)








for all x1,y1,x2,y2,…,xn,yn∈V. We need the following lemma to prove main theorems.



Lemma 1.

If a mapping f:Vn→W satisfies (3) for all x1,y1,x2,y2,…,xn,yn∈V\{0}, then f satisfies (3) for all x1,y1,x2,y2,…,xn,yn∈V.





Proof. 

Let x∈V\{0} be a fixed element, and let i∈{1,2,…,n}. For given xi,yi∈V, let xi(1), xi(2), yi(1), yi(2) be


xi(1)=x,xi(2)=−x,yi(1)=x,yi(2)=−xifxi=0andyi=0,xi(1)=yi,xi(2)=−yi,yi(1)=yi2,yi(2)=yi2ifxi=0andyi≠0,xi(1)=xi2,xi(2)=xi2,yi(1)=xi,yi(2)=−xiifxi≠0andyi=0,xi(1)=xi2,xi(2)=xi2,yi(1)=(k+1)yi,yi(2)=−kyiifxi≠0andyi≠0,








where k is a fixed integer, such that xi2+(k+1)yi≠0,xi2−kyi≠0. Then, xi(1),xi(2),yi(1),yi(2),xi(1)+yi(1),xi(2)+yi(2)∈V\{0} and xi(1)+yi(1)+xi(2)+yi(2)=xi+yi for all i=1,2,…,n.



Hence, the equalities Df(x1(1),y1(1),…,xn(1),yn(1))=0, Df(x1(2),y1(2),…,xn(2),yn(2))=0, Df(x1(1),x1(2),x2(1),x2(2),…,xn(1),xn(2))=0, and Df(y1(1),y1(2),y2(1),y2(2),…,yn(1),yn(2))=0 hold for all x1,y1,x2,y2,…,xn,yn∈V. Since the equality


Df(x1,y1,x2,y2,…,xn,yn)=Df(x1(1)+y1(1),x1(2)+y1(2),x2(1)+y2(1),x2(2)+y2(2),…,xn(1)+yn(1),xn(2)+yn(2))+Df(x1(1),y1(1),x2(1),y2(1),…,xn(1),yn(1))+Df(x1(2),y1(2),x2(2),y2(2),…,xn(2),yn(2))−Df(x1(1),x1(2),x2(1),x2(2),…,xn(1),xn(2))−Df(y1(1),y1(2),y2(1),y2(2),…,yn(1),yn(2))








holds for all x1,y1,x2,y2,…,xn,yn∈V, we conclude that f satisfies Df(x1,y1,…,xn,yn)=0 for all x1,y1,x2,y2,…,xn,yn∈V. ☐





Thereafter, let i∈{1,2,3,…,n}. For a given element x1,x2,…,xn≠0,0,…,0, we can choose a fixed element x′≠0, such that x′∈{x1,x2,…,xn}. Moreover, let xi(1), xi(2)∈V\{0} be the elements defined by


xi(1)=xi,xi(2)=xiifxi≠0,xi(1)=x′,xi(2)=−x′ifxi=0.



(4)







By using Lemma 1, we can prove the following set of stability theorems.



Theorem 3.

Suppose that f:Vn→Y is a mapping for which there exists a function φ:(V\{0})2n→[0,∞), such that


∑m=0∞φ(2mx1,2my1,2mx2,2my2,…,2mxn,2myn)2m<∞



(5)




and


∥Df(x1,y1,x2,y2,…,xn,yn)∥≤φ(x1,y1,x2,y2,…,xn,yn)



(6)




for all x1,y1,x2,y2,…,xn,yn∈V\{0}. Then, there exists a unique mapping F:Vn→Y that satisfies


DF(x1,y1,x2,y2,…,xn,yn)=0



(7)




for all x1,y1,x2,y2,…,xn,yn∈V and


∥fx1,x2,…,xn−Fx1,x2,…,xn∥≤∑m=0∞μ(2mx1,2mx2,…,2mxn)2m+1



(8)




for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}, where the function μ:Vn→R is defined by


μ(x1,x2,…,xn):=φx1(1),x1(2),x2(1),x2(2),…,xn(1),xn(2)+2φx1(1)2,x1(2)2,x2(1)2,x2(2)2,…,xn(1)2,xn(2)2 +φx1(1)2,x1(1)2,x2(1)2,x2(1)2,…,xn(1)2,xn(1)2+φx1(2)2,x1(2)2,x2(2)2,x2(2)2,…,xn(2)2,xn(2)2








for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}.





