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Abstract: Currently, we are in the digital era, where robotics, with the help of the Internet of Things
(IoT), is exponentially advancing, and in the technology market we can find multiple devices for
achieving these systems, such as the Raspberry Pi, Arduino, and so on. The use of these devices makes
our work easier regarding processing information or controlling physical mechanisms, as some of
these devices have microcontrollers or microprocessors. One of the main challenges in speed control
applications is to make the decision to use a fuzzy logic control (FLC) system instead of a conventional
controller system, such as a proportional integral (PI) or a proportional integral-derivative (PID). The
main contribution of this paper is the design, integration, and comparative study of the use of these
three types of controllers—FLC, PI, and PID—for the speed control of a robot built using the Lego
Mindstorms EV3 kit. The root mean square error (RMSE) and the settling time were used as metrics
to validate the performance of the speed control obtained with the controllers proposed in this paper.

Keywords: fuzzy logic control; proportional integral; proportional integral derivative; Lego
Mindstorms EV3; closed loop control

1. Introduction

In recent years, autonomous mobile robots have been used to perform a wide variety of important
activities and specific functions. These robots are used to perform exploration tasks on other planets,
monitor volcanic activities, study deep-water behavior, assemble cars, and support people’s surgeries,
among many other activities. All these activities are carried out in conjunction with other disciplines
and using new emerging technologies including the Internet of Things (IoT), as a tool or complement
for the acquisition and transmission of data. From the place where the robot is located, the information
obtained must be processed by an intelligent model (artificial intelligence) to give an answer or
instructions to the autonomous robot.

There are several methods that are used in system control. The classic ones include proportional
control (P), which determines the relation of the current error [1]; proportional integral control (PI),
which generates a proportional correction of the errors as observed in [2–5]; and proportional integral
derivative (PID), which determines the reaction time in which the error occurs. There are two types of
forms in a control algorithm that decide on a particular control action—the open loop system, in which
the parameters of the algorithms are preset and do not change while the system is running, and the
closed loop system, in which there are sensors that measure the error between the desired state of the
system and its real state. This error is used to decide on the action to take; thus, closed circuit control
systems are used.

These controllers can be used to solve a problem when there is no knowledge of the process, when
its objective is to obtain greater precision in the control of the system, and when related works in the
literature can be observed [6–8].
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In the literature, we can find works where the authors propose the use of other devices. For
example, in [9–12], some works are presented, using raspberry pi to solve different problems, such as to
track and monitor animal activities, to control a robotic arm, to classify and recognize animals, and to
detect and classify arrhythmias. It is also recommended to read [13,14], where the authors propose the
use of other devices in their work.

An alternative method is to use fuzzy logic control (FLC) algorithms based on fuzzy rules, and
these systems have been widely used, as shown in [15–20]. A fuzzy control system contains rules, and
these rules are expressed in terms of linguistic variables. FLC is now also widely used to solve any
problem that contains the concept of knowledge-based fuzzy inference proposed by Zadeh in 1965 [21].
Unlike classical logic, where we have only true or false, a fuzzy inference system handles simple
linguistic variables that adapt better to the real world, for example, minimum, maximum, etc. [22].
Fuzzy logic has been widely used, as shown in [23–29].

The era of robots has been very successful in recent years [30], with various types of robots in
existence. In this case, the Lego Mindstorms EV3 is considered, which is the third generation of the set
of robotics belonging to the Lego company. These robots have been used to solve certain problems, as
shown in [31–33].

Today, it is difficult to make the decision about using a PID controller or an FLC system. In this
paper, the three types of controls, called PI, PID, and FLC, are applied to the speed control of the Lego
Mindstorms EV3, with the main objective being to achieve good speed control of the robot. Recently,
these robots have been widely used, as shown in [34–37].

Different methods and techniques are used to find the best parameters for PI and PID controllers,
such as the Ziegler Nichols method [38–40]. On the other hand, for FLC, there are evolutionary
computation techniques to find the best parameters by means of a genetic algorithm [41–45]. However,
in this case the values of the parameters of these controllers were found through trial and error.

