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Abstract: Mobile robot motion planning in an unstructured, static, and dynamic environment is faced
with a large amount of uncertainties. In an uncertain working area, a method should be selected
to address the existing uncertainties in order to plan a collision-free path between the desired two
points. In this paper, we propose a mobile robot path planning method in the visualize plane using an
overhead camera based on interval type-2 fuzzy logic (IT2FIS). We deal with a visual-servoing based
technique for obstacle-free path planning. It is necessary to determine the location of a mobile robot in
an environment surrounding the robot. To reach the target and for avoiding obstacles efficiently under
different shapes of obstacle in an environment, an IT2FIS is designed to generate a path. A simulation
of the path planning technique compared with other methods is performed. We tested the algorithm
within various scenarios. Experiment results showed the efficiency of the generated path using an
overhead camera for a mobile robot.

Keywords: interval type-2 fuzzy logic; mobile robot; path planning; overhead camera; visual-servoing;
obstacle-free

1. Introduction

Over the last two decades, the use of mobile robots has increased in many areas, from industrial
work to research and home use. Computer vision has become a major research topic in robot
control. Autonomous mobile robots use vision systems to perform a given mission. Path planning
is critically important for a mobile robot to be able to carry out its assigned task. Essentially, path
planning algorithms determine how the robot should orient itself with accuracy, safety, and efficiency.
Path planning and path following are two important problems which need to be solved in order for the
mobile robot to perform a task. To solve these problems, one needs to find answers to the following
questions: Where am I? Where am I going? How do I get there? What is the best way to get there?
These are complex issues in the robotic field if they occur in dynamic and unknown environments.
To answer these fundamental questions one needs to know their philosophy and use them together [1].
There are various issues and uncertainties which need to be considered for an efficient, robust, and
safe path. Type-2 FIS is a well-established powerful hybrid technology that can be implemented
within the visual system. Interval type-2 [2–12] FIS was chosen to overcome these uncertainties and
develop robust, flexible control, mainly due to its efficiency in avoiding local obstacles. Path planning
control inputs parameters including robot position information, target position, and description of
environment [13]. Visual servoing is an important concept which can be useful in providing the
capability to employ visual information to control the mobile robot motion control in this field. Here we
are interested in the overhead camera, which can provide information to generate the mobile robot
path. The overhead cameras can be used to sense the position of the robot and coordinate their
motions toward their destination without collision obstacles. Two important factors are relevant to
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solving the path planning problem. The first is environment type (static or dynamic), and the second
is the path planning algorithm (global off-line or local on-line). In these experiments, global path
planning has been emphasized in a static environment. Global path planning algorithms are executed
in static environments.

In this paper, we propose an effective visual-servoing based global path planning technique using
interval Type-2 FIS and comparison with various path planning algorithms. Our contributions are
as follows:

• A robust vision-based obstacle-free path planning algorithm has been developed and implemented
to enable safer global navigation.

• A new framework for the evolutionary algorithm is given.
• A fuzzy inference system has been proposed and integrated into the proposed intelligent navigation

framework to adjust the wheel velocity.
• A novel distance estimation method using overhead camera systems is given which employs scale

parameters from the IT2FIS algorithm.
• Finally, we combine the advantages of the traditional path planning algorithm with the proposed

technique to improve computational efficiency.

In real-world experiments in particular, there are significant changes due to environmental
factors like constant illumination and lighting condition factors. These changes are factors that can be
encountered when creating an effective planning algorithm. However, a key aim should be to increase
the proposed architecture as mentioned previously to reach an acceptable level of performance under
real conditions. This study aims to minimize both systematic and non-systematic errors and to develop
a high-performance path planning algorithm.

