
axioms

Article

Periodic Solution and Asymptotic Stability for the
Magnetohydrodynamic Equations with
Inhomogeneous Boundary Condition

Igor Kondrashuk 1,* , Eduardo Alfonso Notte-Cuello 2, Mariano Poblete-Cantellano 3

and Marko Antonio Rojas-Medar 4

1 Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Facultad de Ciencias,
Universidad del Bío-Bío, Campus Fernando May, Av. Andres Bello 720, Casilla 447, Chillán 3780227, Chile

2 Departamento de Matemáticas, Universidad de La Serena, La Serena 1720236, Chile; enotte@userena.cl
3 Departamento de Matemáticas, Universidad de Atacama, Av. Copayapu 485, Casilla 240,

Copiapó 1531772, Chile; mtapoblete@gmail.com
4 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1001003, Chile;

marko.medar@gmail.com
* Correspondence: igor.kondrashuk@gmail.com

Received: 6 December 2018; Accepted: 6 April 2019; Published: 11 April 2019
����������
�������

Abstract: We show, using the spectral Galerkin method together with compactness arguments,
the existence and uniqueness of the periodic strong solutions for the magnetohydrodynamic-type
equations with inhomogeneous boundary conditions. Furthermore, we study the asymptotic stability
for the time periodic solution for this system. In particular, when the magnetic field h(x, t) is zero, we
obtain the existence, uniqueness, and asymptotic behavior of the strong solutions to the Navier–Stokes
equations with inhomogeneous boundary conditions.
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1. Introduction

For many decades, the awareness that the motion of an incompressible electrical conducting
fluid can be modeled by the magnetohydrodynamic (MHD) equations, which correspond to the
Navier–Stokes (NS) equations coupled to the Maxwell equations, has been consolidated. This system
of equations plays an important role in various applications, for example in phenomena related
to the plasma behavior [1], heat conductivity and nematic liquid crystal flows [2–5], and stochastic
dynamics [6]. In the case when the MHD equations have periodic boundary conditions, these equations
play an important role in MHD generators [7]. Furthermore, these boundary conditions can be
considered in the tasks related to the processes of the cooling of nuclear reactors.

In the presence of a free motion of heavy ions (see Schlüter [8,9] and Pikelner [10]), the MHD
equation may be reduced to:

∂u
∂t
− η

ρ
∆u + u · ∇u− µ

ρ
h · ∇h = f − 1

ρ
∇
(

p∗ +
µ

2
h2
)

∂h
∂t
− 1

µ̄σ
∆h + u · ∇h− h · ∇u = −gradw

div u = div h = 0

(1)
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with:
u |∂Ω = β1(x, t), h |∂Ω = β2(x, t). (2)

Here, u and h are the unknown velocity and magnetic field, respectively; p∗ is an unknown
hydrostatic pressure; w is an unknown function related to the heavy ions (in such a way that the
density of the electric current, j0, generated by this motion satisfies the relation rotj0 = −σ∇w); ρ is
the density of the mass of the fluid (assumed to be a positive constant); µ̄ > 0 is a constant magnetic
permeability of the medium; σ > 0 is a constant electric conductivity; η > 0 is a constant viscosity of
the fluid; f is a given external force field. In this paragraph, we used the notations of [11]. We should
note that the given external force field f is periodic throughout the paper.

As has been mentioned in [11], several authors studied the initial value problem associated with
the system (1). By using the semigroup results of Kato and Fujita [12], Lassner proved the existence and
uniqueness of strong solutions in [13]. Then, Boldrini and Rojas-Medar [14,15] improved this result for
global strong solutions by using the spectral Galerkin method. The regularity of weak solutions has
been studied by Damázio and Rojas-Medar in [16]. After this, Notte-Cuello and Rojas-Medar [17] used
an iterative approach to show the existence and uniqueness of the strong solutions. Later, in works by
Rojas-Medar and Beltrán-Barrios [18] and by Berselli and Ferreira [19], the initial value problem in
time-dependent domains was considered.

The periodic problem for the classical Navier–Stokes equations was studied by Serrin [20]
using the perturbation method and subsequently by Kato [21] using the spectral Galerkin method.
Following the methodology used by Kato, Notte-Cuello and Rojas-Medar [11] studied the existence and
uniqueness of periodic strong solutions with homogeneous boundary conditions for the MHD-type
equations. In this work, the periodic problem for the MHD equations with inhomogeneous boundary
conditions is considered. We prove the existence and the uniqueness of the strong solutions to
this system of equations, following the methodology used by Morimoto [22], who presented the
results of the existence and uniqueness of weak solutions to the Navier–Stokes equations and to the
Boussinesq equations.

