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1. Introduction

In this survey article, a uniform method is presented for constructing the differential equations

satisfied by several sets of classical and non classical polynomials. This has been done by starting

from the basic elements of the relevant generating functions, using the monomiality principle by

G. Dattoli [1] and a general result by Y. Ben Cheikh [2]. Of course, the polynomials considered in this

paper are only examples for showing that the method works, but obviously this technique can be

theoretically extended to every polynomial set.

This method has been recently applied in several articles (see [3–9]), which include works in

collaboration with several authors. The most outstanding of them is Prof. Dr. Hari M. Srivastava,

to whom this article is dedicated.

The derived differential equations are generally of infinite order, but they reduce to finite order

when applied to polynomials.

It is worth noting that the differential equations for Sheffer polynomial sets have been studied

even with different methods (see [10–13]), but here we use only elements directly connected with the

theory of polynomials.

We start recalling, in Section 2, the definitions relevant to Sheffer polynomials, the G. Dattoli

monomiality principle, and a general result by Y. Ben Cheikh.

The classical polynomial sets, considered in Section 3, are the Bernoulli, Euler, Genocchi

and Mittag–Leffler polynomials. In Section 4, we show some new polynomial sets derived from

non-classical generating functions.
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2. Sheffer Polynomials

The Sheffer polynomials {sn(x)} are introduced [14] by means of the exponential generating

function [15] of the type:

A(t) exp(xH(t)) =
∞

∑
n=0

sn(x)
tn

n!
, (1)

where

A(t) =
∞

∑
n=0

an
tn

n!
, (a0 6= 0) ,

H(t) =
∞

∑
n=0

hn
tn

n!
, (h0 = 0) .

(2)

According to a different characterization (see [16], p. 18), the same polynomial sequence can be

defined by means of the pair (g(t), f (t)), where g(t) is an invertible series and f (t) is a delta series:

g(t) =
∞

∑
n=0

gn
tn

n!
, (g0 6= 0) ,

f (t) =
∞

∑
n=0

fn
tn

n!
, ( f0 = 0, f1 6= 0) .

(3)

Denoting by f−1(t) the compositional inverse of f (t) (i.e., such that f
(

f−1(t)
)
= f−1 ( f (t)) = t),

the exponential generating function of the sequence {sn(x)} is given by

1
g[ f−1(t)]

exp
(

x f−1(t)
)
=

∞

∑
n=0

sn(x)
tn

n!
, (4)

so that

A(t) =
1

g[ f−1(t)]
, H(t) = f−1(t) . (5)

When g(t) ≡ 1, the Sheffer sequence corresponding to the pair (1, f (t)) is called the associated

Sheffer sequence {σn(x)} for f (t), and its exponential generating function is given by

exp
(

x f−1(t)
)
=

∞

∑
n=0

σn(x)
tn

n!
. (6)

A list of known Sheffer polynomial sequences and their associated ones can be found in [17].

Shift Operators and Differential Equation

We recall that a polynomial set {pn(x)} is called quasi-monomial if and only if there exist two

operators P̂ and M̂ such that

P̂ (pn(x)) = npn−1(x) , M̂ (pn(x)) = pn+1(x) , (n = 1, 2, . . . ). (7)
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P̂ is called the derivative operator and M̂ the multiplication operator, as they act in the same way as

classical operators on monomials.

This definition traces back to a paper by J.F. Steffensen [18] recently improved by G. Dattoli and

widely used in several applications [19,20].

Y. Ben Cheikh proved that every polynomial set is quasi-monomial under the action of suitable

derivative and multiplication operators. In particular, in the same article, the following result is proved,

as a particular case of Corollary 3.2 in [2]:

Theorem 1. Let (pn(x)) denote a Sheffer polynomial set, defined by the generating function

A(t) exp(xH(t)) =
∞

∑
n=0

pn(x)
tn

n!
, (8)

where

A(t) =
∞

∑
n=0

ãntn , (ã0 6= 0) , (9)

and

H(t) =
∞

∑
n=0

h̃n tn+1 , (h̃0 6= 0) . (10)

Denoting, as before, by f (t) the compositional inverse of H(t), the Sheffer polynomial set {pn(x)} is

quasi-monomial under the action of the operators

P̂ = f (Dx) , M̂ =
A′[ f (Dx)]

A[ f (Dx)]
+ xH′[ f (Dx)] , (11)

where prime denotes the ordinary derivatives with respect to t.

