
axioms

Article

Stability Anomalies of Some Jacobian-Free Iterative
Methods of High Order of Convergence

Alicia Cordero 1,*,† , Javier G. Maimó 2,† , Juan R. Torregrosa 1,† and María P. Vassileva 2,†

1 Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València,
Camino de Vera s/n, 46022 València, Spain; jrtorre@mat.upv.es

2 Instituto Tecnológico de Santo Domingo, Avda. Los Próceres 49, Santo Domingo 10602, Dominican Republic;
javiermaimo@hotmail.com (J.G.M.); maria.vassilev@gmail.com (M.P.V.)

* Correspondence: acordero@mat.upv.es
† These authors contributed equally to this work.

Received: 22 February 2019; Accepted: 19 April 2019; Published: 25 April 2019

Abstract: In this manuscript, we design two classes of parametric iterative schemes to solve nonlinear
problems that do not need to evaluate Jacobian matrices and need to solve three linear systems per
iteration with the same divided difference operator as the coefficient matrix. The stability performance
of the classes is analyzed on a quadratic polynomial system, and it is shown that for many values of
the parameter, only convergence to the roots of the problem exists. Finally, we check the performance
of these methods on some test problems to confirm the theoretical results.
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1. Introduction

Systems of nonlinear equations must usually be solved when nonlinear models, appearing
in Science and Engineering, are discretized. There are no analytical techniques for solving these
systems, so we approach their solutions by using iterative schemes. Although the most known
iterative procedure is Newton’s scheme, in recent years, the focus of this area of research has been
in constructing new iterative methods, trying to improve Newton’s one, in terms of convergence,
efficiency, and stability (see, for example, some third-order schemes in References [1–6], or higher-order
ones in References [7–12]). The key fact to get the most efficient methods is to evaluate as few Jacobian
matrices as possible, per iteration (see Reference [13] and the references therein).

In 2016, the authors of [14] proposed a parametric class of iterative schemes with fourth-order of
convergence, including a very efficient fifth-order procedure. The efficiency index used is defined as
p1/d+op, where p is the order of convergence of the method, d the number of functional evaluations
per iteration, and op the number of products/quotients used for obtaining a new iterate. This class
combined three evaluations of the nonlinear function and only one of the Jacobian matrix, per iteration.
In addition to the study of the local convergence and the computational cost of an iterative method,
we must analyze its dependence on the set of initial estimations used. This analysis was made
in Reference [15].

In this manuscript, we modified this class of iterative methods to avoid the calculation of Jacobian
matrices, getting two different families, whose difference is based on the order of the estimation of
the Jacobian matrix. Then, using the real multidimensional dynamics, we studied the behavior of
the elements of the family (usually with the same order of convergence) and decided which ones
are the best, from this point of view. Specifically, we studied the multipliers of the strange fixed
points, analyzed the asymptotical behavior of the free critical points, and found different kinds of
strange attractors using bifurcation diagrams. At the end, the dynamical planes are shown to check the
theoretical results.
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Introductory Concepts

Now, let us recall some concepts that we will use along this manuscript. Let F(x) = 0 be a system
of n equations with n variables, where F : D ⊆ Rn → Rn, with coordinate functions fi, i = 1, 2, . . . , n.
Our aim is to find a solution x̄ ∈ D as a fixed point of the iteration method:

x(k+1) = Ḡ(x(k)), k = 0, 1, . . . , (1)

x(0) being the initial guess.
Let us denote with G(x) the vectorial fixed-point rational function associated to the iterative

method applied to n-variable polynomial system p(x) = 0, p : Rn → Rn, x ∈ Rn

p(x). Most of the following concepts are direct extensions of those considered in complex dynamics
(see, for example, [16,17]). The orbit of x(0) ∈ Rn is defined as

{
x(0), G(x(0)), . . . , Gm(x(0)), . . .

}
.

A point x∗ ∈ Rn is a fixed point of G if G(x∗) = x∗, and its stability is characterized in a result from
Robinson ([16], p. 558), stating that the character of a period-k point x∗ depends on the eigenvalues
of G′(x∗), λ1, λ1, . . . , λn. It is attracting if all |λj| < 1, repelling if all |λj| > 1 (j = 1, 2, . . . , n)),
and unstable or saddle if at least one λj0 exists such that |λj0 | > 1. In addition, a fixed point is called
hyperbolic if all the eigenvalues λj of G′(x∗) have |λj| 6= 1.