Proof. 

From the inequality (6) and the equalities


f(2x1,2x2,…,2xn)−2fx1,x2,…,xn =f2x1,2x2,…,2xn−fx1(1),x2(1),…,xn(1)−fx1(2),x2(2),…,xn(2)  −2fx1,x2,…,xn+2fx1(1)2,x2(1)2,…,xn(1)2+2fx1(2)2,x2(2)2,…,xn(2)2  +fx1(1),x2(1),…,xn(1)−2fx1(1)2,x2(1)2,…,xn(1)2  +fx1(2),x2(2),…,xn(2)−2fx1(2)2,x2(2)2,…,xn(2)2 =Dfx1(1),x1(2),x2(1),x2(2),…,xn(1),xn(2)−2Dfx1(1)2,x1(2)2,x2(1)2,x2(2)2,…,xn(1)2,xn(2)2  +Dfx1(1)2,x1(1)2,x2(1)2,x2(1)2,…,xn(1)2,xn(1)2  +Dfx1(2)2,x1(2)2,x2(2)2,x2(2)2,…,xn(2)2,xn(2)2



(9)




for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}, we have


∥f(x1,x2,…,xn)−f(2x1,2x2,…,2xn)2∥ ≤∥Dfx1(1),x1(2),x2(1),x2(2),…,xn(1),xn(2)∥+2∥Dfx1(1)2,x1(2)2,x2(1)2,x2(2)2,…,xn(1)2,xn(2)2∥  +∥Dfx1(1)2,x1(1)2,x2(1)2,x2(1)2,…,xn(1)2,xn(1)2∥  +∥Dfx1(2)2,x1(2)2,x2(2)2,x2(2)2,…,xn(2)2,xn(2)2∥ ≤12μ(x1,x2,…,xn)








for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}. From the above inequality, we get the (following- 4 palces) inequality


‖f2mx1,…,2mxn2m−f2m+m′x1,…,2m+m′xn2m+m′‖≤∑k=mm+m′−1‖f2kx1,…,2kxn2k−f2k+1x1,…,2k+1xn2k+1‖≤∑k=mm+m′−1μ(2kx1,2kx2,…,2kxn)2k+1



(10)




for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)} and all positive integers m,m′. Thus, the sequence {f2nx1,…,2nxn2n}m∈N is a Cauchy sequence for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}. Since Y is a real Banach space and limm→∞f2m0,2m0,…,2m02m=0, we can define a mapping F:Vn→Y by


Fx1,x2,…,xn=limm→∞f2mx1,2mx2,…,2mxn2m








for all x1,x2,…,xn∈V. By putting m=0 and by letting m′→∞ in the inequalities (10), we can obtain the inequalities (8) for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}.



From the inequality (6), we can obtain


Df(2mx1,2my1,2mx2,2my2,…,2mxn,2myn)2m≤φ2mx1,2my1,2mx2,…,2mxn,2myn2m








for all x1,y1,x2,y2,…,xn,yn∈V\{0}. Since the right-hand side in the above equality tends to zero as m→∞, and the equality


DF(x1,y1,x2,y2,…,xn,yn)=limm→∞Df(2mx1,2my1,2mx2,2my2,…,2mxn,2myn)2m








holds, then F satisfies the equality (7) for all x1,y1,…,xn,yn∈V\{0}. By Lemma 1, F satisfies the equality (3) for all x1,y1,x2,y2,…,xn,yn∈V. If G:Vn→Y is another n-variable additive mapping that satisfies (8), then we obtain G(0,0,…,0)=0=F(0,0…,0) and