Furthermore, according to the monomiality principle, the quasi-monomial polynomials {pn(x)} satisfy the

differential equation

M̂P̂ pn(x) = n pn(x) . (12)

3. Differential Equations of Classical Polynomials

3.1. Bernoulli Polynomials

The Bernoulli polynomials are defined by the generating function

G(t, x) =
t

et − 1
ex t , (13)
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so that

A(t) =
t

et − 1
=

∞

∑
k=0

bk
tk

k!
,

G(t, x) =
∞

∑
k=0

Bk(x)
tk

k!
=

∞

∑
k=0

[
k

∑
h=0

(
k
h

)
bk−h xh

]
tk

k!
,

Bk(x) =
k

∑
h=0

(
k
h

)
bk−h xh ,

(14)

where bk are the Bernoulli numbers.

Differential Equation of the Bk(x)

Note that, recalling that Bn(1) = (−1)n bn, the following expansion holds:

t
A′(t)
A(t)

=
et − tet − 1

et − 1
= 1− tet

et − 1
= 1−

∞

∑
n=0

Bn(1)
tn

n!
=

=
∞

∑
n=1

(−1)n+1 bn
tn

n!
.

(15)

The shift operators for the Bernoulli polynomials are given by

P̂ = Dx ,

M̂ =
eDx − DxeDx − 1

Dx (eDx − 1)
.

(16)

Therefore, by using the factorization method, we find

Theorem 2. The Bernoulli polynomials {Bn(x)} satisfy the differential equation(
eDx − DxeDx − 1

eDx − 1
+ x Dx

)
Bn(x) = n Bn(x) , (17)

that is (
∞

∑
k=1

(−1)k+1 bk
k!

Dk
x + x Dx

)
Bn(x) = n Bn(x) , (18)

or, in equivalent form: (
n

∑
k=1

(−1)k+1 bk
k!

Dk
x + x Dx

)
Bn(x) = n Bn(x) . (19)

Proof. It is sufficient to expand in series the operator (17). Equation (19) follows because, for any

fixed n, the series expansion in Equation (18) reduces to a finite sum when applied to a polynomial of

degree n.
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3.2. Euler Polynomials

The Euler polynomials are defined by the generating function

G(t, x) =
2

et + 1
ex t , (20)

so that

A(t) =
2

et + 1
=

∞

∑
k=0

ek
tk

k!
,

G(t, x) =
∞

∑
k=0

Ek(x)
tk

k!
=

∞

∑
k=0

[
k

∑
h=0

(
k
h

)
ek−h xh

]
tk

k!
,

Ek(x) =
k

∑
h=0

(
k
h

)
ek−h xh ,

(21)

where ek are the Euler numbers.

Differential Equation of the Ek(x)

Note that the following expansion holds:

A′(t)
A(t)

= − et

et + 1
= −1 +

1
et + 1

= −1 +
1
2

∞

∑
n=0

en
tn

n!
=

= −1
2
+

1
2

∞

∑
n=1

en
tn

n!
=

∞

∑
n=0

cn
tn

n!
,

(22)

where c0 = −1/2, and cn = en/2.

The shift operators for the Euler polynomials are given by

P̂ = Dx ,

M̂ = − eDx

eDx + 1
.

(23)

Therefore, by using the factorization method, we find

Theorem 3. The Euler polynomials {En(x)} satisfy the differential equation(
− eDx Dx

eDx + 1
+ x Dx

)
En(x) = n En(x) . (24)

that is (
∞

∑
k=0

ck
k!

Dk+1
x + x Dx

)
En(x) = n En(x) , (25)

or, in equivalent form: (
n−1

∑
k=0

ck
k!

Dk+1
x + x Dx

)
En(x) = n En(x) . (26)
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Proof. It is sufficient to expand in series the operator (24). Equation (26) follows because, for any

fixed n, the series expansion in Equation (25) reduces to a finite sum when applied to a polynomial of

degree n.

