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Abstract: In this manuscript, we utilize the concept of modified ω-distance mapping, which was
introduced by Alegre and Marin [Alegre, C.; Marin, J. Modified ω-distance on quasi metric spaces
and fixed point theorems on complete quasi metric spaces. Topol. Appl. 2016, 203, 120–129] in 2016
to introduce the notions of (ω, ϕ)-Suzuki contraction and generalized (ω, ϕ)-Suzuki contraction.
We employ these notions to prove some fixed point results. Moreover, we introduce an example to
show the novelty of our results. Furthermore, we introduce some applications for our results.

Keywords: quasi metric space; Suzuki contractions; fixed point theorems; modified ω-distance;
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1. Introduction and Preliminaries

Constructing new contractions and formulating new fixed point theorems are very important
subjects in mathematics since active researchers employ the existence and uniqueness of the fixed
point to solve some integral equations, differential equations, etc.

Banach was the first pioneer mathematician who constructed and formulated the first fixed point
theorem, which was called after him as the Banach contraction principle [1].

Suzuki [2] introduced a new contraction and generalized the Banach contraction principle.
In the rest of this paper, the letter d refers to a metric on a set B and f1 refers to self-mappings

on B.
One of the important contractions is the Kannan contraction [3]:

d( f1l1, f1l2) ≤ α[d(l1, f1l1) + d(l2, f1l2)] for all l1, l2 ∈ B,

where α ∈ [0, 1
2 ).

Moreover, Kannan proved that if f1 satisfies Kannan contraction, then f1 has a unique fixed point.
In 1931, Wilson [4] generalized the notion of metric spaces to a new notion called quasi

metric spaces.

Definition 1. We call q : B× B→ [0, ∞) a quasi metric if q satisfies:

(i) q(l1, l2) = 0⇐⇒ l1 = l2
and:

(ii) q(l1, l2) ≤ q(l1, l3) + q(l3, l2) for all l1, l2, l3 ∈ B.

(B, q) is called a quasi metric space.
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From now on, by (B, q), we mean a quasi metric space.
Defining qm : B× B→ [0,+∞) via

qm(l1, l2) = max{q(l1, l2), q(l2, l1)},

we generate a metric on B.
Recall the following definitions.

Definition 2. [5,6] The sequence (lt) converges to l ∈ B if lim
t→∞

q(lt, l) = lim
n→∞

q(l, lt) = 0.

Definition 3. [6] Let (lt) be a sequence in (B, q). Then, we say that:

(i) (lt) is left-Cauchy if for any ε > 0, there exists n0 ∈ N such that q(lt, lm) < ε ∀ t ≥ m > n0.
(ii) (lt) is right-Cauchy if for any ε > 0, there exists n0 ∈ N such that q(lt, lm) < ε ∀ m ≥ t > n0.

Definition 4. [5,6] We say that (lt) is Cauchy if for any ε > 0, there exists n0 ∈ N such that q(lt, lm) ≤ ε ∀
t, m > n0.

We note that (lt) in (B, q) is Cauchy if and only if (lt) is right and left Cauchy.

Definition 5. [5,6] We say that (B, q) is complete if every Cauchy sequence in B is convergent.

For some theorems in quasi-metric space, see [5–9].
Alegre and Marin [10] introduced the concept of modified ω-distance mappings on (B, d).

Definition 6. [10] A modified ω-distance (shortened as mω-distance) on (B, q) is a function p : B× B →
[0, ∞), which satisfies:

(W1) p(l1, l2) ≤ p(l1, l3) + p(l3, l2) for all l1, l2, l3 ∈ B;
(W2) p(l, .) : B→ [0, ∞) is lower semi-continuous for all l ∈ B; and
(mW3) for each ε > 0, there exist ν > 0 such that if p(l1, l2) ≤ ν and p(l2, l3) ≤ ν, then q(l1, l3) ≤ ε for all

l1, l2, l3 ∈ B.

