
axioms

Article

A Note on the Displacement Problem of Elastostatics
with Singular Boundary Values

Alfonsina Tartaglione

Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
alfonsina.tartaglione@unicampania.it

Received: 18 March 2019; Accepted: 16 April 2019; Published: 19 April 2019
����������
�������

Abstract: The displacement problem of linear elastostatics in bounded and exterior domains with a
non-regular boundary datum a is considered. Precisely, if the elastic body is represented by a domain of
class Ck (k ≥ 2) of R3 and a ∈W2−k−1/q,q(∂Ω), q ∈ (1,+∞), then it is proved that there exists a solution
which is of class C∞ in the interior and takes the boundary value in a well-defined sense. Moreover, it is
unique in a natural function class.
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1. Introduction

The displacement problem (classically known as the Dirichlet problem) in linear elastostatics consists of
finding solutions to the differential system [1]

divC[∇u] = 0 in Ω,

u = a on ∂Ω.
(1)

In (1) Ω is a bounded domain of R3, standing for the reference configuration of a linearly elastic body
whose unknown displacement field u = u(x) (x ∈ Ω) we are looking for, supposing it is assigned on
the boundary ∂Ω through condition (1)2. Concrete examples of displacement problems can be found,
for example, in [2], Chapter XIV. Using the components, (1) can be written as

∂jCijhk∂kuh = 0,

where ∂i is the derivative with respect to xi and, hereafter, the summation over repeated indexes is
understood. We suppose that the elasticity tensor C = (Cijhk), representing the material properties of
the body, is independent of the point (or, in other words, that the body is homogeneous). Recall that C
is a fourth-order tensor, that is, it is a linear map from Lin to Sym, where Lin is the linear space of all
second–order tensors and Sym is its subspace of symmetric tensors, such that C[W ] = 0 for all skew
tensors W . We require that C is symmetric (or, in other words, that the body is hyperelastic), that is,

E ·C[L] = L ·C[E], ∀ E, L ∈ Lin. (2)
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Furthermore, we require that it is strongly elliptic, that is,

(b⊗ c) ·C[b⊗ c] = bicjCijhkbhck > 0, ∀ b, c 6= 0. (3)

Hereafter, we say that Ω is of class Ck (k ≥ 2) if for every ξ ∈ ∂Ω there is a neighborhood of ξ (on ∂Ω)
which is the graph of a function of class Ck. Moreover, Wk,q(Ω), q ∈ (1,+∞), is the Sobolev space of all
ϕ ∈ L1

loc(Ω) such that ‖ϕ‖Wk,q(Ω) = ‖ϕ‖Lq(Ω) + ‖∇k ϕ‖Lq(Ω) < +∞; Wk,q
0 (Ω) is the completion of C∞

0 (Ω)

with respect to ‖ϕ‖Wk,q(Ω) and W−k,q′(Ω), 1/q + 1/q′ = 1, is its dual space; Wk−1/q,q(∂Ω) is the trace space

of Wk,q(Ω) and W1−k−1/q′ ,q′(∂Ω) is its dual space.

If Ω is of class Ck (k ≥ 2) and a ∈ Wk−1/q,q(∂Ω), q ∈ (1,+∞), then (1) has a unique solution
u ∈ Wk,q(Ω) and natural estimates hold (see [3–7]). This result also holds when the elastic body is
subjected to a body force, that is, if in place of (1)1 we consider the system

divC[∇u] = f in Ω (4)

with f ∈ C∞
0 (Ω).

As, in applications, the boundary data are often represented by singular fields, it is undoubtly
interesting to investigate problem (1) when a satisfies weaker regularity hypotheses.

Using the theory of layer integral equations (see [8], Chapters 2/3 and [2], Chapters IV/V) and the
Fredholm alternative (see Section 2), we prove (in Theorem 1) that if a ∈W2−k−1/q,q(∂Ω), then (1) has a
solution, u, expressed by a simple layer potential and, thus, taking the boundary value in a well-defined
sense. Moreover, it is unique in a reasonable function class. The result also holds for exterior domains
(see Theorem 2).

To obtain these results, we recall some established facts about simple layer potentials associated to
the system (1)1.

2. The Simple Layer Potentials

For every ψ ∈ L1(∂Ω), the field

v[ψ](x) =
∫

∂Ω
U(x− ζ)ψ(ζ)dσζ , (5)

where U(x − y) is the fundamental solution to (1)1 (see, e.g., [9], Chapter III), defines the simple layer
potential with density ψ. Recall that (see, e.g., [2,8]) v[ψ] is an analytical solution of (1)1 in R3 \ ∂Ω and
inherits from U the following asymptotic behavior

• ∇kv[ψ](x) = O(|x|−1−k);
•

∫
∂Ω ψ = 0 ⇒ ∇kv[ψ](x) = O(|x|−2−k).