3.3. Genocchi Polynomials

The Genocchi polynomials are defined by the generating function

G(t, x) =
2 t

et + 1
ex t , (27)

so that

A(t) =
2 t

et + 1
=

∞

∑
k=0

gk
tk

k!
,

G(t, x) =
∞

∑
k=0

Gk(x)
tk

k!
=

∞

∑
k=0

[
k

∑
h=0

(
k
h

)
gk−h xh

]
tk

k!
,

Gk(x) =
k

∑
h=0

(
k
h

)
gk−h xh ,

(28)

where gk are the Genocchi numbers.

Differential Equation of the Gk(x)

Note that the following expansion holds:

t
A′(t)
A(t)

=
et − tet + 1

et + 1
= 1− tet

et + 1
= 1− 1

2
t +

1
2

∞

∑
n=2

en
tn+1

n!
=

=
∞

∑
n=0

dn
tn

n!
,

(29)

where d0 = 1, d1 = −1/2, and dk = ek/2, (k ≥ 2).

The shift operators for the Genocchi polynomials are given by

P̂ = Dx ,

M̂ =
eDx − DxeDx + 1

Dx (eDx + 1)
,

(30)

so that the Genocchi polynomials satisfy the differential equation(
eDx − DxeDx + 1

eDx + 1
+ x Dx

)
Gn(x) = n Gn(x) . (31)

Therefore, by using the factorization method, we find

Theorem 4. The Genocchi polynomials {Gn(x)} satisfy the differential equation(
eDx − DxeDx + 1

eDx + 1
+ x Dx

)
Gn(x) = n Gn(x) , (32)
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that is (
∞

∑
k=0

dk
k!

Dk
x + x Dx

)
Gn(x) = n Gn(x) , (33)

or, in equivalent form: (
n

∑
k=0

dk
k!

Dk
x + x Dx

)
Gn(x) = n Gn(x) . (34)

Proof. It is sufficient to expand in series the operator (32). Equation (34) follows because, for any

fixed n, the series expansion in Equation (33) reduces to a finite sum when applied to a polynomial of

degree n.

3.4. The Mittag–Leffler Polynomials

We recall that the Mittag–Leffler polynomials [21] are a special case of associated Sheffer

polynomials, defined by the generating function

A(t) = 1, H(t) = log
1 + t
1− t

,

G(t, x) =
(

1 + t
1− t

)x
= exp

(
x log

1 + t
1− t

)
=

∞

∑
n=0
Mn(x)

tn

n!
.

(35)

Therefore, we have

A′(t)
A(t)

= 0 , H′(t) =
2

1− t2 , H−1(t) = f (t) =
et − 1
et + 1

, (36)

so that, for the Mittag-Leffer polynomials, we find the shift operators:

P̂ =
eDx − 1
eDx + 1

= tanh
(

Dx

2

)
,

M̂ = x
(eDx + 1)2

2 eDx
= x [1 + cosh(Dx)] .

(37)

3.5. Differential Equation of theMn(x)

In the present case, according to the identity:

[1 + cosh x] tanh (x/2) = sinh x ,

we can write

M̂ P̂ = x
e2 Dx − 1

2 eDx
= x sinh(Dx) , (38)

so that we have the theorem
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Theorem 5. The Mittag–Leffler polynomials {Mn(x)} satisfy the differential equation

x sinh(Dx)Mn(x) = nMn(x) , (39)

that is

x
∞

∑
k=0

D2k+1
x

(2k + 1)!
Mn(x) = nMn(x) , (40)

or

x
[ n−1

2 ]

∑
k=0

D2k+1
x

(2k + 1)!
Mn(x) = nMn(x) , (41)

where
[

n−1
2

]
denotes the integral part of (n− 1)/2.

Proof. It is sufficient to expand in series the operator (39). Equation (41) follows because, for any

fixed n, the series expansion in Equation (40) reduces to a finite sum when applied to a polynomial of

degree n.

4. Differential Equations of Non-Classical Polynomials

4.1. Euler-Type Polynomials

Here, we introduce a Sheffer polynomial set connected with the classical Euler polynomials.