On the other hand, if an iterative scheme has at least order two, then the zeroes of the
function are superattracting fixed points of G. We call a strange fixed point to that not being
a zero of p(x). The basin of attraction A(x∗) of an attracting fixed point x∗ of G, is A(x∗) ={

x(0) ∈ Rn : Gm(x(0))→ x∗, m→ ∞
}

.

A point x ∈ Rn is a critical point of G if the eigenvalues of G′(x) are null. Therefore, if gi satisfies
∂gi(x)

∂xj
= 0 for all i, j ∈ {1, . . . , n}, then x is a critical point. If it is not a root of polynomial p(x),

it is called a free critical point.
In this manuscript, we apply these techniques (as it has been previously made, for example,

in Reference [17]), to a couple of Jacobian-free families of iterative schemes. Specifically, we study the
strange fixed points and their stability, prove the existence of free critical points, and find different
chaotic behaviors (strange attractors, period-doubling cascades, etc.). In the last section, some basins
of attraction are shown to visualize the performance of the elements of the family. Some numerical
results are presented.

2. Jacobian-Free Parametric Families

We propose the following Jacobian-free version of a fourth-order iterative class designed by the
authors of [14], denoted by M41, whose iterative expression is:

y(k) = x(k) − H(x(k))−1F(x(k)), k ≥ 0

z(k) = y(k) − βH(x(k))−1F(y(k)), (2)

x(k+1) = z(k) +
1
β

H(x(k))−1
(
(β− 1)2F(y(k))− F(z(k))

)
,

being H(x(k)) =
[

x(k), x(k) + F(x(k)); F
]
.

Because of the technique used in the proof, these methods have an order of convergence four in
a neighborhood of x̄, where F′(x̄) is nonsingular. The following result shows its local convergence,
using the notation about the Taylor expansion of F(x(k)) and F′(x(k)) around x̄, introduced in
Reference [18]. To get the Taylor expansion of the divided difference operator [·, ·; F] : D × D ⊂
Rn × Rn → L(Rn) (see Ortega-Rheimboldt [19]), its integral expression is used (known as the
Genochi–Hermite formula):

[x + h, x; F] =
∫ 1

0
F′(x + th)dt = F′(x) +

1
2

F′′(x)h +
1
6

F′′′(x)h2 + O(h3).
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Theorem 1. Let x̄ ∈ D be a zero of F : D ⊂ Rn → Rn, a sufficiently differentiable Frechét function in an open
convex set D. Let us assume that F′(x̄) is nonsingular and let x(0) be an initial estimation near to x̄. Class (2)
has fourth-order of convergence for any β ∈ R, β 6= 0. The error equation of the family is:

ek+1 =
[
(5− β)C2

2 + 2(3− β)C3
2 F′(x̄) + 3C2

2 F′(x̄)C2(I + F′(x̄))

+2C2F′(x̄)C2
2(I + F′(x̄))− (β− 1)C3

2 F′(x̄)2
]

e4
k + O(e5

k),

being Ck = (1/k!)[F′(x̄)]−1F(k)(x̄), k = 2, 3, . . ., ek = x(k) − x̄, k ≥ 0, and I denotes the n × n
identity matrix.

Proof. The Taylor development of F(x(k)) around x̄ is:

F(x(k)) = F′(x̄)
[
ek + C2e2

k + C3e3
k + C4e4

k

]
+ O(e5

k),

being also the expansion of its successive derivatives:

F′(x(k)) = F′(x̄)
[

I + 2C2ek + 3C3e2
k + 4C4e3

k

]
+ O(e4

k),

F′′(x(k)) = F′(x̄)
[
2C2 + 6C3ek + 12C4e2

k

]
+ O(e3

k),

F′′′(x(k)) = F′(x̄) [6C3 + 24C4ek] + O(e2
k).

Then, denoting by w(k) = x(k) + F(x(k)) and ew = w(k) − x̄:

[x(k), w(k); F] = F′(x̄) [I + C2(ek + ew)] + O(h3).

By forcing that [x(k), w(k); F]−1[x(k), w(k); F] = [x(k), w(k); F][x(k), w(k); F]−1 = I, it is obtained that:

[x(k), w(k); F]−1 =
[
I − C2(2 + F′(x̄))ek

] [
F′(x̄)

]−1
+ O(h2).

Then, the expansion of error at the first step of the iterative process ey = y(k) − x̄ is:

ey = ek − [x(k), w(k); F]−1F(x(k)) = C2(I + F′(x̄))e2
k + O(e3

k),

and, therefore:
F(y(k)) = F′(x̄)

[
ey + C2e2

y

]
+ O(e3

y).