∥Gx1,x2,…,xn−Fx1,x2,…,xn∥≤G2kx1,2kx2,…,2kxn2k−f2kx1,2kx2,…,2kxn2k+f2kx1,2kx2,…,2kxn2k−F2kx1,2kx2,…,2kxn2k≤∑m=k∞μ(2mx1,2mx2,…,2mxn)2m








for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)} and all k∈N. Since ∑m=k∞μ(2mx1,2mx2,…,2mxn)2m→0 as k→∞, we have G(x1,x2,…,xn)=F(x1,x2,…,xn) for all x1,x2,…,xn∈V. Hence, the mapping F is the unique n-variable additive mapping, as desired. ☐





The condition x1,y1,x2,y2,…,xn,yn∈V\{0} used in the inequality (6) differs from the condition (x1,x2,…,xn)≠(0,0,…,0) and (y1,y2,…,yn)≠(0,0,…,0) handled by the other authors. If the function f satisfies the inequality (3.2) for all (x1,x2,…,xn)≠(0,0,…,0) and (y1,y2,…,yn)≠(0,0,…,0), then the function f satisfies the inequality (3.2) for all x1,y1,x2,y2,…,xn,yn∈V\{0}. Therefore, the condition x1,y1,x2,y2,…,xn,yn∈V\{0} used in the inequality (3.2) in this paper is a generalization of the conditions used in the inequality (3.2) in the well-known pre-results ([10,11]). This condition will apply until Corollary 1.



Theorem 4.

Suppose that f:Vn→Y is a mapping for which there exists a function φ:(V\{0})2n→[0,∞) that satisfies


∑i=0∞2iφx12i,y12i,x22i,y22i,…,xn2i,yn2i<∞,



(11)




and (6) for all x1,y1,x2,y2,…,xn,yn∈V\{0}. Then, there exists a unique mapping F:Vn→Y that satisfies (7) for all x1,y1,x2,y2,…,xn,yn∈V and


∥fx1,x2,…,xn−Fx1,x2,…,xn∥≤∑m=0∞2mμx12m+1,x22m+1,…,xn2m+1



(12)




for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}, where the function μ:Vn→R is defined as Theorem 3.





Proof. 

By choosing a fixed element x∈V\{0}, we can obtain


∥f(0,0,…,0)∥=∥2Dfx2m,−x2m,…,x2m,−x2m−Dfx2m−1,−x2m−1,…,x2m−1,−x2m−1−Dfx2m,x2m,…,x2m,x2m−Df−x2m,−x2m,…,−x2m,−x2m∥≤2φx2m,−x2m,…,x2m,−x2m+φx2m−1,−x2m−1,…,x2m−1,−x2m−1+φx2m,x2m,…,x2m,x2m+φ−x2m,−x2m,…,−x2m,−x2m→0asm→∞,








so f(0,0,…,0)=0. Since the equality (9) holds for all (x1,x2,…,xn)∈V\{(0,0,…,0)}, the inequality (6) implies the inequality


f(x1,x2,…,xn)−2fx12,x22,…,xn2≤μx12,x22,…,xn2








for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}. From the above inequality, we can also obtain the inequality


∥2mfx12m,x22m,…,xn2m−2m+m′fx12m+m′,x22m+m′,…,xn2m+m′∥≤∑k=mm+m′−12kμx12k+1,x22k+1,…,xn2k+1



(13)




for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)} and all positive integers m,m′. Thus, the sequences {2mfx12m,…,xn2m}m∈N is a Cauchy sequence for all (x1,…,xn)∈Vn\{(0,…,0)}. Since f(0,0,…,0)=0 and Y is a real Banach space, we can define a mapping F:Vn→Y by


F(x1,x2,…,xn)=limm→∞2mfx12m,x22m,…,xn2m








for all x1,x2,…,xn∈V. By putting m=0 and by letting m′→∞ in the inequality (13), we can obtain the inequality (12) for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}.