Assuming:

A(t) =
1

cosh t
, H(t) = sinh t , (42)

we consider the Euler-type polynomials Ẽn(x), defined by the generating function

G(t, x) =
1

cosh t
exp [x sinh t] =

∞

∑
k=0

Ẽk(x)
tk

k!
. (43)

Note that the Euler numbers are recovered, since we have:

G(t, 0) =
2

et + e−t =
∞

∑
k=0

Ẽk(0)
tk

k!
, (44)

so that Ẽn(0) = En.

In what follows, we use the expansions

sinh t =
∞

∑
k=0

t2k+1

(2k + 1)!
=

∞

∑
k=0

(
1 + (−1)k+1

2

)
tk

k!
, (45)

cosh t =
∞

∑
k=0

t2k

(2k)!
=

∞

∑
k=0

(
1 + (−1)k

2

)
tk

k!
. (46)
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Note that, in our case, we are dealing with a Sheffer polynomial set, so that, since we have

ψ(t) = et, the operator σ defined by Equation (6) simply reduces to the derivative operator Dx.

Furthermore, we have:

A(t) =
1

cosh t
,

A′(t)
A(t)

= − tanh t ,

H(t) = sinh t =
∞

∑
k=0

t2k+1

(2k + 1)!
,

(
h̃k =

(
1 + (−1)k+1

2

)
1
k!

)
,

H′(t) = cosh t , f (t) = H−1(t) = log(t +
√

t2 + 1) ,

so that we have the theorem

Theorem 6. The Euler-type polynomial set {Ẽn(x)} is quasi-monomial under the action of the operators

P̂ = log(Dx +
√

D2
x + 1) , M̂ = − tanh(arcsinh Dx) + x arcsinh Dx (47)

(by arcsinh t = log(t +
√

t2 + 1), we denote the inverse of the function sinh t), i.e.,

P̂ =
∞

∑
k=0

(−1)k (2k)!
4k(k!)2(2k + 1)

D2k+1
x ,

M̂ = − Dx√
1 + D2

x
+ x

√
1 + D2

x = (xD2
x − Dx + x)(1 + D2

x)
−1/2 ,

M̂ = (xD2
x − Dx + x)

∞

∑
k=0

(
−1/2

k

)
D2k

x .

(48)

There is no problem about the convergence of the above series, since they reduce to finite sums

when applied to polynomials.

4.2. Differential Equation of the Ẽn(x)

In the present case, we have

Theorem 7. The Euler-type polynomials {Ẽn(x)} satisfy the differential equation{[
(xD2

x − Dx + x)
∞

∑
k=0

(
−1/2

k

)
D2k

x

]

∞

∑
k=0

(−1)k (2k)!
4k(k!)2(2k + 1)

D2k+1
x

}
Ẽn(x) = n Ẽn(x) ,

(49)
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i.e.,

(xD2
x − Dx + x)

[ n−1
2 ]

∑
k=0

k

∑
h=0

(−1)h
(
−1/2
k− h

)
(2h)!

4h(h!)2(2h + 1)
D2k+1

x Ẽn(x)

= n Ẽn(x) .

(50)

Note that, for any fixed n, the Cauchy product of series expansions in Equation (49) reduces to a finite sum,

with upper limit
[

n−1
2

]
, when it is applied to a polynomial of degree n, because the successive addends vanish.

Remark 1. The first few Euler-type polynomials are as follows:

Ẽ0(x) = 1,

Ẽ1(x) = x,

Ẽ2(x) = x2 − 1,

Ẽ3(x) = x3 − 2x,

Ẽ4(x) = x4 − 2x2 + 5,

Ẽ5(x) = x5 + 16x,

Ẽ6(x) = x6 + 5x4 + 31x2 − 61,

Ẽ7(x) = x7 + 14x5 + 56x3 − 272x,

Ẽ8(x) = x8 + 28x6 + 126x4 − 692x2 + 1385,

Ẽ9(x) = x9 + 48x7 + 336x5 − 1280x3 + 7936x,

Ẽ10(x) = x10 + 75x8 + 882x6 − 1490x4 + 25, 261x2 − 50, 521.

5. Adjointness for Sheffer Polynomial Sequences

According to the above considerations, Sheffer polynomials are characterized both by the ordered

couples (A(t), H(t)), or by (g(t), f (t)).