Definition 7. [10] We call an mω-distance function a p strong mω-distance if p is lower semi-continuous on
its second coordinate.

Remark 1. [10] If q is a quasi metric on B, then q is mω-distance.

Lemma 1. [11] Let (αt) , (βt) be two sequences of nonnegative real numbers converging to zero. Assume that
p is mω-distance. Then, we have the following:

(i) If p (lt, lm) ≤ αt for any t, m ∈ N with m ≥ t, then (lt) is right Cauchy in (B, q).
(ii) If p (lt, lm) ≤ βm for any t, m ∈ N with t ≥ m, then (lt) is left Cauchy in (B, q).

Remark 2. [11] The above lemma implies that if lim
m,t→∞

p(lt, lm) = 0, then (lt) is Cauchy in (B, q).

For some works on ω-distance, we ask the readers to see [11–13].
Abodayeh et al. [14] generalized the definition of altering the distance function [15] to the concept

of the almost perfect function.

Definition 8. We call a non-decreasing function ϕ : [0, ∞)→ [0, ∞) almost perfect if ϕ satisfies:

(i) ϕ(l) = 0 if and only if l = 0.
(ii) If (lt) is a sequence in [0, ∞) such that lim

t→∞
ϕ(lt) = 0, then lim

t→∞
lt = 0.
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2. Main Results

We begin our work with the following definition:

Definition 9. Let ϕ : R+ → R+ be an almost perfect function and p be modified ω-distance on B. We say that
p is bounded with respect to ϕ if there exists an integer A > 0 such that:

ϕp(l, e) ≤ A for all l, e ∈ B.

Definition 10. Equip (B, q) with an mω-distance mapping p. Then, we call that f1 : B→ B an (ω, ϕ)-Suzuki
contraction if there are an almost perfect function ϕ and a constant k ∈ [0, 1) such that for all l, e ∈ X and
t ∈ N, we have:

(1− k)p
(
l, f t

1 l
)
≤ p(l, e) =⇒ ϕp( f1l, f1e) ≤ kϕp(l, e),

and:
(1− k)p

(
f t
1 l, l

)
≤ p(e, l) =⇒ ϕp( f1e, f1l) ≤ kϕp(e, l).

Now, we introduce and prove our first result.

Theorem 1. Equip (B, q) with an mω-distance mapping p. Let p be bounded with respect to the almost perfect
function ϕ and f1 be an (ω, ϕ)-Suzuki contraction mapping. Suppose that:

(i) f1 is continuous,
or

(ii) if u∗ ∈ B and u∗ 6= f1u∗, then:

inf {p (e, u∗) + p ( f1e, u∗) : e ∈ B} > 0. (1)

Then, f1 has a unique fixed point in B.

Proof. By starting with l0 ∈ B, we produce a sequence (lt) in B inductively by putting lt+1 = f1lt for
all t ∈ N∪ {0}. Given m, t ∈ N∪ {0} with m > t, then m = t + s for some s ∈ N. From the definition,
we have:

(1− k)p(lt−1, lm−1) = (1− k)p(lt−1, lt+s−1)

≤ p(lt−1, lt+s−1).

Therefore, we get that:
ϕp(lt, lm) = ϕp( f1lt−1, f s

1 lt−1)

= ϕp( f1lt−1, f1lt+s−1)

≤ kϕp(lt−1, lt+s−1). (2)

Repeating (2) t-times, we get that:
ϕp(lt, lm) ≤ kt ϕp(l0, ls). (3)

Since (B, p) is bounded with respect to ϕ, then we have:

ϕp(lt, lm) ≤ kt A for some integer A > 0. (4)

By letting t, m→ ∞, we get that:
lim

t,m→∞
ϕp(lt, lm) = 0. (5)



Axioms 2019, 8, 57 4 of 12

By the definition of ϕ, we get that:
lim

t,m→∞
p(lt, lm) = 0. (6)

Since m > t, Lemma 1 implies that (lt) is right Cauchy. Now, suppose that t, m ∈ N∪ {0} with t > m.
Then, t = m + q for some q ∈ N. We note that:

(1− k)p(lt−1, lm−1) ≤ p(lm+q−1, lm−1).