The metrics used in this study are the integral of the squared error (ISE), the integral of the
absolute value of error (IAE), the integral of the time-weighted squared error (ITSE), the integral of the
time multiplied by the absolute value of error (ITAE), and the root mean square error (RMSE).

This paper is comprised of the following sections: Section 2, in which the mathematical model of
the Lego Mindstorms EV3 is presented; Section 3, in which the case study is shown; Section 4, in which
the simulations and results are shown; and, finally, Section 5, in which the conclusions are presented.

2. The Mathematical Model of the Lego Mindstorms EV3

The Lego Mindstorms team is the most popular educational platform, since it has a relatively
accessible cost; it is reusable, robust, and reconfigurable; and its modules are easy to use by students of
all educational levels. In addition, the EV3 team contains all the elements or parts necessary to build
a functional robot. It is widely used for educational purposes, as well as for research experiments
in robotics. In this work we are using the Matlab language programming framework, this language
facilitates the interaction with the motors for readings of the positions with respect to the reference.

This model has an operating system based on LINUX, with an ARM9 processor of 300 MHz, a
RAM memory of 64 MB, a Flash memory of 16 MB, RJ12 connectors ports for sensors and motors, and
USB 2.0 communication (in this case, we used this port for the connection of a USB wireless module for
synchronization with the developed block model).

In this paper, a Lego Mindstorms EV3 robot has been used for the experiment. This robot has
several characteristics including two large motors, a medium motor, and a programmable brick EV3,
which is the control center and the power source of the robot, as well as a wireless card for the
experiment and therefore could be assembled in different ways. The particular robot configuration in
this case is shown in Figure 1.
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Figure 1. Lego Mindstorms EV3 robot.

The mathematical model for modeling the motor of the robot uses two fundamental laws of
physics [46]: the first is Kirchhoff’s law based on the energy conservation and load of the electrical
circuits, as shown in Equation (1); and the second is Newton’s law based on the mechanical equation,
as shown in Equation (2).

L
di(t)

dt
= vin(t) − vem f (t) −Ri(t) (1)

J
dw(t)

dt
= Tm(t) − bw(t) (2)

where, Table 1 shows the description of each variable.

Table 1. Mathematical representation of the model.

No. Variables Description

1 R, L Motor equivalent circuit resistance and inductance respectively
2 J Moment of inertia of the rotor
3 b Damping coefficient of the rotor
4 Vin Input voltage
5 Vemf Back emf
6 Tm Motor torque
7 Tm(t) Kmi(t)
8 vemf (t) Kemfω(t)

3. Case Study Used in This Work

Three different control methods to achieve the speed control of a Lego Mindstorms EV3 are used,
and a closed circuit control systems is used [47–50]. Figure 2 shows the general scheme of a closed
loop control system.Axioms 2019, 8, 53 4 of 20 
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The parameter denoted by r represents the reference value; the variable transformed into a control
value is represented by u, and the y variable represents the output, which is calculated with the
equation e = r − y.

The first is a PI controller based on the Equation (3), the second is a PID controller based on the
Equation (4), and the third is a fuzzy controller that is based on the theory of fuzzy sets with which the
FLC control systems can be created. The general diagram of an FLC is shown in Figure 3.

r(t) = Kp e(t) + Ki
∫ t

o
e(t)dt (3)

where r is the controller output, t is the time, kp is the proportional gain, e is the error between the
reference value and the system output, and dτ is the time derivative.

r(t) = Kp e(t) + Ki
∫ t

o
e (t)dt + Kd

de(t)
dt

(4)
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The Lego Mindstorms EV3 robot is shown in Figure 1, and a general illustration of the proposal
is presented in Figure 4. The main challenge of this work was the synchronization between the
controller and the robot in real time, and the methodology is as follows: a block model is developed
with the help of Simulink, and the mathematical model of the Lego is codified. Afterwards, wireless
synchronization is done with the Lego robot using an USB adapter; the values of the variables for the
proposed controllers (FLC, PI, and PID) are added to perform the tests and observe the behavior of
the robot.