On the other hand, Hsia et al. [23] have shown that with the smallness assumption of the time
periodic force, there exists only one time periodic solution to Navier–Stokes equations, and this time,
the periodic solution is globally asymptotically stable in the H1 sense. We followed the method used
in [23] to perform a study of the asymptotic stability for our system.

2. Preliminaries

We begin by recalling the definitions and facts from [11] to be used later in this paper. Let Ω be
some bounded domain in R2 or R3.

The L2(Ω)-product and norm are denoted by (, ) and | |, respectively; the Lp(Ω)-norm by
| |Lp , 1 ≤ p ≤ ∞; the Hm(Ω)-norm is denoted by ‖ ‖Hm ; and the Wk,p(Ω)-norm by | |Wk,p .

Here, Hm(Ω) = Wm,2(Ω) and Wk,p(Ω) are the usual Sobolev spaces, and H1
0(Ω) is the closure of

C∞
0 (Ω) in the H1 − norm.

If B is a Banach space, we denote Lq(0, T; B) the Banach space of the B-valued functions defined
in the interval (0, T) that are Lq-integrable in the sense of Bochner.

Let C∞
0,σ(Ω) = {v ∈ (C∞

0 (Ω))n; div v = 0}, H = closure of C∞
0,σ(Ω) in L2(Ω)),

V = closure of C∞
0,σ(Ω) in H1

0(Ω), H1
σ(Ω) = {u ∈ H1(Ω) : div u = 0}.

Let P be the orthogonal projection from L2(Ω) onto H obtained by the usual Helmholtz
decomposition. Then, the operator A : H → H given by A = −P∆ with domain D(A) = H2(Ω) ∩ V
is called the Stokes operator.

In order to obtain the regularity properties of the Stokes operator, we will assume that
Ω is of class C1,1 [24]. This assumption implies, in particular, that when Au ∈ L2(Ω), then
u ∈ H2(Ω) and ‖u‖H2 and |Au| are equivalent norms.

The eigenfunctions and eigenvalues of the Stokes operator defined on V ∩ H2(Ω) are denoted
by wk and λk, respectively. It is well known that {wk(x)}∞

k=1 form an orthogonal complete system
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in the spaces H, V , and V ∩ H2(Ω) equipped with the usual inner products (u, v), (∇u,∇v), and
(P∆u, P∆v), respectively.

Now, let us introduce some function spaces consisting of τ-periodic functions. For k ≥ 0, k ∈ N,
we denote by:

Ck(τ; B) = { f : R→ B / f is τ- periodic and Di
t f ∈ C(R; B) for any i ≤ k}.

Then, let us define the norm:

‖ f ‖Ck(τ;B) = sup
0≤t≤τ

k

∑
i=1
‖Di

t f (t)‖B.

We denote for 1 ≤ p ≤ ∞ the spaces:

Lp(τ; B) = { f : R→ B / f is measurable, τ- periodic and ‖ f ‖Lp(τ;B) < ∞},

where:

‖ f ‖Lp(τ;B) =

(∫ τ

0
‖ f (t)‖p

B

) 1
p

for 1 ≤ p < ∞

and:
‖ f ‖L∞(τ;B) = sup

0≤t≤τ

‖ f (t)‖B.

Similarly, we denote by:

Wk,p(τ; B) = { f ∈ Lp(τ; B) / Di
t f ∈ Lp(τ; B) for any i ≤ k}.

In particular, Hk(τ; B) = Wk,2(τ; B), when B is a Hilbert space.
The problem we consider is as follows: Let the given external force f be periodic in t with some

periodic τ. Then, we try to prove the existence and uniqueness of periodic strong solutions (u, h) of
the magnetohydrodynamic Equations (1) and (2) with some periodic τ :

u(x, t + τ) = u(x, t); h(x, t + τ) = h(x, t). (3)

Now, according to the Gauss theorem, the boundary value, βi i = 1, 2, should satisfy the so-called
general outflow condition (GOC):

(GOC)
∫

∂Ω

βi · ndσ =
N

∑
k=0

∫
Γk

βi · ndσ = 0.