2. Literature Review

Navigation and obstacle avoidance are one of the fundamental problems in mobile robotic systems.
Many algorithms related to this subject have been developed [14]. Neuro-Fuzzy architecture [15–19],
A* [20,21], D* [22] (the dynamic version of the A*), Genetic Algorithm [23,24], Dijksta’s Algorithm [25],
BFS [26], and DFS [27] are the methods used for path planning which consider the cost efficiency.
Another method for generating a path plan using potential field functions is the APF [28,29] method.
Each method has the purpose of finding a reliable and cost-effective technique. RRT [30] is a path
planning method which is widely used in robotic studies. It aims to achieve an unobstructed path
between the start and destination positions in an unknown environment. A more advanced version
of RRT is the bidirectional-RRT (bi-RRT) [31] path planning algorithm. This algorithm is completed
using two trees that start to separate from both the starting and the target positions. Visual-servoing
(VS) methods have been widely used in various path planning applications [32–37] and use an image
sensor in a feedback loop for trajectory control. Global path planning provides a global map in which
the robot initial position, goal point, and obstacle positions are determined. A fixed overhead camera
is used to generate a 2D image model of the environment and the proposed method is advanced to
plan the robot path. For this purpose, vision-based path planning has been integrated with IT2FIS
in this way and robust and reliable methods for avoiding obstacles have been developed [4,38,39].
The proposed algorithm is assured of a reliable and feasible path that is visible to the camera.
Traditional sensing techniques such as infrared detectors, laser scanners, and ultrasonic sensors are
used to detect obstacles [35]. Due to systematic and non-systematic errors, these sensors do not
always give the correct result. Systematic errors can be caused by the physical structure of the robot
hardware parts, including the encoder and sensor, but non-systematic errors are usually caused by
sliding, pounding, or falling. Measurement resolutions can be affected by external situations such
as light conditions, detection range, and expensive and often bulky systems. On the other hand,
vision sensors are a low-cost motion control and are effective in decreasing errors as mentioned; they
are also useful robotic sensors. The vision system provides necessary information about obstacles,
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as well as, simultaneously, the position and orientation of the mobile robot in the initial and goal
position. Parameter ranges and system uncertainties in the position control environments are required
to deal with the controller [40]. Soft computing methods like fuzzy logic [41–46] are one of these
controllers. These controllers have powerful advantages such as being low cost, being easy to control
and being designable without knowing the exact mathematical model of the process. Because of
their simple design, which decreases the mathematical model’s complexity, fuzzy logic can be used in
decentralized form, which is preferable to a mobile robot over centralized control. In mobile robot
applications and path planning, many uncertainties may be encountered. These are uncertainties of
inputs, uncertainties of control action, and linguistic uncertainties. These all become uncertainties
about fuzzy logic membership functions [4]. Uncertainties associated with changing unstructured
environments cause problems in the determination of membership functions. An IT2FIS technique is
suitable for dealing with these uncertainties [47,48]. This ability is supported by the fact that the third
type-2 fuzzy logic [49–51] sets dimensions, and its footprint of uncertainty is sufficient in comparison
with what type-1 fuzzy logic [52] sets in modeling on uncertainty. IT2FIS is suitable for real world
applications regarding the control of mobile robots [53,54].

3. Concepts of the Proposed Method

To cope with uncertainties, we used advances recently made on type-2 FIS to enable the
development of an intelligence vision system based on IT2FIS for global path generation. In this
paper we focused on VS-based mobile robot global path planning using an overhead camera. The
particular concept of the proposed methods is to use virtual inputs that are completely generated from
image information. The extracted visual information from interested objects which are visible to the
camera enables the generation of the desired path. The overall technique of the proposed algorithm is
demonstrated in Figure 1.
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Figure 1. System architecture of vision-based path planning for mobile robot. Legend: IT2FIS, interval
type-2 fuzzy logic; DT, distance from target; LD, left diagonal; F, front; RD, right diagonal (distance
from obstacles and robot path).

The IT2FIS algorithm is used as an effective intelligence technique that deals with parameter
variation and system uncertainties. It also offers a simple and cost-effective design advantage without
the complexity of its mathematical model. The main contribution of this experimental study is its
combining VS and IT2FIS to generate a mobile robot path in static and unstructured environments.
The proposed methods have been tested in various cases to validate the system. The simulation results
show the validity of the proposed techniques.

This paper is organized as follows. In Section 2, the problem definition is explained. Section 3
describes the structure and functionality of the vision algorithm. Section 4 handles the type-2 fuzzy
inference system. The experimental and simulation results and system implementation are presented
in Section 5. Finally, concluding remarks are given in Section 6.
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4. Problem Definition

Path planning, localization, and motion control are common problems in mobile robot control.
To overcome such problems, a visual-servoing-based technique that extracts visual information from
a fixed overhead camera in order to use IT2FIS to generate global path planning is proposed. In
order to reach the desired goal configuration, image processing morphological operation has been
used to detect the mobile robot initial position pose, orientation, target coordinates, and obstacle
positions via an overhead camera (see Figure 1). In the VS control loop, the vision sensors can always
track the obstacles surrounding the robot using left diagonal (LD), front (F), and right diagonal (RD)
obstacle detection sensors. These are virtual sensors which are tracked by the image processing system.
These sensors and the robot position and orientation information, denoted by (XR, YR, θR), have been
served as the inputs to the IT2FIS controller to enable the generation of the desired obstacle-free path.
The relationship between the generated path in 2D image space and its identical path in the real robot
work field defines visual servoing.