If ψ ∈Wk−1−1/q,q(∂Ω), then

‖v[ψ]‖Wk,q(Ω) ≤ c‖ψ‖Wk−1−1/q,q(∂Ω) (6)

with c independent of ψ, and the following limit exists

lim
ε→0±

v[ψ](ξ − εl(ξ)) = S [ψ](ξ) (7)

for almost all ξ ∈ ∂Ω and axis l in a ball tangent to ∂Ω at ξ.
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The map
S : Wk−1−1/q,q(∂Ω)→Wk−1/q,q(∂Ω) (8)

defined by (7) and representing the trace of the simple layer potential with density ψ, is continuous, so that

‖S [ψ]‖Wk−1/q,q(∂Ω) ≤ c‖ψ‖Wk−1−1/q,q(∂Ω), (9)

for some constant c depending only on k, q, and Ω. Moreover, S can be extended to a linear and
continuous operator

S ′ : W1−k−1/q′ ,q′(∂Ω)→W2−k−1/q′ ,q′(∂Ω),

which coincides with the adjoint of S and defines the trace of the simple layer with density ψ ∈
W1−k−1/q′ ,q′(∂Ω):

v[ψ](x) =
∫ ?

∂Ω
U(x− ζ)ψ(ζ)dσζ . (10)

In (10) and hereafter, we use the notation
∫ ?

∂Ω f ϕ to denote the duality pairing <,> between f and ϕ;

that is, the value of the functional f belonging to (for instance) W−k,q′(∂Ω) at ϕ ∈Wk,q
0 (∂Ω).

By (6), one obtains
‖v[ψ]‖W2−k,q′ (Ω)

≤ c‖ψ‖W1−k−1/q′ ,q′ (∂Ω)
. (11)

In the next section, we will prove the existence of a solution to (1) with singular boundary values by
making use of the Fredholm alternative—we recall for the sake of completeness—applied to a suitable
functional equation translating the boundary value problem (1).

If B and D are two Banach spaces and B′, D′ are their dual spaces, a linear and continuous
map T : B → D is said to be Fredholmian if its range is closed and dim KernT = dim KernT′ ∈ N0,
where T′ : D′ → B′ is the adjoint of T. The classical Fredholm alternative (see [10], Chapter 5) assures us
that the equation

a = T[u]

has a solution if and only if
〈φ′, a〉 = 0, ∀ φ′ ∈ KernT′.

Moreover, the equation
a′ = T′[u′]

has a solution if and only if
〈a′, φ〉 = 0, ∀ φ ∈ KernT.

3. Existence and Uniqueness of Solutions to (1) with Singular Data

We are in a position to prove the following existence and uniqueness theorem for the displacement
problem (1) with non-regular boundary data. To this end, we need the following result (Theorem 1 in [11]).

Lemma 1. Let Ω be a bounded domain of class Ck (k ≥ 2). The operator S is Fredholmian and Kern S = Kern S ′ = 0.

Theorem 1. Let Ω be a bounded domain of class Ck (k ≥ 2). If a ∈W2−k−1/q,q(∂Ω), q ∈ (1,+∞), then, (1) has
a solution u expressed by a simple layer potential with density ψ ∈W1−k−1/q,q(∂Ω). It satisfies the estimate

‖u‖W2−k,q(Ω) ≤ c‖a‖W2−k−1/q,q(∂Ω), (12)
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and is unique in the class of all u ∈W2−k,q(Ω) such that∫ ?

Ω
u ·φ =

∫ ?

∂Ω
a ·C[∇z]n, (13)

for all φ ∈ C∞
0 (Ω), where n denotes the unit normal to ∂Ω (exterior with respect to Ω) and z is the solution of

divC[∇z] = φ in Ω,

z = 0 on ∂Ω.
(14)

Proof. In order to prove the existence of a solution to (1) in the form of a simple layer potential u = v[ψ],
we have to require that the boundary condition (1)2 is met. Thus, in terms of the operator S ′, we have to
analyse the functional equation

S ′[ψ] = a. (15)

By virtue of Lemma 1, (15) has a solution ψ ∈ W1−k−1/q,q(∂Ω) and the field u = v[ψ] is a solution
to (1) which is C∞ in Ω and satisfies (1)2 in the sense of (15). Let aj be a regular sequence on ∂Ω which
converges to a strongly in W2−k−1/q,q(∂Ω). Let v[ψj] be the solution of (1) with datum aj:

divC[∇v[ψj]] = 0 in Ω,

v[ψj] = aj on ∂Ω.
(16)

By (11) v[ψj] converges to v[ψ] strongly in W2−k,q(Ω). Let consider the scalar product of (14)1 and
v[ψj] and the scalar product of (16)1 and z. Taking into account the boundary conditions (14)2 and (16)2,
then integrating by parts twice gives∫