If N > 1, the stringent outflow condition (SOC),

(SOC)
∫

Γk

βi · ndσ = 0, (k = 0, 1, ..., N);

is stronger than GOC.
In this work, the following assumptions and results are considered,

A0 Ω ⊆ Rn, n = 2, 3 is the bounded domain, and ∂Ω consists of smooth N + 1 connected
components Γ0, Γ1, ..., ΓN and Ω being inside of Γ0 (N ≥ 1); see [22] (p. 1). This means Ω
is enclosed by Γ0, Γ1, ..., ΓN , consequently. Such a structure of the boundary may be applied for
the modeling of fluid movement inside of pipes. The fluid velocity field is tangent to Γ0 at the
piece Γ0 of the boundary.

A1 βi (x, t) ∈ C1(τ, H1/2 (Ω)) and satisfies (SOC), i = 1, 2.
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Lemma 1. ([22], p. 636) Suppose β ∈ C1(τ, H1/2 (Ω)) and satisfies (SOC). Then, for every ε > 0, there
exists a solenoidal time-periodic function v ∈ C1(τ, H1

σ(Ω)) such that:

v(x, t) = β(x, t), a.e. x ∈ ∂Ω, ∀t ∈ R,

|((u · ∇)v, u)| ≤ ε |∇u|2 , ∀u ∈ V , ∀t ∈ R

Moreover, if β ∈ C1(τ, W1,3/2(Ω)), then v ∈ C1(τ, W2,2(Ω)).

Proposition 1. (Giga and Miyakawa [25]) If 0 ≤ δ < 1
2 + n

4 , the following estimate is valid with a constant
C1 = C1(δ, θ, ρ),

|A−δPu · ∇v| ≤ C1|Aθu||Aρv| for any u ∈ D(Aθ) and v ∈ D(Aρ), (4)

with θ, ρ > 0 such that δ + θ + ρ ≥ n
4 + 1

2 , ρ + δ > 1
2 .

Furthermore, we consider the Sobolev inequality [25],

|u|Lr(Ω) ≤ C2 |u|Hβ , if
1
r
≥ 1

2
− β

n
> 0,

and the inequality due to Giga and Miyakawa [25]:

|u|Lr(Ω) ≤ C3|Aγu|, if
1
r
≥ 1

2
− 2γ

n
> 0. (5)

Here, we note that if r = n in (5), it follows that:

|u|Ln(Ω) ≤ C3|Aγu|, with γ =
n
4
− 1

2
.

Lemma 2. (Equation (2.8) in Kato [21]) If u ∈ D(Aθ) and 0 ≤ θ < β, then:

|Aθu(x)| ≤ µθ−β|Aβu(x)|

where µ = min λj > 0, where {λj}∞
j=1 are the eigenvalues of the Stokes operator.

Lemma 3. (Simon [26]) Let X, B and Y be Banach spaces such that X ↪→ B ↪→ Y, where the first embedding is
compact and the second is continuous. Then, if T > 0 is finite, we have that the following embedding is compact:

L∞(0, T; X) ∩ {φ : φt ∈ Lr(0, T; Y)} ↪→ C(0, T; B), if 1 < r ≤ ∞.

3. Results

Our results are the following.

Theorem 1. (Existence) Suppose that Ω, βi i = 1, 2 satisfy the assumptions A0 and A1, respectively and
F, G ∈ H1(τ; H) (τ > 0). Then, there exists a constant M > 0 such that if:

sup
0≤t≤τ

(|F|Ln/2(Ω) + |G|Ln/2(Ω)) ≤ M

the problem (1)–(3) has a τ-periodic strong solution (ũ(t), h̃(t)) satisfying:

(ũ, h̃) ∈ (H2(τ; H))2 ∩ (H1(τ; D(A)))2 ∩ (L∞(τ; D(A)))2 ∩ (W1,∞(τ; V))2,
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such that ũ = u− B1 and h̃ = h− B2 for some τ-periodic extension B1 and B2 of the boundary values β1
and β2, respectively, and (u, h) satisfying the problem (1)–(3). Here, the functions F and G are related to the
external force f and to the boundary data (see Equation (14)):

F(t) = αP f (t)− α
d
dt

B1(t) + νAB1(t)− αP(B1(t) · ∇B1(t)) + P(B2(t) · ∇B2(t)),

G(t) = − d
dt

B2(t) + χAB2(t) + P(B2(t) · ∇B1(t))− P(B1(t) · ∇B2(t)).

Remark 1. As follows from the proofs of Theorems 5 and 6, M needs to be small. This implies that βi i = 1,2
and f must be small.