Therefore, we get that:
ϕp(lt, lm) = ϕp( f1lt−1, f1xm−1)

≤ · · · ≤ km ϕp(lq, l0) (7)

ϕp(lt, lm) ≤ km ϕp(lq, l0). (8)

Since (B, p) is bounded with respect to ϕ, we get that:

ϕp(ln, lm) ≤ km A for some integer A > 0. (9)

By letting t, m→ ∞, we have:
lim

t,m→∞
ϕp(ln, lm) = 0. (10)

Therefore,
lim

t,m→∞
p(lt, lm) = 0. (11)

Since t > m, Lemma 1 implies that (lt) is left Cauchy. Therefore, we deduce that (lt) is Cauchy.
The completeness of (B, q) implies that there exists an element l∗ ∈ B such that lt → l∗. If f1 is
continuous, then lt+1 = f1lt converges to f1l∗. The uniqueness of the limit ensures that f1l∗ = l∗.
Let ε > 0. Since lim

t,m→∞
p(lt, lm) = 0, we choose k0 ∈ N such that p(lt, lm) ≤ ε

2 for all l, m ≥ k0. The lower

semi continuity of p implies that:

p(lt, l∗) ≤ lim
j→∞

inf p(lt, lj) ≤
ε

2
for all n ≥ k0.

Assume that l∗ 6= f1l∗. Then, by (1), we have:

inf{p(e, l∗) + p( f1e, l∗) : e ∈ B} ≤ inf{p(lt, l∗) + p( f1lt, l∗) : t ∈ N}
= inf{p(lt, l∗) + p(lt+1, l∗) : t ∈ N} ≤ ε,

a contradiction. Therefore, l∗ = f1l∗. Now, assume that z∗ ∈ B is a fixed point of f1. Therefore:

(1− k)p(z∗, f t
1 z∗) = (1− k)p(z∗, z∗) ≤ p(z∗, z∗).

Thus,
ϕp(z∗, z∗) = ϕp( f1z∗, f1z∗) ≤ kϕp(z∗, z∗).

Since k < 1 and ϕ is an almost perfect function, we conclude that p(z∗, z∗) = 0. Assume that there
exists v∗ ∈ B such that v∗ = f1v∗. Since p(z∗, z∗) = 0, we have:

(1− k)p(z∗, f t
1z∗) = (1− k)p(z∗, z∗) ≤ p(z∗, v∗).

Therefore,
ϕp(z∗, v∗) = ϕp( f1z∗, f1v∗) ≤ kϕp(z∗, v∗).
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Thus, we have ϕp(z∗, v∗) = 0, and so, p(z∗, v∗) = 0. Hence, by (mW3), we have q(z∗, v∗) = 0.
Thus, v∗ = z∗. Therefore, the fixed point of f1 is unique.

Corollary 1. Equip (B, q) with an mω-distance mapping p. Assume p is bounded with respect to ϕ. Assume
for all e, l ∈ B, we have:

ϕp( f1e, f1l) ≤ kϕ(p(e, l)), where k ∈ [0, 1) . (12)

Furthermore, assume that:

(i) f1 is continuous,
or

(ii) if u∗ ∈ B and u∗ 6= f1u∗, then:

inf {p (e, u∗) + p ( f1e, u∗) : e ∈ B} > 0.

Then, f1 has a unique fixed point in B.

By taking the almost perfect function ϕ in Corollary 1 as follows:
ϕ(e) = e, we get the following result:

Corollary 2. Equip (B, q) with an mω-distance mapping p. Assume there exists A > 0 such that p(e, l) ≤ A
for all e, l ∈ B. Furthermore, assume that there exists k ∈ [0, 1) such that for all e, l ∈ B, we have:

p( f1e, f1l) ≤ kp(e, l), where k ∈ [0, 1) .