Ω
v[ψj] ·φ =

∫
Ω

v[ψj] · divC[∇z] =
∫

∂Ω
aj ·C[∇z]n−

∫
Ω
∇v[ψj] ·C[∇z] (17)

and
0 =

∫
Ω

z · divC[∇v[ψj]] = −
∫

Ω
∇z ·C[∇v[ψj]]. (18)

As C is symmetric, from (17) and (18), we obtain∫
Ω

v[ψj] ·φ =
∫

∂Ω
aj ·C[∇z]n. (19)

By the trace theorem and well-known estimates for the solutions of system (14), we obtain∣∣∣∣∫
∂Ω

aj ·C[∇z]n
∣∣∣∣≤ ‖aj‖W2−k−1/q,q(∂Ω)‖C[∇z]n‖Wk−1−1/q′ ,q′ (∂Ω)

≤ ‖aj‖W2−k−1/q,q(∂Ω)‖φ‖Wk−2,q′ (Ω)

. (20)

Hence, by letting j→ +∞ in (19) we obtain (13) and (12) by a duality argument.

We can also consider the problem

divC[∇u] = 0 in Ω,

u = a on ∂Ω,

lim
|x|→+∞

u(x) = 0,
(21)
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where Ω in now an exterior domain of R3, that is, Ω = R3 \ Ω′, with Ω′ a bounded domain (see,
e.g., [12–14]). This problem is very intriguing in applications, where one has to consider, for example,
the deformations of an elastic body with some holes (defects).

With a proof analogous to the above one for bounded domains, we obtain the following result.

Theorem 2. Let Ω be an exterior domain of class Ck (k ≥ 2). If a ∈ W2−k−1/q,q(∂Ω), with q ∈ (1,+∞),
then (21) has a solution u expressed by a simple layer potential with density ψ ∈ W1−k−1/q,q(∂Ω). It satisfies
the estimate

‖u‖W2−k,q(Ω) ≤ c‖a‖W2−k−1/q,q(∂Ω), (22)

and is unique in the class of all u ∈W2−k,q
loc (Ω) such that

∫ ?

Ω
u ·φ = −

∫ ?

∂Ω
a ·C[∇z]n, (23)

for all φ ∈ C∞
0 (Ω), where n denotes the unit normal to ∂Ω (exterior with respect to Ω′) and z is the solution of

divC[∇z] = φ in Ω,

z = 0 on ∂Ω,

lim
|x|→+∞

z(x) = 0.
(24)

Proof. First of all, we observe that Lemma 1 also holds for exterior domains (Theorem 1 in [11]). Thus,
we can apply the Fredholm alternative again, obtaining a solution ψ to (15) and the corresponding solution
u = v[ψ] to (21). Then, with the analogous meaning of aj and v[ψj], in place of (17) and (18), we get

∫
Ω∩BR

v[ψj] ·φ = −
∫

∂Ω
aj ·C[∇z]n +

∫
∂BR

v[ψj] ·C[∇z]eR

−
∫

Ω∩BR

∇v[ψj] ·C[∇z]
(25)

and
0 =

∫
∂BR

z ·C[∇v[ψj]]eR −
∫

Ω∩BR

∇z ·C[∇v[ψj]], (26)

where BR is a ball of sufficiently large radius R containing ∂Ω and eR is the unit normal to its boundary
∂BR. By virtue of (2), we obtain∫

Ω∩BR

v[ψj] ·φ = −
∫

∂Ω
aj ·C[∇z]n +

∫
∂BR

v[ψj] ·C[∇z]eR

−
∫

∂BR

z ·C[∇v[ψj]]eR.
(27)

Taking into account the asymptotic behavior of v[ψ] and z, we obtain the thesis by first letting
R→ +∞, and then j→ +∞.

4. Conclusions

In this paper, existence and uniqueness theorems for the displacement problem of linear elastostatics
with singular data are proved for three-dimensional bounded and exterior domains of class Ck (k ≥ 2).
The difficulty of the problem lies in defining the attainability of the boundary datum, which belongs to a
space of non-regular fields (namely, W2−k−1/q,q(∂Ω), q ∈ (1,+∞)). The proofs of the theorems make use
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of the theory of layer integral equations, of the existence and uniqueness results for regular data and of the
analysis of the trace operator associated to the simple layer potentials.

As far as the two-dimensional case is concerned, the situation is more involved (also for regular
data) because of the behavior of the fundamental solution (U(x− y) = O(ln(|x− y|)). As pointed out
in [15] (see also [16]), in this case, the search for a solution in the form of a simple layer potential v[ψ]

could not lead to existence and uniqueness for degenerate-scale problems. To overcome this difficulty,
one may search for the solution in the form of a sum v[ψ] + c, with c constant and

∫
∂Ω ψ = 0 [15].

This could be the starting point for further research into existence and uniqueness with singular data in
two-dimensional domains.
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