In a similar way, the Taylor expansion of the error at the second step ez = z(k) − x̄ is:

ez = ey − β[x(k), w(k); F]−1F(y(k)) = (1− β)ey + βC2(2I + F′(x̄))ekey − βC2e2
y + O(e5

k).

Then:
F(z(k)) = F′(x̄)

[
ez + C2e2

z

]
+ O(e3

z),

and:

[x(k), w(k); F]−1
(
(β− 1)2F(y(k))− F(z(k))

)
=

[
I − C2(2 + F′(x̄))ek

]
[
(β− 1)2ey + (β− 1)2C2e2

y − ez − C2e2
z

]
+ O(e5

k)

=
[
(β− 1)2ey + (β− 1)2C2e2

y − ez − C2e2
z

−(β− 1)2C2(2 + F′(x̄))ekey + C2(2 + F′(x̄))ekez

]
+ O(e5

k).
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Finally, the error equation of the method can be expressed as:

ek+1 = ez −
1
β
[x(k), w(k); F]−1

(
(β− 1)2F(y(k))− F(z(k))

)
=

[
β− 1

β
ez +

(β− 1)2

β
ey −

(β− 1)2

β
C2(2 + F′(x̄))ekey

+
1− β

β
C2(2 + F′(x̄))ekey + C2(2 + F′(x̄))C2(2 + F′(x̄))e2

key

]
+ O(e5

k),

that, expressed in terms of powers of ek and after some algebraic simplifications, results in:

ek+1 =
[
(5− β)C2

2 + 2(3− β)C3
2 F′(x̄) + 3C2

2 F′(x̄)C2(1 + F′(x̄))

+2C2F′(x̄)C2
2(1 + F′(x̄))− (β− 1)C3

2 F′(x̄)2
]

e4
k + O(e5

k),

proving the fourth-order of convergence of all the elements of the family for any real β 6= 0.

Now, if a second-order estimation of the Jacobian matrix is made in the original M4 family of
Reference [14] in a similar way to that in Reference [20], then it can be expressed as:

y(k) = x(k) −M(x(k))−1F(x(k)), k ≥ 0

z(k) = y(k) − βM(x(k))−1F(y(k)), (3)

x(k+1) = z(k) +
1
β

M(x(k))−1
(
(β− 1)2F(y(k))− F(z(k))

)
,

where M(x(k)) =
[

x(k) + F(x(k)), x(k) − F(x(k)); F
]
, which we denote as M42. The following result

shows its local order of convergence.

Theorem 2. Let x̄ ∈ D be a zero of F : D ⊂ Rn → Rn, a sufficiently differentiable Frechét function in an open
convex set D. Let us assume that F′(x̄) is nonsingular, and let x(0) be an initial estimation near to x̄. If β 6= 0,
the family defined by (3) has, at least, fourth-order of convergence for any β ∈ R, being fifth-order convergent
when β = 5. The error equation of the class is:

ek+1 = (5− β)C3
2e4

k + O(e5
k),

being Ck = (1/k!)[F′(x̄)]−1F(k)(x̄), k = 2, 3, . . . and ek = x(k) − x̄, k ≥ 0.

Proof. By denoting w(k) = x(k) + F(x(k)) and s(k) = x(k) − F(x(k)) and in a similar way as in the proof
of Theorem 1, the Taylor expression of the second-order divided difference and its inverse can be
expressed as:

[w(k), s(k); F] = F′(x̄) [I + 2C2ek] + O(h2),

and:
[x(k), w(k); F]−1 = [I − 2C2ek]

[
F′(x̄)

]−1
+ O(h2).

Then, the error at the first step is:

ey = ek − [w(k), s(k); F]−1F(x(k)) = C2e2
k + O(e3

k),

and again:
F(y(k)) = F′(x̄)

[
ey + C2e2

y

]
+ O(e3

y).
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Thus, the expansion of the error at the second step is:

ez = ey − β[w(k), s(k); F]−1F(y(k)) = (1− β)ey + 2βC2ekey − βC2e2
y + O(e5

k).

Therefore:

F(z(k)) = F′(x̄)
[
ez + C2e2

z

]
+ O(e3

z)

= F′(x̄)
[
(1− β)ey + 2βC2ekey + (1 + β2 − 3β)e2

y

]
+ O(e5

k),

and: (
(β− 1)2F(y(k))− F(z(k))

)
= F′(x̄)

[
β(β− 1)ey − 2βC2ekey + βC2e2

y

]
+ O(e5

k).