Furthermore, assume that:

(i) f1 is continuous,
or

(ii) if u∗ ∈ B and u∗ 6= f1u∗, then:

inf {p (e, u∗) + p ( f1e, u∗) : e ∈ B} > 0.

Then, f1 has a unique fixed point in B.

Example 1. Let B = {0, 1, 2, · · · , n}, where n ∈ N. Define p, q : B× B→ [0,+∞) as follows:

q(e, l) =
{

0 if e = l;
3e + l if e 6= l,

and:

p(e, l) =
{

0 if e = l;
1
2 (3e + l) if e 6= l.

Furthermore, define f1 : B→ B by:

f1e =
{

0 if e = 0, 1;
1 if e = 2, 3, · · · , n,

and ϕ : R+ → R+ by:

ϕ(l) =
{

3l − 1 if l ∈ [0, n];
3l if l > n.
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Then,

1. ϕ is an almost perfect function.
2. p is an mω-distance function on q.
3. q is a quasi metric on B.
4. (B, q) is complete.
5. f1 satisfies (ω, ϕ)-Suzuki contraction with k = 1√

3
, i.e., ∀e, l ∈ B, j ∈ N, we have:(

1− 1√
3

)
p
(

e, f j
1e
)
≤ p(e, l) =⇒ ϕp( f1e, f1l) ≤ kϕp(e, l),

and: (
1− 1√

3

)
p
(

f j
1e, e

)
≤ p(l, e) =⇒ ϕp( f1l, f1e) ≤ kϕp(l, e).

Proof. The proofs of (1), (2), and (3) are obvious. To show that q is complete, let (lt) be a Cauchy
sequence in B. Then, for each t, m ∈ N, we have:

lim
m,t→∞

q(lt, lm) = 0.

Therefore, we deduce that lt = lm for all t, m ∈ {0, 1, 2, · · · }, but possible for finitely many. Thus, (lt)
converges in B. Hence, (B, q) is complete. To prove (5), given e, l ∈ B, we divide our proof into the
following cases: Case (1): e = 0. Here, we have:(

1− 1√
3

)
p(0, 0) =

(
1− 1√

3

)
p(e, f j

1e) ≤ p(0, l) where l = 0, 1, · · · , n.

If l ∈ {0, 1}, then:

ϕp( f10, f1l) = ϕp(0, 0) = 0 ≤
(

1√
3

)
ϕp(0, l).

If l ∈ {2, 3, · · · , n}, then:

ϕp( f10, f1l) = ϕp(0, 1) = ϕ

(
1
2

)
= 3

1
2 − 1.

Therefore,

ϕp(0, l) = ϕ

(
l
2

)
= 3

l
2 − 1.

ϕp( f10, f1l) = 3
1
2 − 1 ≤

(
1√
3

)(
3

l
2 − 1

)
.

Case (2): e = 1. Here:(
1− 1√

3

)
p(e, 0) =

(
1− 1√

3

)
p(1, f11) ≤ p(1, l) where l = 0, 2, 3, · · · , n.

If l = 0, then we have ϕp( f 1, f l) = 0. Therefore,

ϕp( f 1, f l) = 0 ≤
(

1√
3

)(
3

3
2 − 1

)
.

If l = 2, 3, · · · , n, then:

ϕp( f11, f1l) = ϕp(0, 1) = ϕ

(
1
2

)
= 3

1
2 − 1.
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Now,

ϕp(1, l) = ϕ

(
3 + l

2

)
= 3

3+l
2 − 1.

Thus,

ϕp( f11, f1l) = 3
1
2 − 1 ≤

(
1√
3

)
ϕ

(
3 + l

2

)
=

(
1√
3

)(
3

3+l
2 − 1

)
.

Case (3): e ∈ {2, 3, · · · , n}. Here,(
1− 1√

3

)
p(e, 1) =

(
1− 1√

3

)
p(e, f1e) ≤ p(e, l) where l = 1, 2, · · · , n.