5. Visual Servoing Algorithm

In this section the overall procedure (see Figure 2) of the algorithm that we have developed for
solving the problem of robotic path planning is described. The algorithm starts by capturing the
experimental environment’s image from the overhead camera. In order to generate the robot motion
environment, the robot world, or the robot map (robot, obstacles, and target position), a number
of morphological processes are performed. Robot path planning algorithms use a map to obtain
information about the obstacles and accessible paths. To generate the shortest path, robot initial
position, target position, and distance map information are required as inputs.
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The process of the visual tracking algorithm is given in Figure 2. The aim was to generate an
obstacle-free robot path by using an overhead camera. We have proposed an effective method for
object tracking. The phases of application of sub-systems of morphological processes with object
tracking and image processing with image processing are highlighted in Figure 2. The RGB image
from the camera is converted to HSL color space-based thresholding. During experimental simulation,
a number of morphological processes were applied to prevent friction and collision. The boundaries of
the obstacles were dilated so more reliable path planning was achievable. The Convex-hull algorithm
was used to prevent the robot from falling to the local minimum. The target and robot coordinates were
determined in pixels using a shape adapted mean shift algorithm. This algorithm [40] uses asymmetric
and anisotropic kernels for object tracking. The algorithms were implemented using NI Vision Builder
programming tools. A shape-adapted mean shift algorithm was implemented which provided angular
as well as a linear offset in object shapes. This algorithm allows for the tracking of object templates with
changing shapes and size using a built-in function from NI Vision Assistant. The tracking template
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position is considered as the reference and its coordinates are regarded. In the final image analysis, the
object’s coordinate system is obtained. There are a number of steps which need to be considered to
generate the path. The formulation of the input parameters that are obtained from the visual system
are explained and formulated by using Figure 3. The pose of the mobile robot (Xr, Yr, θr) in the global
frame can be defined by the center of the mobile robot position. Here, the visual information (location
and orientation) is extracted from the visual odometry. In order to eliminate the effects of slipping and
mechanical shock, the control loop of visual servoing processes works with the current information.
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Assuming that the mobile robot’s initial position information and target position are known, as
shown in Figure 3, we calculate the position errors as

ex = Xt −Xr = DT ∗ cos(θr) (1)

ey = Yt −Yr = DT ∗ sin(θr) (2)

where DT corresponds to the current distance between the mobile robot (Xr, Yr) and the target (Xt, Yt),
which is expressed as Equation (3):

DT =

√
(ex)

2 + (ey)
2 (3)

The robot current angle (θr) according to the target is computed in Equation (4):

θr = tan−1 ey

ex
(4)

The error of angle is given in Equation (5):

θe = θr− θ (5)

The control objective is to design a fuzzy logic controller to generate the desired robot
path configuration.

6. Interval Type-2 Fuzzy Logic System

The design and theoretical basis of the type-2 fuzzy model for mobile robot path planning has been
presented. This is intended to provide the basic concepts needed to understand the algorithm using
input variables that were obtained in Section 3 and rules on which to base the value of output system
determination. In its robustness for controlling nonlinear systems with variation and uncertainties,
the fuzzy type-2 method has proven to be a strong tool for controlling complex systems [55–59].
The concept of the type-2 fuzzy set was introduced by Zadeh [60,61]. The presence of uncertainties in
nonlinear system control uses the highest and lowest values of the parameters, extending the type-1
fuzzy method (Figure 4a) to type-2 (Figure 4b). Uncertainty is a characteristic of information, which
may be incomplete, inaccurate, undefined, inconsistent, and so on. The uncertainty is represented by
a region called the footprint of uncertainty (FOU). This is a bounded region that uses an upper and
lower type-1 membership function.
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An interval type-2 fuzzy set denoted by Ã is expressed in Equation (6) or (7).