From the inequality (6), we get


2mDfx12m,y12m,x22m,y22m,…,xn2m,yn2m≤2mφx12m,y12m,x22m,y22m,…,xn2m,yn2m








for all x1,y1,x2,y2,…,xn,yn∈V\{0}. Since the right-hand side in the above equality tends to zero as m→∞, then F satisfies the equality (7) for all x1,y1,x2,y2,…,xn,yn∈V\{0}. By Lemma 1, F satisfies the equality (3) for all x1,y1,x2,y2,…,xn,yn∈V. If G:Vn→Y is another n-variable additive mapping satisfying (12), then we obtain G(0,0,…,0)=0=F(0,0,…,0) and


∥Gx1,x2,…,xn−Fx1,x2,…,xn∥≤2kGx12k,x22k,…,xn2k−2kfx12k,x22k,…,xn2k+2kfx12k,x22k,…,xn2k−2kFx12k,x22k,…,xn2k≤∑m=k∞2mμx12m+1,x22m+1,…,xn2m+1→0ask→∞








for all (x1,x2,…,xn)∈Vn\{(0,0,…,0)}. Hence, the mapping F is the unique n-variable additive mapping, as desired. ☐





The following corollary follows from Theorems 3 and 4.



Corollary 1.

Let (X,|||·|||) be a normed space, θ>0, and let p be a real number with p≠1. Suppose that f:Xn→Y is a mapping that satisfies


∥Df(x1,y1,x2,y2,…,xn,yn)∥≤θ(|||x1|||p+|||y1|||p+|||x2|||p+…+|||xn|||p+|||yn|||p)



(14)




for all x1,y1,x2,y2,…,xn,yn∈X\{0}. Then, there exists a unique n-variable additive mapping F:Xn→Y, such that


∥fx1,x2,…,xn−Fx1,x2,…,xn∥≤4(2p+4)nθ2p|2−2p|maxxi≠0{|||xi|||p:1≤i≤n}



(15)




for all (x1,x2,…,xn)∈Xn\{(0,0,…,0)}.





Proof. 

Put φ(x1,y1,x2,y2,…,xn,yn):=θ(|||x1|||p+|||y1|||p+|||x2|||p+|||y2|||p+…+|||xn|||p+|||yn|||p) for all x1,y1,x2,y2,…,xn,yn∈X\{0}, then |||xi(1)|||,|||xi(2)|||≤maxxi≠0{|||xi|||p:1≤i≤n} for all i from (4). Hence, due to μ of Theorems 3 and 4, we obtain that


μ(x1,x2,…,xn)=φx1(1),x1(2),x2(1),x2(2),…,xn(1),xn(2)+2φx1(1)2,x1(2)2,x2(1)2,x2(2)2,…,xn(1)2,xn(2)2 +φx1(1)2,x1(1)2,x2(1)2,x2(1)2,…,xn(1)2,xn(1)2+φx1(2)2,x1(2)2,x2(2)2,x2(2)2,…,xn(2)2,xn(2)2≤(2n+8n2p)maxxi≠0{|||xi|||p:1≤i≤n}








for all (x1,x2,…,xn)∈Xn\{(0,0,…,0)}. Therefore, the inequality (15) can be obtained easily from (8) and (12) in Theorems 3 and 4. ☐





The following theorem for the hyperstability of n-variable additive functional equation follows from Corollary 1.



Theorem 5.

Let (X,|||·|||) be a normed space and p be a real number with p<0. Suppose that f:Xn→Y is a mapping that satisfies (14) for all x1,y1,x2,y2,…,xn,yn∈X\{0}. Then, f is an n-variable additive mapping itself.





Proof. 

By Corollary 1, there exists a unique n-variable additive mapping F:Xn→Y, such that (15) for all x1,x2,…,xn∈Xn\{(0,0,…,0)} and DFx1,y1,x2,y2,…,xn,yn=0 for all x1,y1,x2,y2,…,xn,yn∈X.



For a given x1,x2,…,xn≠0,0,…,0, let x′≠0 be a nonzero fixed element in {x1,x2,…,xn}, and let


xi(3)=(m+1)xi,xi(4)=−mxiwhenxi≠0,xi(3)=mx′,xi(4)=−mx′whenxi=0.