The main objective is to maintain control of the speed in the robot, and the tests are realized using
one type of control (PI, PID, and FLC) for each test. The design of the controllers in this case was done
by trial and error. The speed control was tested with two different speed signal references: a step and a
signal generator for each method (PI, PID, and FLC). The step reference signal r(t) is given by Equation
(5), where t is the sampling time; the signal generator is given by Equation (6), where the amplitude is
200; the frequency is 0.8; the waveform is square; and t is the simulation time.

r(t) =
 2 ∗ 180

pi t > 0
0 t ≤ 0

(5)

r(t) = Amp ∗Wave f orm(Freq, t) (6)
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The objective function for FLC is the root mean square error (RMSE) that is represented in
Equation (7), and the objective function for PI and PID controller is the Settling Time, although there
are other control metrics that are also used, as follows: ISE (Integral of Squared error), IAE (Integral of
the Absolute value of the Error), ITSE (Integral of Time-weighted Squared Error), and ITAE (Integral of
the Time multiplied by the Absolute value of the Error), respectively, presented in Equations (8)–(11).
The metrics used to measure the error in this work were selected based on works published in the
literature; most of the authors and experts in the area recommend some of them in works related to
control [17,34,36,37].

RMSE =

√√√
1
N

N∑
t=1

(xt − x̂t)
2 (7)

ISE =
N∑

t=1

∣∣∣∣(x(t) − x̂(t))2
∣∣∣∣ (8)

IAE =
N∑

t=1

∣∣∣x(t) − x̂(t)
∣∣∣ (9)

ITSE =
N∑

t=1

t
(
(x(t) − x̂(t))2

)
(10)

ITAE =
N∑

t=1

t (x(t) − x̂(t)) (11)

3.1. Proportional Integral Controller for the Lego Mindstorms EV3

The two aforementioned speed reference signals are applied to a PI controller model in order
to achieve the speed control in the Lego Mindstorms EV3 robot. Figure 5 shows the diagram of
this controller.
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Where r(t) is the reference signal (step and signal generator); e(t) is the difference between the
reference signal and the actual output signal y(t); u(t) is the controller output; and y(t) is the output, in
this case the speed of the robot. The parameters used for speed control with the step reference signal
are shown in Table 2, and the parameters used for speed control with the signal generator reference
signal are shown in Table 3; the initial ranges for these cases are from −1 to 1, and in the tables the best
parameters obtained for each reference are shown.

Table 2. Parameters used for the step reference.

Parameters P I

Value 0.0000009 0.5

Table 3. Parameters used for the signal generator reference.

Parameters P I

Value 0.0000009 0.3

3.2. Proportional Integral Derivative Controller for Lego Mindstorms EV3

The PID controller model used to achieve the speed control of the Lego Mindstorms EV3 robot is
illustrated in Figure 6.
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In this case, the same speed reference signals mentioned above were used. The parameters used
for speed control with the step reference signal are shown in Table 4, and the parameters used for speed
control with the signal generator reference signal are shown in Table 5. The initial ranges for these
cases are from −1 to 1, and in the tables the best parameters obtained for each reference are shown.

Table 4. Parameters used for step reference.

Parameters P I D

Value 0 0.5 0
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Table 5. Parameters used for signal generator reference.

Parameters P I D

Value 0.05 0.2 0.001

3.3. Fuzzy Logic Controller for the Lego Mindstorms EV3

A fuzzy logic controller is used in order to control the speed of the robot; also, the two speed
reference signals were used in the above Equations (5) and (6). The FLC control model can be found in
Figure 7.
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The fuzzy system controller contains two inputs (the error e(t) and the error change e’(t)) and one
output (the control signal (Voltage) y(t), see Figure 8); the error and the error change are calculated
using Equations (12) and (13).

e(t) = r(t) − y(t) (12)

e′(t) = e(t) − e(t− 1) (13)

The inputs and output are granulated into trapezoidal and triangular membership functions,
which were created with Equations (14) and (15), respectively. These membership functions of this
type were used for the ease of integration in this control problem.

f (x; a, b, c, d) =



0, x ≤ a
x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c

d−x
d−c , c ≤ x ≤ d

0, d ≤ x

(14)

f (x; a, b, c) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, c ≤ x

(15)

The parameters of the membership functions for speed control with the step reference signal are
presented in Table 6. The parameters of the membership functions for speed control with the signal
generator reference signal are shown in Table 7. The FLC contains 15 rules, which are shown in Table 8.
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Table 6. FLC membership functions for step reference.