Ã =
{
(x, y), µÃ(x, y)

∣∣∣∀x ∈ X,∀u ∈ Jx ⊆ [0 1]
}

(6)

Hence, µÃ(x, u) = 1, ∀u ∈ Jx ⊆ [0 1] is considered as an interval type-2 membership function, as
shown in Figure 5.

Ã =

∫
x∈X

∫
u∈Jx

1/(x, u) Jx ⊆ [0 1] (7)

where
∫ ∫

donate the union of all acceptable x and u. An IT2FIS is defined in terms of an upper
membership function with µÃ(x) and a lower membership function with µ

Ã
(x). Jx is just the interval of

[µÃ(x), µ
Ã
(x)]. A type-2 FIS is characterized by IF-THEN rules, where the antecedent and consequent

sets are type-2. To design a type-2 fuzzy controller, it is necessary to know the block structure used
with type-1, because the basic blocks used are the same as those used with type-1. As seen in Figure 5,
a type-2 FLS includes a fuzzifier, a rule base, a fuzzy inference engine, and an output processor.
The output processor includes a type-reducer and defuzzifier. The type-reducer is the main distinctive
point between type-1 and type-2 fuzzy systems. A type-1 fuzzy set output is generated (from the
type-reducer) or a crisp number is generated (from the defuzzifier) [59]. The type reducer is added
because of its association with the nature of the membership grades of the elements [62].
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6.1. Fuzzifier

In this case, the inputs of the fuzzy set convert into suitable linguistic variables. The membership
functions consist of one or several types-2 fuzzy sets. A numerical vector x of the fuzzifier maps
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converts into a type-2 set Ã. The outputs of the type-2 fuzzy sets are considered a singleton. In a
singleton fuzzification, the inputs are crisp values on nonzero membership.

In these experiments we consider four inputs. These are angle to goal (θe), distance from target
(DT), distances from obstacles (DL, F, DR) and turn to avoid obstacle (TO). Figure 6 illustrates the block
diagram of these parameters.
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Figure 6. Block diagram of fuzzy-based robot path planning.

The angle to the target is the angle at which the robot is required to rotate to reach the target.
The angle changes range from −180 to +180. The distance from the goal is normalized to lie between
0 and 1 and is multiplied by a constant that is between the robot and goal position. Similarly, the
distance between the nearest obstacles in the direction in which the robot moves is the distance from
the obstacle. This distance is also normalized between 0 and 1 [20]. The movement angle of the
robot on the obstacle-free path is taken as the angle of robot direction rotation. This is the measure
between robot and obstacle. There is a single output that measures the turning angle along with
the direction. These values are important when creating the functions of the physical. The bounded
region that uses an upper and lower type-1 membership function (MF) is the FOU. Uncertainty is a
characteristic of information, which may be incomplete, inaccurate, undefined, inconsistent and so on.
Primary MFs with uncertain standard deviation and uncertain mean are popular FOUs for a Gaussian
because of their parsimony and differentiability. A Gaussian is important when a derivative-based
optimization algorithm is used to optimize MF parameters during the design of an interval type-2
fuzzy system. Gaussian MFs are arguably favorable for this situation. The geometry of the membership
functions is arbitrarily selectable and the aforementioned features of the Gaussian function are preferred.
The membership functions of the different inputs and outputs are given in Figure 7.

Axioms 2019, 8, x FOR PEER REVIEW 7 of 16 

In this case, the inputs of the fuzzy set convert into suitable linguistic variables. The membership 
functions consist of one or several types-2 fuzzy sets. A numerical vector x of the fuzzifier maps 
converts into a type-2 set 𝐴ሚ. The outputs of the type-2 fuzzy sets are considered a singleton. In a 
singleton fuzzification, the inputs are crisp values on nonzero membership. 

In these experiments we consider four inputs. These are angle to goal (θe), distance from target 
(DT), distances from obstacles (DL, F, DR) and turn to avoid obstacle (TO). Figure 6 illustrates the 
block diagram of these parameters. 

 
Figure 6. Block diagram of fuzzy-based robot path planning. 