Definition 1. Adjoint Sheffer polynomials are defined by interchanging the ordered couple (A(t), H(t)) with

(g(t), f (t)), when writing the generating function.

Here and in the following the tilde “∼” above the symbol of a polynomial set stands for the

adjective “adjoint” (see e.g., [4]).

5.1. Adjoint Hahn Polynomials

Assuming:

A(t) = sec t, H(t) = tan t , (51)

we consider the adjoint Hahn R̃n(x), defined by the generating function

G(t, x) = sec t exp(x tan t) =
∞

∑
n=0

R̃n(x)
tn

n!
. (52)

It is a Sheffer set.
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We have:

∂G
∂x

=
1

cos3 t
exp(x tan t) =

1
cos t

G(t, x) .

Note that, in this case, we have:

A(t) = sec t , H(t) = tan t ,

H′(t) = sec2 t , f (t) = H−1(t) = arctan t ,

A′(t)
A(t)

= tan t ,

so that we have the theorem

Theorem 8. The adjoint Hahn polynomial set {R̃n(x)} is quasi-monomial under the action of the operators

P̂ = arctan Dx ,

M̂ = tan(arctan Dx) + x sec2(arctan Dx) ,

(53)

i.e.,

P̂ = arctan Dx =
∞

∑
k=0

(−1)k

2k + 1
D2k+1

x ,

M̂ = Dx + x (1 + D2
x) = x D2

x + Dx + x.

(54)

5.2. Differential Equation of the R̃n(x)

In the present case, we have

Theorem 9. The Sheffer-type adjoint Hahn polynomials {R̃n(x)} satisfy the differential equation

(
x D2

x + Dx + x
) [ n−1

2 ]

∑
k=0

(−1)k

2k + 1
D2k+1

x R̃n(x) = n R̃n(x) . (55)

Note that, for any fixed n, in Equation (55), a finite sum appears, with upper limit
[

n−1
2

]
,

instead of a complete series expansion since, when this series is applied to a polynomial of degree n,

the subsequent addends vanish.
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Remark 2. The first few values of the adjoint Hahn polynomials are as follows:

R̃0(x) = 1,

R̃1(x) = x,

R̃2(x) = x2 + 1,

R̃3(x) = x3 + 5x,

R̃4(x) = x4 + 14x2 + 5,

R̃5(x) = x5 + 30x3 + 61x,

R̃6(x) = x6 + 55x4 + 331x2 + 61,

R̃7(x) = x7 + 91x5 + 1211x3 + 1385x,

R̃8(x) = x8 + 140x6 + 3486x4 + 12, 284x2 + 1385,

R̃9(x) = x9 + 204x7 + 8526x5 + 68, 060x3 + 50, 521x,

R̃10(x) = x10 + 285x8 + 18, 522x6 + 281, 210x4 + 663, 061x2 + 50, 521.

Remark 3. Table of adjoint Hahn numbers

R̃0(0) = 1 R̃1(0) = 0 R̃2(0) = 1,

R̃3(0) = 0 R̃4(0) = 5 R̃2k+1(0) = 0 , ∀k ≥ 2,

R̃6(0) = 61 R̃8(0) = 1385 R̃10(0) = 50, 521.

Note that the sequence {1, 1, 5, 61, 1385, 50, 521, . . . } appears in the Encyclopedia of Integer

Sequences [22] under #A000364—Euler (or secant numbers): a(n) = number of downup permutations

of [2n].

Example 1. a(2) = 5 counts 4231, 4132, 3241, 3142, 2143. - David Callan, Nov 21, 2011.

5.3. Adjoint Bernoulli Polynomials of the Second Kind

Assuming

A(t) =
t

et − 1
, H(t) = et − 1 , (56)

we consider the adjoint Bernoulli polynomials of the second kind {b̃k(x)}, defined by the generating

function

G(t, x) =
t

et − 1
exp

[
x(et − 1)

]
=

∞

∑
k=0

b̃k(x)
tk

k!
. (57)

Note that, in our case, we are dealing with a Sheffer polynomial set, so that, since we have

ψ(t) = et, the operator σ defined by Equation (6) simply reduces to the derivative operator Dx.