Finally, the error equation of the method can be expressed as:

ek+1 = ez −
1
β
[w(k), s(k); F]−1

(
(β− 1)2F(y(k))− F(z(k))

)
= [I − 2C2ek]

[
(β− 1)ey − 2C2ekey + C2e2

y

]
+ O(e5

k),

that, expressed in terms of ek and simplifying:

ek+1 = (5− β)C3
2e4

k + O(e5
k),

proving that all the members of the class have, at least, fourth-order of convergence, except the element
corresponding to β = 5, which is fifth-order convergent.

In the following sections, we use the properties of the discrete dynamical systems associated to
these families in order to select their most stable members.

3. Multidimensional Dynamical Analysis

In the following, we denote by Mi(x, β) = (Mi
1(x, β), Mi

2(x, β), . . . , Mi
n(x, β)), i = 1, 2 the fixed

point function associated to M41 and M42 classes, respectively, applied on n-dimensional quadratic
polynomial p(x) = 0, where:

pi(x) = x2
i − 1, i = 1, 2, . . . , n. (4)

3.1. Class M41

As the polynomial system has separated variables, all the components of Mi(x, β) (for a fixed
i ∈ {1, 2}) have the same expression, with the only difference of the sub-index corresponding to the
component of x. In the case of method M41, the coordinate functions of the multidimensional rational
operator can be expressed as:

M1
j (x, β) = xj +

1− x2
j

−1 + 2xj + x2
j
−

xj(2 + xj)
(
−1 + x2

j

)2
β(

−1 + 2xj + x2
j

)3

+
1(

−1 + 2xj + x2
j

)7 xj(2 + xj)
(
−1 + x2

j

)2

(
xj(6− 10β) + x3

j (14− 4β) + x8
j (−2 + β) + 6x5

j (−1 + β) + β

−6x4
j (−7 + 4β) + 2x7

j (−7 + 4β) + x6
j (−30 + 19β) + x2

j (−26 + 19β)
)

,

for j = 1, 2, . . . , n.
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All the information about the stability analysis of these fixed points appears in the next result.

Theorem 3. The 2n roots of p(x) are superattracting fixed points of the rational function associated to M41.
This operator also has a different number of real strange fixed points whose values depend on β:

• If β < −118.1782, six roots of r1(t), denoted by ri
1(β), i = 1, 2, . . . , 6 are real, being their respective

eigenvalues of the associate Jacobian matrix λi(β) > 1, i = 1, 2, . . . , 5 and λ6(β) < 1.
• If β = −118.1782, five roots of r1(t), are real, being their respective eigenvalues of the associate Jacobian

matrix λi(−118.1782) > 1, i = 1, 2, 3, 4 and λ5(−118.1782) = 1.
• For −118.1782 < β < −0.4991, there are four real roots of r1(t), being their respective eigenvalues of the

associate Jacobian matrix λi(β) > 1, i = 1, 2, 4 and λ3(β) < 1 if −0.5242 < β < −0.4991, λ3(β) > 1
for 118.1782 < β < −0.5242 and λ3(β) = 1 if β = −0.5242.

• If β = −0.4991, three roots of r1(t) are real, being their respective eigenvalues of the associate Jacobian
matrix λi(−0.4991) > 1, i = 1, 2 and λ3(−0.4991) = 1.

• For −0.4991 < β < 0 and 0 < β < 62.0613, there are two real roots of r1(t) satisfying λi(β) > 1,
i = 1, 2.

• If β = 62.0613, four roots of r1(t) are real, being their respective eigenvalues of the associate Jacobian
matrix λi(62.0613) = 1, i = 1, 2 and λj(62.0613) > 1, j = 3, 4.

• When β > 62.0613, there are four real roots of r1(t) satisfying λi(β) > 1, i = 1, 2, 3, 4.

Proof. By solving the equation M1
j (x, β) = xj, the fixed points of the multidimensional rational

function are obtained:
x2

j − 1(
−1 + 2xj + x2

j

)7 r1(xj) = 0, j = 1, 2, . . . , n,

that is, they are xj = ±1 and also the roots of the polynomial r1(t) = 1− 12t + (66− 4β)t2 + (−146−
4β)t3 + (5 + 11β)t4 + (312 + 12β)t5 + (−48− 9β)t6 + (−332− 12β)t7 + (−73 + β)t8 + (148 + 4β)t9 +

(110 + β)t10 + 30t11 + 3t12, provided that −1 + 2t + t2 6= 0.
However, as most six of the strange fixed points roots of r1(t) are real, depending on the value

of β, let us denote them by r1
1(β) to r6

1(β). In order to analyze the stability of these fixed points,
the eigenvalues of the associated Jacobian matrix:

Eigj(xj(β)) =

(
−1 + x2

j

)3

(
−1 + 2xj + x2

j

)8 s1(xj),

being s1(t) = x10
j + 16x9

j + 95x8
j + 2(β + 140)x7

j + 2(β + 216)x6
j + (288− 14β)x5

j − 2(15β + 28)x4
j −

4(11β + 38)x3
j − (52β + 9)x2

j − 8(β− 2)xj + 1, are studied for j = 1, 2, . . . , n. In each interval where the
number of real strange fixed points changes, the Jacobian matrix is evaluated on them and the absolute
value of their respective eigenvalues is analyzed. This procedure states the stability of the fixed points
(see Figure 1a) for r1

1(β) as a component of the fixed point,|Eigj(r1
1(β))| > 1, if −118.178 < β < −0.499

and |Eigj(r3
1(β))| < 1 for −2 < β < −0.499.

Taking these results into account, those fixed points whose components are ±1 and/or r6
1(β) for

β < −118.1782 are attracting. In a similar way, all the fixed points whose components are ±1 and
r3

1(β) for −0.5242 < β < −0.4991 are attracting. If a fixed point is composed exclusively by r6
1(β) and

r3
1(β) out of these intervals of β, or by r1

1(β), r2
1(β), r4

1(β) and/or r5
1(β) for all values of β, it is repulsive.

In any other case, the strange fixed point is classified as saddle.
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(a) |Eigj(r1
1(β))|, j ∈ {1, 2, . . . , n} for

−118.178 < β < −0.499
(b) |Eigj(r3

1(β))|, j ∈ {1, 2, . . . , n} for
−2 < β < −0.499

Figure 1. Stability of the fixed points.

Now, we make a similar study for the second Jacobian-free class of iterative methods.

3.2. Family M42

When the rational operator associated to method M42 on p(x) is analyzed, its coordinate functions
can be expressed as:

M2
j (x, β) = −

β + (β− 40)x8
j − 4(β + 30)x6

j + (6β + 40)x4
j − 4(β + 2)x2

j

128x7
j

,

for j = 1, 2, . . . , n.
To calculate the fixed points of the multidimensional rational function, we get the roots of

M2(x, β) = x. We obtain again xj = ±1 and also the real roots of the polynomial r2(t) = (β + 88)t6 +

(−3β− 32)t4 + (3β + 8)t2 − β. It can be checked that r2(t) only has, at most, two real roots, which
are denoted by r1

2(β) and r2
2(β). However, the rational function M2(x, β) is the same as that analyzed

in Reference [15], corresponding to the original fourth-order iterative class designed by the authors
of [14], who use Jacobian matrices in its iterative expression applied on p(x).

Although the classes of iterative methods are different (that of Reference [14] uses Jacobian
matrices and the proposed one is Jacobian-free), the second order estimation of the Jacobian matrix has
the same effect on quadratic polynomial systems. So, the following result coincides with that of [14].

Theorem 4. The 2n roots of p(x) are superattracting fixed points of the rational function associated to M42.
This operator also has a different number of real strange fixed points whose values depend on β:

(a) If β > 0 or β < −88, r1
2(β) and r2

2(β) are real, being their respective eigenvalues of the associate Jacobian
matrix λi(β) > 1, i = 1, 2.

(b) For −88 ≤ β ≤ 0, the only real fixed points are the roots z = ±1 of p(z); thus, there are no strange
fixed points.

There also exist two free critical points with components cj(β) = ±
√
−7β
β−40 , j = 1, 2, . . . , n, for β ∈ [0, 40[.

In the next section, we delve into the bifurcation analysis of these free critical points in order to
locate other undesirable behaviors, such as attracting periodic orbits, strange attractors, etc.

4. Critical Points and Bifurcation Diagrams

Firstly, we analyze the case of class M41, that is, the rational function M1(x, β) and its
critical points.
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Theorem 5. The components of the free critical points of operator M1(x, β) are the only ones making null all
the partial derivatives of M1

j (x, β), for j = 1, 2, . . . , n, that is, the solutions of p(x) = 0 and also the real zeroes
of the tenth-degree polynomial s1(t) depending on β, denoted by c1

i (β), i = 1, 2, . . . , 8:

(a) only four of them being real for −910.178 < β < −4.77238;
(b) six for β < −910.178, −4.77238 < β < 0.971327, and β > 1 and;
(c) there exist eight free different components of the critical points of M(x) for 0.971327 ≤ β < 1.