Then, we can easily show that |||xi(3)|||,|||xi(4)|||≤mpmaxxi≠0{|||xi|||p:1≤i≤n} for all i from (4). If (x1,x2,…,xn)∈X\{(0,0,…,0)}, then the equality f(x1,x2,…,xn)=F(x1,x2,…,xn) follows from the inequalities


∥f(x1,x2,…,xn)−Fx1,x2,…,xn∥=∥Dfx1(3),x1(4),x2(3),x2(4),…,xn(3),xn(4)−DFx1(3),x1(4),x2(3),x2(4),…,xn(3),xn(4)+f(x1(3),x2(3),…,(xn(3))+f(x1(4),x2(4),…,xn(4))−F(x1(3),x2(3),…,(xn(3))−F(x1(4),x2(4),…,xn(4))∥≤mp·2nθmaxxi≠0{|||xi|||p:1≤i≤n}+∥f(x1(3),x2(3),…,xn(3))−F(x1(3),x2(3),…,xn(3))∥+∥f(x1(4),x2(4),…,xn(4))−F(x1(4),x2(4),…,xn(4))∥≤mp1+4(2p+4)2p|2−2p|2nθmaxxi≠0{|||xi|||p:1≤i≤n}








as m→∞. For (x1,x2,…,xn)=(0,0,…,0), if we choose a fixed element of x∈X\{0}, then the equality f0,0,…,0)=F0,0,…,0) follows from the inequalities


∥f(0,0,…,0)−F0,0,…,0∥=∥Dfmx,−mx,mx,−mx,…,mx,−mx−DFmx,−mx,mx,…,mx,−mx+f(mx,mx,…,mx)+f(−mx,−mx,…,−mx)−F(mx,mx,…,mx)−F(−mx,−mx,…,−mx)∥≤mp·2nθ∥x∥p+∥f(mx,mx,…,mx)−F(mx,mx,…,mx)∥+∥f(−mx,−mx,…,−mx)−F(−mx,−mx,…,−mx)∥≤mp1+4(2p+4)2p|2−2p|2nθ|||x|||p








as m→∞. Therefore, f is an n-variable additive mapping itself. ☐





The following example follows from Theorem 5.



Example 1.

Let (R,|·|) be a normed space with absolute value |·|, (Rl,∥·∥) be a Banach space with Euclid norm ∥·∥, and p<0 be a real number. Suppose that f:Rn→Rl is a continuous mapping such that


∥Df(x1,y1,x2,y2,…,xn,yn)∥≤θ(|x1|p+|y1|p+|x2|p+|y2|p+…+|xn|p+|yn|p)








for all x1,y1,x2,y2,…,xn,yn∈R\{0}. Then, the mapping f:Rn→Rl given by


f(x1,x2,…,xn)=∑i=1na1ixi,∑i=1na2ixi,…,∑i=1nalixi,



(16)




wherea1i,a2i,…,aliare real constants, indicates that


f(1,0,0,…,0)=(a11,a21,…,al1),f(0,1,0,…,0)=(a12,a22,…,al2),⋮⋮f(0,…,0,0,1)=(a1n,a2n,…,aln).













Proof. 

Since f:Rn→Rl is a continuous n-variable additive mapping by Theorem 5, then the function f:Rn→Rl is given by (16). ☐





In the following theorems, we replace the domain (V\{0})2n of φ and Df in Theorems 3 and 4 with V2n. Then, we can improve the result inequality (8).



Theorem 6.

Suppose that f:Vn→Y is a mapping for which there exists a function φ:V2n→[0,∞) satisfying (5) and (6) for all x1,y1,x2,y2,…,xn,yn∈V. Then, there exists a unique mapping F:Vn→Y, such that (7) for all x1,y1,x2,y2,…,xn,yn∈V and


∥fx1,x2,…,xn−Fx1,x2,…,xn∥≤∑m=0∞φ2mx1,2mx1,2mx2,…,2mxn,2mxn2m+1



(17)




for all x1,x2,…,xn∈V.





Proof. 