Remark 2. We observe that the hypothesis F ∈ H1(τ; H) implies in particular that ∂Bi
∂t ∈ H1(τ; H) and

∆Bi ∈ H1(τ, H), but Lemma 1 only says that Bi ∈ C1(τ; W2,2(Ω). We believe that working as in [22,27], it
will be possible to show this regularity; however, this requires a more detailed analysis, which we will not do in
this article.

Theorem 2. (Uniqueness) The solution for (1)–(3) given in the above theorem is unique.

Now, we consider the initial-boundary value problem MHD:
∂u
∂t

+ (u · ∇)u − η

ρ
∆u + ∇

(
p∗ +

µ

2
h2
)

= f ,

div u = 0 in QT ,
∂h
∂t

+ (u · ∇) h − (h · ∇) u − 1
µ̄σ

∆h = grad w in QT ,

(6)

with boundary and initial conditions:
u |∂Ω = β1(x, t)
h |∂Ω = β2(x, t)
u(x, 0) = u0(x) in Ω ,
w(x, 0) = w0(x) in Ω ,

(7)

The following result is an H1-stability result for the initial-value problem (6) and (7) associated
with the system (1) and (2)

Theorem 3. Let F, G ∈ H1(τ; H)(τ > 0), then there exist three positives numbers γ1, γ2, and γ3 depending
on the viscosity coefficient ν and the size of the domain such that if F, G satisfy:

|F|2L∞(0,∞;L2(Ω)2) + |G|
2
L∞(0,∞;L2(Ω)2) ≤ γ3, (8)

and {(u2(t), h2(t))}t≥0 is a strong solution of the system (1) and (2) with initial condition (u0, h0) satisfying:

|u0|2H1 ≤ γ1 and |h0|2H1 ≤ γ2 (9)

and {(u1(t), h1(t))}t≥0 is any other strong solution of (1) and (2), we have:

lim
t→∞
|u1(t)− u2(t)|2H1 = 0 and lim

t→∞
|h1(t)− h2(t)|2H1 = 0. (10)

The convergence rate in (10) is exponential.

A direct consequence of the above theorem is the following.
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Theorem 4. Assume that F, G ∈ H1(τ; H) (τ > 0) and (8) hold true, then for any two strong solutions
(u1(t), h1(t)) and (u2(t), h2(t)) defined on the time interval [0, ∞) of the MHD Equations (1) and (2), we have:

lim
t→∞
|u1(t)− u2(t)|2H1 = 0 and lim

t→∞
|h1(t)− h2(t)|2H1 = 0. (11)

The convergence rate in (11) is exponential.

Our main result is:

Theorem 5 (Stability). Under the hypotheses of the existence theorem, there exists a globally asymptotically
H1-stable time periodic strong solution (u, h) to magnetohydrodynamic-type Equations (1). That is, any other
strong solution tends to this time-periodic solution (u, h) asymptotically in the H1 sense.

Remark 3. With the periodic external force F, G fixed, the previous result suggests that for any initial data
v0, b0 ∈ V , the unique strong solution obtained for v, b tends to be a unique strong periodic solution u, h
exponentially by a norm in H1.

4. Approximate Problem and a Priori Estimates

In this section, we go along the lines of [11], in which the homogeneous case was considered, using
the spectral Galerkin method together with compactness arguments in order to prove the existence
and uniqueness of the solution. The principal problem is to obtain the uniform boundedness of certain
norms of uk(t) and hk(t) at some point t∗. This difficulty was treated earlier by Heywood [28] to prove
the regularity of the classical solutions for Navier–Stokes equations.

The variables (ũ + B1, h̃ + B2) satisfy the following equations:

α
∂

∂t
(ũ + B1)− ν∆(ũ + B1) + α(ũ + B1) · ∇(ũ + B1)− (h̃ + B2) · ∇(h̃ + B2)

= α f − 1
µ
∇
(

p∗ +
µ

2

(
h̃ + B2

)2
)

∂

∂t
(h̃ + B2)− χ∆(h̃ + B2) + (ũ + B1) · ∇(h̃ + B2)− (h̃ + B2) · ∇(ũ + B1)

= −grad w.

(12)

Remark 4. To ensure the periodicity of B1 and B2, we can see, for example, Lemma 3.1 of Morimoto [22]
(p. 636); we enunciated it in Lemma 1.

Remark 5. In what follows, we omit the “tilde” over ũ and h̃. Instead, we will simply write u and h. This is
done for the brevity of the following formulae.