Input Error

MF a b c d

NegV −915.7 −625.2 284.4 6.609
CeroV −287.4 0 292.6 −

PosV −1.391 308.2 590.4 870.40

Input Error Change

ErrNeg −400.1 −98.01 −40 −10.01
ErrNegM −40 −20 0 −

SinErr −17.69 0 15.6 −

ErrMaxM −7.677 20 40 −

ErrMax 4.497 40 98.01 400.1

Output Voltage

MDis 0 0 5 11.34
MDism 6.576 9.937 13.53 −

Man 10.41 12.5 14.78 −

Aumm 11.41 15.06 17.56 −

Aum 14.25 20.53 25.52 25.52

Table 6 shows the parameters of the triangular and trapezoidal membership functions used to
achieve speed control with the step reference; it is important to mention that the values are obtained
via the observations and experiences of experts in the area.

Figures 8–10 show the inputs and output of the fuzzy system for the step speed reference,
where input 1 is the error, input 2 is the change of the error, and the output is the voltage and its
linguistic values.
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Table 7. FLC membership functions for signal generator reference.

Input Error

MF a b c d

NegV −549 −375 −224.6 3.975
CeroV −239 0 224
PosV −0.795 226.2 354 522

Input Error Change

ErrNeg −200 −49 −39 −16.27
ErrNegM −34.25 −17.33 −7.8 −

SinErr −19.45 −0.264 11.24 −

ErrMaxM −0.398 14.42 30 −

ErrMax 7.804 32.95 49 200

Output Voltage

MDis −71 −71 −52.03 −6.59
MDism −43.08 −23.99 −3.572 −

Man −11.1 0.75 13.7 −

Aumm 6.574 27.33 41.53 −

Aum 9.98 48.27 74 74

Table 7 shows the parameters of the triangular and trapezoidal membership functions used to
achieve speed control with the signal generator reference; it is important to mention that the values are
obtained via the observations and experiences of experts in the area.

Figures 11–13 show the inputs and outputs of the fuzzy system for the signal generator speed
reference, where input 1 is the error, input 2 is the change of the error, and the output is the voltage
and its linguistic values.
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Table 8 shows the combination of if-then fuzzy rules for the proposed controller used to control
the motor speed of the Lego Mindstorms EV3.
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Table 8. Proposed combination of fuzzy rules.

No.
Inputs Output

Error Error Change Voltage

1 NegV ErrNeg Dis
2 NegV SinErr Dis
3 NegV ErrMax Dis_m
4 CeroV ErrNeg Aum_m
5 CeroV ErrMax Dis_m
6 PosV ErrNeg Aum_m
7 PosV SinErr Aum
8 PosV ErrMax Aum
9 CeroV SinErr Man

10 NegV ErrNeg_M Dis
11 CeroV ErrNeg_M Aum_m
12 PosV ErrNeg_M Aum
13 PosV ErrMax_M Aum
14 CeroV ErrMax_M Dis_m
15 NegV ErrMax_M Dis

The speed step reference signal is illustrated in Figure 14, and the speed signal generator reference
is illustrated in Figure 15, where the objective is to follow as close as possible the desired speed reference.
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4. Simulations and Results

Different tests were carried out in order to find the results closest to the reference speed, while the
robot physically maintained a good speed without overlap or sudden movements. In the following
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sections, the best results obtained by each speed reference are shown, and it is important to note that
the adjustment of these parameters was done manually by trial and error.

4.1. Results of the Experimentation for Step Reference

Parameters were tested by trial and error using values −1 to 1 for the PI and PID controller, and
the following tables show the errors of the best result obtained in the simulations for each PI, PID, and
FLC controller for the step speed reference.