We use Feigenbaum diagrams to analyze the bifurcations of the map related to each family on
system p(x) using each one of the free critical points of the map as a starting point and observing
their behavior for different ranges of β. When the rational function is iterated on these critical points,
different behavior can be found after 1000 iterations of the method corresponding to each value of β in
a mesh of 3000 subintervals. The resulting behavior is from convergence to the roots to periodic orbits
or even other attractors. In the case of class M41, we observe in Figure 2 the orbits of these critical
points, in the range of β where each one of them is real.

(a) c1
1(β) (b) c1

2(β) (c) c1
3(β)

(d) c1
4(β) (e) c1

4(β), a detail (f) c1
5(β)

(g) c1
6(β) (h) c1

7(β) (i) c1
8(β)

Figure 2. Feigenbaum diagrams of M1
j (c

1
i (β), β), i = 1, 2, . . . , 8.

A clear convergent behavior to the roots in the intervals is observed where the critical points are
real, except inside the interval [60, 70], where a chaotic region can be seen where a strange fixed point
has bifurcated (for β = 62.0613, there is change in the number of strange fixed points, two of them
parabolic, see Theorem 3) into period-doubling cascades. Further, some blue regions appear associated



Axioms 2019, 8, 51 9 of 15

with chaotic behavior. In them, strange attractors can be found (in the bidimensional case, n = 2).
To do it, we plotted in the (x1, x2)-space the iteration of M (x1, x2), for values of β in the blue area.
For each fixed value of parameter β, 1000 different initial estimations have been used and, for each of
them, the iterates have been plotted following this code color: The first 100 iterations are not plotted,
while the following 400 are plotted in blue color, the next 400 in green color, and the last hundred in
magenta color. This can be observed in Figure 3a,b, as the strange fixed point bifurcates in periodic
orbits of increasing period, until the chaotic behavior appears (Figure 3c,d, where the orbits are dense
in a small rectangular region of the x1, x2 space).

(a) β = 66 (b) β = 67

(c) β = 68 (d) β = 69

Figure 3. Strange attractors of M41 class for β values in the period-doubling cascade region.

Regarding M42 class, let us remark that there exist only two different free critical points

c2
1(β) = +

√
−7β
β−40 and by c2

2(β) = −
√
−7β
β−40 (see Theorem 4). In Figure 4a,b, a clear symmetry in the

convergence to the roots is observed, and we can also see nonconvergent behavior to the roots for
elements corresponding to β ∈ [35, 40]. We see in Figure 4c four period-doubling bifurcation areas
where the repulsive fixed points have bifurcated into period-doubling orbits.

In order to better visualize this behavior, we plotted in the (x1, x2)-plane the iteration of M2 (x, β),
for β in the blue area of Figure 5a near to β = 36. Then, symmetric strange attractors appear
(see Figure 5b,c).

As in this case, the four strange attractors must be separately identified, the way these pictures
have been obtained is slightly different than that used in case M41 family: Fixing the value of parameter
β, 1000 different initial estimations have been taken in small rectangles close to the origin. For each
specific value of β, the method M2(x, β) has been used on each of them, plotting one point per iteration.
The code color used is as follows: The first 800 iterations do not appear, while the following 100 appear
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in blue color and the last hundred are shown in magenta color. The resulting plots show how the four
attracting fixed points change into attracting areas, being disjoint or not depending on β. Nevertheless,
the set of starting guesses belonging to their respective basins of attraction is very small, as well as the
interval of real values of β inducing this performance.

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

M4:(x
0
,y

0
)=c

1
(t)

(a) c2
1(β)

35 35.5 36 36.5 37 37.5 38 38.5 39 39.5 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

M4:(x
0
,y

0
)=c

1
(t)

(b) A detail of c1(β)

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

M4:(x
0
,y

0
)=c

2
(t)

(c) c2
2(β)

Figure 4. Feigenbaum diagrams of M2
j (ci(β), β), i = 1, 2.

35.85 35.9 35.95 36 36.05 36.1 36.15 36.2

0.49

0.5

0.51

0.52

0.53

0.54

M4:(x
0
,y

0
)=c

1
(t)

(a) c2(β) (b) β = 36.15 (c) β = 36.175

Figure 5. Strange attractors of M42 class for β values in the period-doubling cascade region.

5. Dynamical Planes for n = 2

In this section, we compare the sensitivity of the proposed classes to the initial estimation,
depending on some values of the parameter β that have resulted to provide stable or unstable behavior,
for each one of the families.