The angle to the target is the angle at which the robot is required to rotate to reach the target. 
The angle changes range from −180 to +180. The distance from the goal is normalized to lie between 
0 and 1 and is multiplied by a constant that is between the robot and goal position. Similarly, the 
distance between the nearest obstacles in the direction in which the robot moves is the distance from 
the obstacle. This distance is also normalized between 0 and 1 [20]. The movement angle of the robot 
on the obstacle-free path is taken as the angle of robot direction rotation. This is the measure between 
robot and obstacle. There is a single output that measures the turning angle along with the direction. 
These values are important when creating the functions of the physical. The bounded region that uses 
an upper and lower type-1 membership function (MF) is the FOU. Uncertainty is a characteristic of 
information, which may be incomplete, inaccurate, undefined, inconsistent and so on. Primary MFs 
with uncertain standard deviation and uncertain mean are popular FOUs for a Gaussian because of 
their parsimony and differentiability. A Gaussian is important when a derivative-based optimization 
algorithm is used to optimize MF parameters during the design of an interval type-2 fuzzy system. 
Gaussian MFs are arguably favorable for this situation. The geometry of the membership functions 
is arbitrarily selectable and the aforementioned features of the Gaussian function are preferred. The 
membership functions of the different inputs and outputs are given in Figure 7. 

  
(a) (b) 

Figure 7. Cont.



Axioms 2019, 8, 58 8 of 16
Axioms 2019, 8, x FOR PEER REVIEW 8 of 16 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 7. The membership functions (inputs: (a–f), output: (g)). 

6.2. Fuzzy Inference Engine 

The inference engine is an interface that processes input values according to certain rules and 
produces output type-2 fuzzy sets. That is, it combines or arranges a center between the input and 
the output. Figure 5 shows a graphical representation of the relationship between input and output. 
It is necessary to compute the intersection and union of type-2 sets and implement compositions of 
type-2 relations. The desired behavior is defined by a set of linguistic rules. It is necessary to set the 
rules adequately to achieve the desired result. For instance, a type-2 fuzzy logic with p inputs (𝑥ଵ ∈𝑋ଵ , … 𝑥௣ ∈  𝑋௣) and one output (𝑦 ∈ 𝑌) with 𝑀 rules has the following form. 𝑅ℓ: IF 𝑥ଵ is 𝐹෨ଵℓ …and 𝑥௣ is 𝐹෨௣ℓ THEN 𝑦 is G෩ℓ, ℓ = 1 … . 𝑀  

The knowledge bases for each controller consist of 25 rules related to the robot direction which 
are presented in Table 1. The position of the rules created in the knowledge base in the coordinate 
plane will be shown graphically. 
  

Figure 7. The membership functions (inputs: (a–f), output: (g)).

6.2. Fuzzy Inference Engine

The inference engine is an interface that processes input values according to certain rules and
produces output type-2 fuzzy sets. That is, it combines or arranges a center between the input and
the output. Figure 5 shows a graphical representation of the relationship between input and output.
It is necessary to compute the intersection and union of type-2 sets and implement compositions of
type-2 relations. The desired behavior is defined by a set of linguistic rules. It is necessary to set
the rules adequately to achieve the desired result. For instance, a type-2 fuzzy logic with p inputs
(x1 ∈ X1, . . . xp ∈ Xp) and one output (y ∈ Y) with M rules has the following form.

R`: IF x1 is F̃`1 . . . and xp is F̃`p THEN y is G `, ` = 1 . . .M

The knowledge bases for each controller consist of 25 rules related to the robot direction which
are presented in Table 1. The position of the rules created in the knowledge base in the coordinate
plane will be shown graphically.
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Table 1. Rule base for robot wheel speed fuzzy controller. Legend: LD, distance front left diagonal; F,
distance front; RD, distance front right diagonal; AG, angle to goal; DT, distance to target.

Inputs Output

LD F RD AG Turn DT Direction

1 low left moreLeft
2 medium left left
3 large left left
4 low right moreRight
5 medium right right
6 large right right
7 small moreRight
8 medium right
9 small moreLeft

10 medium left
11 negative low moreLeft
12 moreNegative low moreLeft
13 no low no
14 positive low moreRight
15 morePositive low moreRight
16 negative medium left
17 no medium no
18 positive medium right
19 morePositive medium moreRight
20 moreNegative high left
21 negative high left
22 no high no
23 positive high right
24 morePositive high right
25 moreNegative medium moreLeft

In these experiments, we used type-2 fuzzy sets and a minimum t-norm operation. The rule firing
strength Fi(x) for crisp input vector is given by the type-1 fuzzy set

Fl(x′) =
[

f l(x′), f
l
(x′)

]
≡

[
f l, f

l
]

(8)

where f l and f
l

are the lower and upper firing degrees of the lth rule, computed using Equations (9)
and (10)

f l(x′) = µ
F̃l

1

(
x′1

)
∗ . . . ∗µ

F̃l
p

(
x′p

)
(9)

f
l
(x′) = µF̃l

1

(
x′1

)
∗ . . . ∗ µF̃l

1

(
x′p

)
(10)

in which ∗ represents the t-norm, which is the prod operator in these equations.