If l = 1, then:

ϕp( f e, f 1) = ϕp(1, 0) = ϕ

(
3
2

)
= 3

3
2 − 1.

ϕp(e, 1) = ϕ

(
3e + 1

2

)
=

{
3

7
2 − 1 if e = 2

3
3e+1

2 if 3 ≤ e ≤ n.

ϕp( f e, f 1) = 3
3
2 − 1 ≤ (

1√
3
)ϕp(e, 1).

If l ∈ {2, 3, · · · , n}, e ∈ {2, 3, · · · , n} and e 6= l, then:

ϕp( f1e, f1l) = ϕp(1, 1) = ϕ(0) = 0.

ϕp(e, l) = ϕ

(
3e + l

2

)
=

{
3

3e+l
2 − 1 if 3e + l ≤ 2n

3
3e+l

2 if 3e + l > 2n.

Similarly, we can show that:

(1− 1√
3
)p
(

f te, e
)
≤ p(l, e) =⇒ ϕp( f l, f e) ≤ kϕp(l, e).

Hence, f1 satisfies (ω, ϕ)-Suzuki contraction. Therefore, f1 has a unique fixed point.

Next, we introduce the definition of a generalized (ω, ϕ)-Suzuki contraction.

Definition 11. Equip (B, q) with an mω-distance mapping p. We call f1 : B→ B a generalized (ω, ϕ)-Suzuki
contraction if there exists an ultra distance function ϕ and a constant k ∈ [0, 1) such that for all e, l ∈ B, j ∈ N,
we have:

(1− k)p
(

e, f j
1e
)
≤ p(e, l) =⇒ ϕp( f1e, f1l) ≤ k max{ϕp(e, f1e), ϕp(l, f1l)},

and:
(1− k)p

(
f j
1e, e

)
≤ p(l, e) =⇒ ϕp( f1l, f1e) ≤ k max{ϕp(e, f1e), ϕp(l, f1l)}.

We introduce and prove the second result:

Theorem 2. Equip (X, q) with an mω-distance mapping p. Assume that p is bounded with respect
to the almost perfect function ϕ. Assume that f1 is a generalized (ω, ϕ)-Suzuki contraction mapping.
Furthermore, suppose that:

(i) f1 is continuous,
or

(ii) if u∗ ∈ B and u∗ 6= f1u∗, then:

inf {p (e, u∗) + p ( f1e, u∗) : e ∈ B} > 0. (13)
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Then, f1 has a unique fixed point in B.

Proof. Start with l0 ∈ B to construct (ln) in B inductively by putting lt+1 = f1lt for all t ∈ N ∪ {0}.
Given t, m ∈ N∪ {0} with t < m, let m = t + j with j ∈ N. We note that:

(1− k)p(lt−1, lm−1) = (1− k)p(lt−1, f j
1lt−1)

≤ p(lt−1, lm−1).

Since f1 is a generalized (ω, ϕ)-Suzuki contraction, we have:

ϕp(lt, lm) = ϕp( f1lt−1, f1lm−1)

≤ k max{ϕp(lt−1, f1lt−1), ϕp(lm−1, f1lm−1)}
= k max{ϕp(lt−1, lt)), ϕp(lm−1, lm)}.

(14)

Now,
(1− k)p(lt−2, lt−1) = (1− k)p(lt−2, f1lt−2)

≤ p(lt−2, lt−1).

Therefore, we get that:

ϕp(lt−1, lt) = ϕp( f1lt−2, f1lt−1)

≤ k max{ϕp(lt−2, f1lt−2), ϕp(lt−1, f1lt−1)}
= k max{ϕp(lt−2, lt−1), ϕp(lt−1, lt)}.