In Figures 6 and 7, we plotted the dynamical planes corresponding to M41 for several values of β.
They were obtained using the routines appearing in Reference [21]. A mesh of 400× 400 points was
used, the maximum number of iterations employed was 40, and the stopping criterium has a tolerance
of 10−3. We plotted a point of this mesh of different colors depending on the root they converge to.
Moreover, the color is brighter when the number of iterations used is lower. It is plotted in black color
if it reaches the maximum number of iterations without converging to any of the roots.

We observe in Figure 6 that the four roots of the vectorial polynomial have their respective wide
basins of attraction (colored in orange, cyan, blue, and purple), with several connected components for
each root, separated by the Julia set. There are also four repulsive fixed points and 16 saddle points.
In case β = 70, there exist four superattracting fixed points, sixteen repulsive, and other sixteen saddle
fixed points. It can be observed in Figure 6b that the number of connected components in the plotted
area is much higher, and the immediate basin of attraction (the component holding the fixed point) is
smaller in general.
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Figure 6. Dynamical planes for stable values of β of class M41 on p(x).
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(a) β = −130
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(b) β = −0.5

Figure 7. Dynamical plane for unstable values of β of class M41 on p(x).

On the other hand, unstable behavior appears in Figure 7, corresponding to the values β = −130
and β = −0.5, where nine strange attracting fixed points had been found, in both cases. They are
located in the colored areas of no convergence to the roots, presented in yellow, brown, gray, pink,
and green, among others. There are also 25 repulsive and 30 saddle fixed points for β = −130 and,
in the case of β = −0.5, there are 9 repulsive and 18 saddle fixed points. Regarding the symbols, fixed
points are marked with a white circle, while those attracting are shown with a white star. Let us remark
that repulsive and nonhyperbolic points are always in the Julia set, and attracting ones lay in their
respective basin of attraction.

To sum up, the stability of the members of Jacobian-free class M41 of iterative schemes has been
analyzed for a quadratic multivariate polynomial. Unstable behavior, in terms of attracting strange
fixed points, has been located for β ≤ −0.4991, the rest of elements being stable, with wide sets of
convergent initial estimations.

Class M42

The dynamical planes related to the M42 class on p(x) for different values of parameter β are
shown in Figures 8 and 9.
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Figure 8. Dynamical planes for stable values of β of class M42 on p(x).
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(a) β = 36.15
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(b) β = 36.175

Figure 9. Dynamical planes for stable values of β of class M42 on p(x).

We see in Figure 8a, for β = −10, that the basins of attraction of the four zeroes of the
polynomial form a balanced division of the real plane into four parts (with only a connected component
for each root). The fifth-order case β = 5 (Figure 8b) is also stable, but the number of basins
of attraction increases slightly with the value of the parameter, and they are divided in several
connected components.

Finally, the unstable behavior is shown in Figure 9a,b, for β = 36.15 and β = 36.175, respectively,
where strange attractors appear. They are located in the black regions, showing no convergence to
the zeroes.

To summarize, the stability of the elements of classes M41 and M42 of iterative methods were
studied for quadratic multivariate polynomial. The only unstable behavior was located in small
intervals where attracting periodic orbits or dense attracting regions were found, and the rest of the
elements were stable, the most stable ones being clearly stated. This is numerically checked in the
following section.
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6. Numerical Performance

The numerical results shown in this section were obtained using Matlab R2014b, with variable
precision arithmetics with 200 digits of mantissa. In each table of results, the residual ‖F(x(k)‖ and
the difference between consecutive iterations ‖x(k) − x(k−1)‖ are presented for the first three iterations.
The approximated computational order of convergence (ACOC) is also calculated, by means of (see [5]):

ρ =
ln
(
||x(k+1) − x(k)||/||x(k) − x(k−1)||

)
ln
(
||x(k) − x(k−1)||/||x(k−1) − x(k−2)||

) .

The nonlinear systems used in these tests, F(x1, x2, . . . , xn) = 0, are defined by the following
coordinate functions, joint with the corresponding size and the estimated solution to be found:

• fi(x1, x2, . . . , xn) = xi − cos (2xi − x1 − x2 − x3 − x4), i = 1, 2, . . . , n, n = 20,
x̄ ≈ (0.5149, 0.5149, . . . , 0.5149)T ;

• fi(x1, x2, . . . , xn) = xi − 1.5 sin
(

∑n
j=1 xj

)
, i = 1, 2, . . . , n, n = 20,

x̄ ≈ (0.797242, 0.797242, . . . , 0.797242)T .