6.3. Type Reducer

All fuzzy logic systems have to produce a crisp output in order to have a practical application.
The single combined type-2 fuzzy set has to be processed with the type reducer and the defuzzifier.
Type-1 fuzzy set output is generated with the type reducer method. These outputs are converted into
the crisp output through the defuzzifier. The defuzzifier combines the output sets to obtain a single
output using one of the existing type reduction methods. The type reducer was proposed by Karnik
and Mendel [58,63–65]. Many methods can be used for type reduction. Centroid type reduction, height
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type reduction, and center of set are the most commonly used. In these experiments a center of sets
(cos) type reduction method was used. The expression of this method can be written as Equation (11).

Ycos(x) = [yl, yr] =

∫
y1∈[yl

1,yr1]
. . .

∫
y1∈[yl

M,yrM]

∫
f 1∈[ f 1, f

1
]
. . .

∫
f M∈[ f M , f

M
]
/

∑M
i=1 f iyi∑M

i=1 f i
(11)

This center of sets is completely characterized by its left and right end points. The consequent
set of the interval type-2 determined those two endpoints (yl, yr). If the values of fi and yi which
are associated with yl are donated to fli and yl

i, respectively, and the values of fi and yi which are

associated with yr are donated to fri and yr
i respectively, f i and f

i
are the lower and upper firing

degrees of the ith rule and and M is the number of fired rules. These points are given in Equations (12)
and (13).

yl =

∑M
i=1 fliyl

i∑M
i=1 fli

(12)

yr =

∑M
i=1 friyr

i∑M
i=1 fri

(13)

The interval type-2 fuzzy system’s outputs are represented with yl and yr.

6.4. Defuzzifier

The interval fuzzy set Ycos(x) variables obtained from the type reducer are defuzzified and the
average of yl and yr are used to defuzzify the output of an interval singleton type-2 fuzzy logic system.
The equation is written as

y(x) =
yl + yr

2
(14)

7. Experimental Result

The main contribution of this work is its developing a visual-servoing-based control system
for mobile robot path planning using IT2FIS and comparing the proposed method with other path
planning algorithms. Many experiments have been done to verify the algorithm and to ensure that the
simulation is really applicable based on the experimental results. The robot location, orientation, and
target location were detected by using a shape-adapted mean shift algorithm. The object coordinate
system was chosen as the center point of the geometric center. We have shown that this algorithm can
be easily deployed on a real robot for path planning based on the results of the experimental study.
The overall algorithms were implemented and tested on a 2.40 GHz dual-core system with 16GB of
RAM using a combination of LabVIEW and MATLAB. To fully test the behavior of the algorithm, we
performed a large number of experiments on the different maps. The results of the two experimental
maps are given in Figures 8 and 9. As shown in the figures, the image processing steps of the map
for the robot path plan are shown. The obstacles in the map are depicted as black regions and the
obstacle-free path is depicted as the white region. The obstacle placed between the robot and target is
of a difficult shape and includes the possibility of local minimum problems. To overcome this problem
a convex hull technique was applied. With this technique, we observed that the robot’s path leads
easily to the target. IT2FIS methods could smoothly manage the path generation process and avoid
obstacle on the way. The results of the two scenarios are shown below.

The first scenario (Figure 8) shows how the robot map is derived from the image algorithm for
the purpose of calculating the unimpeded path for a real map. The objects on the map are the robot
(white object), target (red object), and an obstacle (green object). The algorithm displays the map in the
binary image. The first image contains all objects (robot, target, and obstacle) and only the obstacle is
present in the last image. There are also some morphological processes in the intermediate processes.
The bounding box around the robot and robot location information is determined from the first image.
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In order to obtain the final image, morphological processes and a convex hull technique were applied
to the obstacle to resize it (see Figures 8 and 9).
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Figure 9. Structure and functionality of vision algorithm (second scenario).