(15)

Since k < 1, we get that:
ϕp(lt−1, lt) ≤ kϕp(lt−2, lt−1). (16)

Repeating (16) t-times, we get that:

ϕp(lt−1, lt) ≤ kt−1 ϕp(l0, l1). (17)

Similarly, we get that that:
ϕp(lm−1, lm) ≤ km−1 ϕp(l0, l1). (18)

Using Equations (14), (17), and (18), we get:

ϕp(lt, lm) ≤ k max{kt−1 ϕp(l0, l1), km−1 ϕp(l0, l1)}. (19)

Since t < m, we get that:
ϕp(lt, lm) ≤ kt ϕp(l0, l1). (20)

The boundedness property of p with respect to ϕ implies that:

ϕp(lt, lm) ≤ kt A for some integer A ≥ 0. (21)

By letting t, m→ ∞, we get that:
lim

t,m→∞
ϕp(lt, lm) = 0. (22)

Thus,
lim

t,m→∞
p(lt, lm) = 0. (23)

Since t < m, Lemma 1 implies that (lt) is right Cauchy. In a similar manner, we can show that (lt) is
left Cauchy. Hence, (lt) is Cauchy. The completeness of q ensures that there exists l∗ ∈ B such that
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(lt) converges to l∗. If f1 is continuous, then (lt+1) = ( f1lt) converges to f1l∗. The uniqueness of the
limit implies that f1l∗ = l∗. Given ε > 0. Since lim

t,m→∞
p(lt, lm)) = 0, there exists n0 ∈ N such that

p(lt, lm) ≤ ε
2 for all t, m ≥ n0. The lower semi continuity of p implies that:

p(lt, l∗) ≤ lim
i→∞

inf p(lt, li) ≤
ε

2
for all t ≥ n0.

Assume that l∗ 6= f1l∗, then by (13), we have:

inf{p(e, l∗) + p( f1e, l∗) : e ∈ B}
≤ inf{p(lm, l∗) + p( f1lt, l∗) : t ∈ N}
= inf{p(lt, l∗) + p(lt+1, l∗) : n ∈ N} ≤ ε,

a contradiction. Therefore, l∗ = f1l∗. Assume z∗ ∈ B such that f1z∗ = z∗. First, we prove that
p(z∗, z∗) = 0. Since:

(1− k)p(z∗, f j
1z∗) = (1− k)p(z∗, z∗) ≤ p(z∗, z∗),

then:
ϕp(z∗, z∗) = ϕp( f1z∗, f1z∗) ≤ kϕp(z∗, z∗).

Since k < 1 and ϕ is an almost perfect function, then p(z∗, z∗) = 0. Therefore,

(1− k)p(z∗, f t
1 z∗) = (1− k)p(z∗, z∗) ≤ p(z∗, l∗).

Therefore,
ϕp(z∗, l∗) = ϕp( f1z∗, f1l∗)

≤ k max{ϕp(z∗, f1z∗), ϕp(l∗, f1l∗)}
= k max{ϕ(p(z∗, z∗)), ϕ(p(v∗, v∗))}
= 0.

The definition of ϕ informs us that p(z∗, l∗) = 0. The definition of p implies that q(z∗, l∗) = 0. Hence:
z∗ = l∗.

Corollary 3. Equip (B, q) with an mω-distance mapping p. Assume p is bounded with respect to the almost
perfect function ϕ. Suppose that for all e, l ∈ B, we have:

ϕp( f1e, f1l) ≤ k max{ϕp(e, f1e), ϕp(l, f1l)}, where k ∈ [0, 1) . (24)

Furthermore, assume that:

(i) f is continuous;
or

(ii) if u∗ ∈ B and u∗ 6= f1u∗, then:

inf {p (e, u∗) + p ( f1e, u∗) : e ∈ B} > 0.

Then, f1 has a unique fixed point in B.

Corollary 4. Equip (B, q) with an mω-distance mapping p. Assume that there exists A > 0 such that
p(e, l) ≤ A for all e, l ∈ B. Furthermore, assume that for all e, l ∈ B, we have:

p( f1e, f1l) ≤ α(p(e, f1e) + p(l, f1l)), where 0 ≤ α <
1
2

.
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Assume that:

(i) f1 is continuous;
or

(ii) if u∗ ∈ B and u∗ 6= f1u∗, then:

inf {p (e, u∗) + p ( f1e, u∗) : e ∈ B} > 0.