The equality


f(2x1,2x2,…,2xn)−2fx1,x2,…,xn=Dfx1,x1,x2,x2,…,xn,xn



(18)




for all x1,x2,…,xn∈V and the inequality (6) imply that the inequality


f(x1,x2,…,xn)−f(2x1,2x2,…,2xn)2≤12φx1,x1,x2,x2,…,xn,xn








for all x1,x2,…,xn∈V. From the above inequality, we can derive the inequalities


∥f2mx1,…,2mxn2m−f2m+m′x1,…,2m+m′xn2m+m′∥≤∑k=mm+m′−1φ2kx1,2kx1,2kx2,2kx2,…,2kxn,2kxn2k+1



(19)




for all x1,x2,…,xn∈V and all positive integers m,m′. The remainder of the proof of this theorem developed after inequality (19) is omitted because it is similar to that of Theorem 3. ☐





Theorem 7.

Suppose that f:Vn→Y is a mapping for which there exists a function φ:V2n→[0,∞) satisfying (11) and (6) for all x1,y1,x2,y2,…,xn,yn∈V. Then, there exists a unique mapping F:Vn→Y that satisfies (7) for all x1,y1,x2,y2,…,xn,yn∈V and


∥fx1,…,xn−Fx1,…,xn∥≤∑m=0∞2mφx12m+1,x12m+1,x22m+1,…,xn2m+1,xn2m+1



(20)




for all x1,x2,…,xn∈V.





Proof. 

The equality (18) for all x1,x2,…,xn∈V and the inequality (6) imply that the inequality


∥f(x1,x2,…,xn)−2fx12,x22,…,xn2∥≤φx12,x12,x22,…,xn2,xn2








for all x1,x2,…,xn∈V. From the above inequality, we can derive the inequality


∥2mfx12m,x22m,…,xn2m−2m+m′fx12m+m′,x22m+m′,…,xn2m+m′∥≤∑k=mm+m′−12kφx12k+1,x12k+1,x22k+1,…,xn2k,xn2k



(21)




for all x1,x2,…,xn∈V and all positive integers m,m′. The remainder of the proof of this theorem developed after inequality (21) is omitted because it is similar to that of Theorem 4. ☐





The following corollary follows from Theorems 6 and 7.



Corollary 2.

Let (X,|||·|||) be a normed space and p be a nonnegative real number with p≠1. Suppose that f:Xn→Y is a mapping satisfying (14) for all x1,y1,x2,y2,…,xn,yn∈X. Then, there exists a unique n-variable additive mapping F:Xn→Y such that


∥fx1,x2,…,xn−Fx1,x2,…,xn∥≤2θ|2−2p|(|||x1|||p+|||x2|||p+…+|||xn||∥p)



(22)




for all x1,x2,…,xn∈X.





Proof. 

By putting φ(x1,y1,x2,y2,…,xn,yn):=θ(|||x1||∥p+|||y1|||p+|||x2||∥p+|||y2||∥p+⋯+|||xn|||p+|||yn|||p) for all x1,y1,x2,y2,…,xn,yn∈X, then we easily obtain (22) from (17) and (20) of Theorems 6 and 7. ☐






3. Conclusions


We obtained two stability results.



Theorems 3 and 4 are the generalized Hyers–Ulam stability for the additive functional Equation (3) on Vn, which is a generalization for the stability of the Cauchy functional equation in papers of Aoki [3], Rassias [4], Gajda [5], Hyers [2], and Găvruta [7].



Theorems 6 and 7 are the hyperstablity of the additive functional Equation (3) on Vn, which is a generalization of the Brzdȩk’s results [10,11] for the Cauchy functional equation.



If the function f satisfies the inequality (6) for all (x1,x2,…,xn)≠(0,0,…,0) and (y1,y2,…,yn)≠(0,0,…,0), then the function f satisfies the inequality (6) for all x1,y1,x2,y2,…,xn,yn∈V\{0}. Therefore, the condition x1,y1,x2,y2,…,xn,yn∈V\{0} used in the inequality (3.2) of this paper is a generalization of the conditions used in the inequality (6) in well-known pre-results ([10,11]).
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