For each Jacobian-free class, M41 and M42, two stable elements were used (β = 5 and β = 10
for M41 and β = −10 and β = 5 for M42), and also two respective unstable elements (β = 68
and β = −130 for M41 and β = 36 and β = 36.15 for M42), expecting to see their performance on
nonpolynomial functions.

In both examples of nonpolynomial systems, it is observed that, being good results in general,
those obtained using values of parameter β that have shown to be stable in the dynamical analysis
give more precise results than those that are considered unstable, as can be checked in Tables 1 and 2.

Table 1. fi(x1, x2, . . . , xn) = xi − cos (2xi − x1 − x2 − x3 − x4), i = 1, 2, . . . , n, n = 20, x(0) =

(0.8, 0.8, . . . , 0.8)T.

Class β ‖x(1)− x(0)‖ ‖F(x(1))‖ ‖x(2)− x(1)‖ ‖F(x(2))‖ ‖x(3)− x(2)‖ ‖F(x(3))‖ ACOC

M41 5 1.357 0.2225 0.08254 2.895 × 10−6 1.066 × 10−6 5.868 × 10−26 4.0309
M41 10 1.246 0.07772 0.02856 4.087 × 10−8 1.506 × 10−8 3.546 × 10−33 3.9913
M41 68 0.9315 0.9567 0.3453 0.005465 0.002014 2.314 × 10−11 3.7328
M41 −130 0.8917 1.071 0.3819 0.03454 0.001272 8.167 × 10−12 3.4626
M42 −10 0.8471 1.1990 0.4278 4.169 × 10−6 1.536 × 10−6 1.384 × 10−25 3.5685
M42 5 1.3470 0.1941 0.07197 5.116 × 10−10 1.885 × 10−10 7.685 × 10−53 4.9915
M42 36 1.0120 0.7287 0.2630 2.376 × 10−5 8.752 × 10−6 3.015 × 10−22 3.7659
M42 36.15 1.0130 0.7261 0.2621 2.391 × 10−5 8.809 × 10−6 3.109 × 10−22 3.7672

Table 2. fi(x1, x2, . . . , xn) = xi − 1.5 sin

 n

∑
j=1

xj

, i = 1, 2, . . . , n, n = 100, x(0) = (0.8, 0.8, . . . , 0.8)T .

Class β ‖x(1)− x(0)‖ ‖F(x(1))‖ ‖x(2)− x(1)‖ ‖F(x(2))‖ ‖x(3)− x(2)‖ ‖F(x(3))‖ ACOC

M41 5 1.233 × 10−2 3.827 × 10−5 1.522 × 10−6 4.672 × 10−18 1.858 × 10−19 1.039 × 10−69 4.0
M41 10 0.01233 2.747 × 10−5 1.093 × 10−6 9.852 × 10−19 3.919 × 10−20 1.629 × 10−72 4.0
M41 68 1.237 × 10−2 8.575 × 10−4 3.411 × 10−5 1.913 × 10−12 7.608 × 10−14 4.684 × 10−47 4.0005
M41 −130 1.228 × 10−2 1.434 × 10−3 5.704 × 10−5 5.968 × 10−11 2.374 × 10−12 1.82 × 10−40 3.9990
M42 −10 1.212 × 10−2 5.273 × 10−3 2.097 × 10−4 7.529 × 10−13 2.994 × 10−14 6.357 × 10−52 3.9687
M42 5 1.293 × 10−2 1.492 × 10−2 5.94 × 10−4 8.504 × 10−12 3.382 × 10−13 2.075 × 10−60 5.2587
M42 36 1.367 × 10−2 3.346 × 10−2 1.333 × 10−3 4.298 × 10−8 1.709 × 10−9 1.395 × 10−32 4.1567
M42 36.15 1.367 × 10−2 3.347 × 10−2 1.333 × 10−3 4.325 × 10−8 1.72 × 10−9 1.438 × 10−32 4.1569

7. Conclusions

Two highly efficient Jacobian-free classes of iterative methods were designed, and it has been
proven that their order of convergence is four, except for a fifth-order particular case at β = 5 for the
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second class. The real multidimensional stability of the members of both classes of iterative schemes
was analyzed for quadratic n× n polynomial systems. For the first family, only two real components
of strange fixed points that can yield attracting points different from the roots appear. In the second
one, there are no attracting strange fixed points. On the other hand, free real critical points fall in
chaotic behavior only in small intervals for both cases. The rest of the members are stable, being the
most similar performance to Newton’s scheme located around β = 5. Finally, numerical experiments
confirm the theoretical results, showing good performance in all cases but having lower residual errors
in those cases that correspond to the stable values of the parameter.
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