Tables 9 and 10 show the results obtained when adjusting the parameters of the PI and PID
controllers, respectively, for the speed reference of the step. In these tables we can find the results of
the PI and PID controllers and the settling time that is the objective function in the case of these two
controllers. The units of the errors shown in the following tables are radians/seconds.

Table 9. Results for the proportional integral (PI) controller.

Metrics ITAE ITSE IAE ISE Settling Time

Value 1.13 × 104 2.59 × 106 2034 4.63 × 105 1.98

Table 10. Results for the proportional integral-derivative PID controller.

Metrics ITAE ITSE IAE ISE Settling Time

Value 1.131 × 104 2.589 × 106 2033 4.628 × 105 1.98

Figures 16 and 17 show the simulations obtained from the PI and PID controllers, respectively,
for the speed reference of the step; the blue line represents the reference speed, and the orange line
represents the actual speed.
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Once the behavior of the robot in the PI and PID controllers was validated, it was possible to
obtain the ranges to achieve the speed control in the fuzzy controller for the step reference speed; the
ranges varied from −1000 to 20 for the inputs and outputs mentioned in the Section 3.3.

Table 11 shows the results obtained by manually adjusting the parameters of the fuzzy logic
controller for the speed reference of the step, and RMSE error obtained is shown. Figure 18 shows the
best simulation obtained.
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4.2. Results of the Experimentation for Signal Generator Reference

Parameters were tested by trial and error using values −1 to 1 for the PI and PID controller, and
the following tables show the errors of the best result obtained in the simulations for each PI, PID, and
FLC controller for the signal generator speed reference.

Tables 12 and 13 show the results obtained when adjusting the parameters of the PI and PID
controllers, respectively, for the speed reference of the signal generator. In these tables we can find the
results of the PI and PID controllers and the settling time, which is the objective function in the case of
these two controllers.

Table 12. Results for the PI controller.

Metrics ITAE ITSE IAE ISE Settling Time

Value 1.795 × 104 6.932 × 106 3592 1.37 × 106 1.98

Table 13. Results for the PID controller.

Metrics ITAE ITSE IAE ISE Settling Time

Value 1.68 × 104 6.062 × 106 3411 1.22 × 106 1.98

Figures 20 and 21 show the simulations obtained from the PI and PID controllers, respectively, for
the speed reference of the signal generator; in this case, the blue line represents the reference speed and
the orange line represents the actual speed.
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Once the behavior of the robot in the PI and PID controllers was validated, it was possible to
obtain the ranges to achieve the speed control in the fuzzy controller for the signal generator reference
speed; the ranges varied from −1000 to 20 for the inputs and outputs mentioned in the Section 3.3.

Table 14 shows the results obtained by manually adjusting the parameters of the fuzzy logic
controller for the speed reference of the signal generator; RMSE error obtained is shown. Figure 22
shows the best obtained simulation.

Table 14. Results for the FLC controller.

Metrics ITAE ITSE IAE ISE RMSE

Value 1.245 × 104 3.336 × 106 2511 6.659 × 105 112.49
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5. Conclusions

The main objective of this work was the design and integration of the following controllers
(PI, PID, and FLC) applied and modeled in a robot built using the Lego Mindstorms kit version
EV3. The authors of this work consider it important to mention to the reader that our approach and
contribution was not the minimization of the errors obtained, but to apply and integrate different
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types of control systems. The design of these controllers was performed manually with the help of an
expert in the area. The speed control was performed with two different speed reference signals: the
step and signal generators. The results obtained with the PI and PID controllers in both cases were
better than the FLC controller; however, in real time the robot managed to maintain a stable speed
without frights, which was the objective of this work using the controllers proposed in this paper. It is
important to highlight that the objective of the authors in this work was the adaptation in real time
between Matlab–Simulink with the Lego Mindstorms EV3 and the observation of the behavior of
the robot with the applied controllers. In future work, we consider it necessary to use optimization
meta-heuristics or other intelligent search techniques to find the best values for the controllers in order
to improve the results shown in this paper.
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