Then, f1 has a unique fixed point in B.

Proof. Define the almost perfect function ϕ via ϕ(e) = e in Corollary 3. Then:

ϕ(p( f1e, f1l)) = p( f1e, f1l)

≤ λ
(

p(e, f1e) + p(l, f1l)
)

≤ 2λ max
{

p(e, f1e), p(l, f1)
}

= 2λ max
{

ϕ(p(e, f1e)), ϕ(p(l, f1l)))
}

.

3. Application

In this section, we utilize Corollaries 1 and 4 to give some applications of our work.

Theorem 3. For any positive integer n, the equation:

nxn − xn−1 + 4nx− 2 = 0

has a unique solution in [0, 1].

Proof. Let B = [0, 1]. Define q : B× B → R+ by q(x, y) = |x − y|. Then, (B, q) is a complete quasi
metric space. Furthermore, define p : B× B→ [0, ∞) by p(x, y) = |x− y|. Then, p is an mω-distance
mapping. Now, equip (B, q) with p.
Define f1 : B→ B by:

f1(x) =
xn−1 + 2

n(xn−1 + 4)
.

Furthermore, define ϕ : [0, ∞)→ [0, ∞) by:

ϕ(a) =
{

a2 if a ∈ [0, 1];
a2 + 1

2 if a > 1.

Note that ϕ is an almost perfect function and p is bounded with respect to ϕ. For x, y ∈ B, we
have:

ϕp( f1x, f1y) =
1
n2

∣∣∣∣ xn−1 + 2
xn−1 + 4

− yn−1 + 2
yn−1 + 4

∣∣∣∣2
=

1
n2

∣∣∣∣ 2xn−1 − 2yn−1

(xn−1 + 4)(yn−1 + 4)

∣∣∣∣2
≤ 4(n− 1)2

n2

(
1

(x2 + 4)2(y2 + 4)2

)∣∣∣∣x− y
∣∣∣∣2

≤ (n− 1)2

64n2

∣∣∣∣x− y
∣∣∣∣2

=
(n− 1)2

64n2 ϕp(x, y).
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By taking k = (n−1)2

64n2 and noting that f1 is continuous, we conclude that f1 satisfies all conditions
of Corollary 1. Thus, f1 has a unique fixed point. Note that the unique fixed point of f1 is the unique
solution of:

nxn − xn−1 + 4nx− 2 = 0.

Example 2. The equation:
1000x1000 − x999 + 4000x− 2 = 0

has a unique solution in [0, 1].

Proof. It follows from Theorem 3 by taking n = 1000.

Let Υ be the set of non-decreasing functions τ : R+ → R+ such that τ is Lebesgue integrable for
all compact sets in R+ and: ∫ µ

0
τ(ν)dν > 0 where µ > 0.

Theorem 4. Equip (B, q) with an mω-distance mapping p. Assume that there exists A > 0 such that
p(e, l) ≤ A for all e, l ∈ B. Furthermore, suppose the following condition:

(i) f1 is continuous.
(ii) There exists τ ∈ Υ and α ∈ [0, 1/2) such that for all e, l ∈ B, we have:

∫ p( f1e, f1l)

0
τ(ν)dν ≤ α

( ∫ p(e, f1e)

0
τ(ν)dν +

∫ p(l, f1l)

0
τ(ν)dν

)
.

Then, f1 has a unique fixed point in B.

Proof. Let ϕ =
∫ t

0 τ(ν)dν. Then, ϕ is an almost perfect function. Corollary 4 ensures that f1 has a
unique fixed point in B.

4. Conclusions

The notions of (ω, ϕ)-Suzuki contraction and generalized (ω, ϕ)-Suzuki contraction are
introduced. According to these nations many fixed point results are investigated. Some applications
are introduced on the obtained results.
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