Furthermore, we have

A(t) =
t

et − 1
, H(t) = et − 1 =

∞

∑
k=1

tk

k!
,

(
h̃k = 1/(k + 1)!

)
,

H′(t) = et , f (t) = H−1(t) = log(t + 1) ,
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A′(t)
A(t)

=
et − tet − 1

t(et − 1)
=

1
t
− 1

et − 1
− 1 .

so that we have the theorem

Theorem 10. The adjoint Bernoulli polynomials of the second kind {b̃n(x)} are quasi-monomials under the

action of the operators

P̂ = log(Dx + 1) ,

M̂ =
1

log(Dx + 1)
− 1

Dx
− 1 + x (Dx + 1) ,

(58)

that is

P̂ = log(Dx + 1) =
∞

∑
k=1

(−1)k+1

k
Dk

x ,

M̂ =
1

log(Dx + 1)
+

(
x− 1

Dx

)
(Dx + 1) .

(59)

5.4. Differential Equation of the b̃n(x)

In the present case, we have

M̂P̂ = 1 +
(

x− 1
Dx

)
(Dx + 1) log(Dx + 1), (60)

so that we have the theorem

Theorem 11. The adjoint Bernoulli polynomials of the second kind {b̃n(x)} satisfy the differential equation[
1 +

(
x− 1

Dx

)
(Dx + 1) log(Dx + 1)

]
b̃n(x) = n b̃n(x) , (61)

that is [
1 + (xDx − 1) (Dx + 1)

n

∑
k=0

(−1)k

k + 1
Dk

x

]
b̃n(x) = n b̃n(x) , (62)

because, for any fixed n, the series expansion in Equation (61) reduces to a finite sum when it is applied to

a polynomial of degree n.

Note that, in this case, due to the presence of the operator D−1
x , it is necessary to consider derivatives up to

the order n + 1.
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Remark 4. The first few values of the adjoint Bernoulli polynomials of the second kind are as follows:

b̃0(x) = 1,

b̃1(x) = x− 1
2 ,

b̃2(x) = x2 + 1
6 ,

b̃3(x) = x3 + 3
2 x2,

b̃4(x) = x4 + 4x3 + 2x2 − 1
30 ,

b̃5(x) = x5 + 15
2 x4 + 35

3 x3 + 5
2 x2,

b̃6(x) = x6 + 12x5 + 75
2 x4 + 30x3 + 3x2 + 1

42 ,

b̃8(x) = x8 + 24x7 + 560
3 x6 + 560x5 + 602x4 + 168x3 + 4x2 − 1

30 ,

b̃10(x) = x10 + 40x9 + 1155
2 x8 + 3780x7 + 11, 585x6 + 15, 540x5 + 15,125

2 x4 + 850x3+

+ 5x2 + 5
66 ,

b̃12(x) = x12 + 60x11 + 1386x10 + 15, 840x9 + 191,961
2 x8 + 307, 692x7 + 493, 460x6+

+ 349, 800x5 + 85, 503x4 + 4092x3 + 6x2 − 691
2730 .

Note that for x = 0 the generating function becomes

G(t, 0) =
t

et − 1
=

∞

∑
n=0

b̃n(0)
tn

n!
, (63)

so that b̃n(0) = Bn, namely the nth classical Bernoulli number.

6. Conclusions

In this survey article, it has been shown that the common belonging of some polynomial sets to the

Sheffer class allows to construct, in a uniform way, the differential equations they verify. This follows

from the fact that it is possible to construct their shift operators, on the basis of general results due to

G. Dattoli and Y. Ben Cheikh.

The equations derived in such a way are, in general, of infinite order, but they reduce to finite-order

equations when they are applied to polynomials of the considered set. This means that the order of the

equation increases with the degree of the polynomial, in a similar way to what happens for the order

of the recurrence they verify.

Both classic and other polynomials—the so-called associated Sheffer polynomials—have been

examined. In fact, it has been shown that, for the polynomials of the Sheffer class, the differential

equation follows from the basic elements of their generating function, in a constructive way, using

a simple and general method linked to the monomiality principle.
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