The system was tested under two different variable maps. First, it was tested under normal
conditions (Figures 10a and 11a). The system was tested to ensure that the robot monitors sharp angles
in case of disabilities with irregular lines and distortions. The main purpose of this test was to control
robot behavior on the map where the visual servo controller contains obstacles of variable lengths and
sharp angles (Figures 10a and 11a). As shown in these figures, the generated robot path is shown from
its initial position to its endpoint (collision point). The calculated data at each point on the path that is
obtained during the path generation is shown graphically in Figures 10c and 11c. Secondly, in the
dynamic map which formed under the changed conditions, it is shown that the robot goes to the target
without colliding with obstacles by softening the boundary lines of obstacles in the working area and
by filling the spaces with the convex hull method. This experiment tests the algorithm’s ability to
establish a safe path without containing collisions with obstacles in the map shown in Figures 10b
and 11b. Here, the shortest path generation is not the priority; it is actually the safest path which is
desired. It can be observed that the robot’s path is easily oriented towards the target. It manages to
overcome obstacles of all dimensions and shapes that were in its way. The path generated is quite
convenient and the algorithmic result is given in Figures 10b and 11b. The data obtained during the
path generation is shown graphically in Figures 10d and 11d.
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In Table 2, we aimed to compare the proposed method with other algorithms which are used
for navigation and obstacle avoidance. Each algorithm was executed in two scenarios and their
performance illustrated in Table 2 for the first scenario. Each method was executed under the same
conditions (environmental, directional, and initial and target positions). The comparison table includes
the path length and algorithm processing time. In this study, the processing time was taken into
consideration. It is obvious from the results reported in Table 2 that the IT2FIS method performed
better than the others.

Table 2. Comparison values between mobile robot path planning algorithms used in our experiments.

Path Planning
Algoriths. Initial Position Target Position Path Length Proces. Time (s)

Type-2 FIS (IT2FIS) [Xr,Yr] = [470, 900] [Tx,Ty] = [550, 120] 1245 1.8070
Type-1 FIS [Xr,Yr] = [470, 900] [Tx,Ty] = [550, 120] 1415 1.5781

APF [Xr,Yr] = [470, 900] [Tx,Ty] = [550, 120] 1437 1.6201
RRT [Xr,Yr] = [470, 900] [Tx,Ty] = [550, 120] 1387 1.3700
GA [Xr,Yr] = [470, 900] [Tx,Ty] = [550, 120] 1676 1.5399

PRM [Xr,Yr] = [470, 900] [Tx,Ty] = [550, 120] 1246 2.3793
BRRT [Xr,Yr] = [470, 900] [Tx,Ty] = [550, 120] 1448 2.6620
A Star [Xr,Yr] = [470, 900] [Tx,Ty] = [550, 120] 1212 1.832

8. Conclusions

The computational complexity of vision algorithms and the cost of sensors are the most
critical aspects for real time applications. Vision sensors are a good cost-effective solution for
vision-based navigation. The system is realized by the integration of vision-based obstacle detection
methods and soft-computing-based path planning systems. In this paper, we propose an effective
visual-servoing-based global path planning system using interval type-2 FIS and comparisons with
various path planning algorithms. The limitations in conventional methods in terms of accuracy and
efficiency were the main motivations behind this study. A novel distance estimation method using
overhead camera systems was used which employed scale parameters from an IT2FIS algorithm.
We tested new frameworks for the evolutionary algorithm for various scenarios. In our experiments,
we observed that the algorithm failed when it encountered obstacles with complicated dimensions
and sharp edge. To overcome these problems, we proposed a new algorithm. The algorithm
merged image processing morphological operation with a convex-hull method to generate the desired
collision-free path. The aim was to design an intelligent controller based on visual servoing using
IT2FIS techniques. It is important to design a robust controller for mobile robot path planning with
good performance in spite of the lack of information about the robot’s surrounding environment
models. There were significant changes due to appearance-based environmental factors like constant
illumination and lighting condition factors. To overcome these problems the proposed system was
adopted, which combined IT2FIS and an overhead camera-based structure. The proposed system
presented good performance and robustness through various applied scenarios. Comparisons with
other algorithms have also been examined and the results have been shown. The provided simulation
results demonstrated that our proposed approach acts successfully and is able to generate paths
easily with good performances using IT2FIS. Thus the controllers’ outputs are much smoother and
considerably safer paths are generated.
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