Remark 6. We remind that the external force field f is τ-periodic throughout all the paper.
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Here, we set α = ρ/µ, ν = η/µ and χ = 1/µσ. By putting ũ = u and h̃ = h and rearranging
terms, we obtain:

α
∂u
∂t
− ν∆u + αu · ∇u− h · ∇h + α

∂B1

∂t
− ν∆B1 + αB1 · ∇B1 + αu · ∇B1

+αB1 · ∇u− B2 · ∇h− h · ∇B2 − B2 · ∇B2 = α f − 1
µ
∇
(

p∗ +
µ

2
(h + B2)

2
)

,

∂h
∂t
− χ∆h + u · ∇h− h · ∇u +

∂B2

∂t
− χ∆B2 + B1 · ∇h− h · ∇B1 + αu · ∇B2

−αB2 · ∇B1 − B2 · ∇u + B1 · ∇B2 = −grad w.

(13)

By using the operator P, the periodic problem (1)–(3) is formulated as follows:

α
d
dt

u(t) + νAu(t) + αP(u(t) · ∇u(t))− P(h(t) · ∇h(t)) + L1u(t) + L2h(t) = F(t),

d
dt

h(t) + χAh(t) + P(u(t) · ∇h(t))− P(h(t) · ∇u(t)) + L3h(t) + L4u(t) = G(t),

(14)

u(x, t + τ) = u(x, t); h(x, t + τ) = h(x, t),

where:

L1u(t) = P(u(t) · ∇B1(t)) + P(B1(t) · ∇u(t)),
L2h(t) = −P(h(t) · ∇B2(t))− P(B2(t) · ∇h(t)),

F(t) = αP f (t)− α
d
dt

B1(t) + νAB1(t)− αP(B1(t) · ∇B1(t)) + P(B2(t) · ∇B2(t)),

L3h(t) = P(B1(t) · ∇h(t))− P(h(t) · ∇B1(t)),
L4u(t) = −P(B2(t) · ∇u(t)) + P(u(t) · ∇B2(t)),

G(t) = − d
dt

B2(t) + χAB2(t) + P(B2(t) · ∇B1(t))− P(B1(t) · ∇B2(t)).

(15)

We consider V k = span{w1(x), w2(x), ..., wk(x)} and the approximations uk(t) =

∑k
j=1 cjk(t)wj(x) and hk(t) = ∑k

j=1 djk(t)wj(x), of u and h, respectively, satisfying the following system
of ordinary differential equations. Here, we reproduce equations similar to Equations (3.1) and (3.2)
of [11]; however, the terms with operators L1 and L2 are new in comparison with Equations (3.1) and
(3.2) of [11] since these operators contain inhomogeneous boundary conditions,

(αuk
t + νAuk + αP(uk · ∇uk)− P(hk · ∇hk) + L1uk + L2hk, wj) = (F, wj)

(hk
t + χAhk + P(uk · ∇hk)− P(hk · ∇uk) + L3hk + L4uk, wj) = (G, wj)

uk(x, t + τ) = uk(x, t); hk(x, t + τ) = hk(x, t).

(16)

To show that system (16) has a unique τ-periodic solution, we consider the following
linearized problem:

(αuk
t + νAuk, wj) = (F, wj)− (L1vk, wj)− (L2bk, wj)− α(P(vk · ∇vk), wj) + (P(bk · ∇bk), wj)

(hk
t + χAhk, wj) = (G, wj)− (L3bk, wj)− (L4vk, wj)− (P(vk · ∇bk), wj) + (P(bk · ∇vk), wj)

(17)

where vk(t) = ∑k
j=1 ejk(t)ωj(x) and bk(t) = ∑k

j=1 gjk(t)ωj(x) are functions given in C1(τ; V k).
It is well known that the linearized system (17) has a unique τ-periodic solution (uk(t), hk(t)) ∈

(C1(τ; V k))
2 (see for instance [29,30]). Consider the map: Φ : (vk, bk) → (uk, hk) in the space

C0(τ; V k)× C0(τ; V k). We shall show that Φ has a fixed point by the Leray–Schauder theorem.
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We prove that for every (uk, hk) and λ ∈ [0, 1] satisfying λΦ(uk, hk) = (uk, hk),

sup
0≤t≤τ

|uk(t)| ≤ C and sup
0≤t≤τ

|hk(t)| ≤ C (18)

where C is a positive constant independent of λ.
For λ = 0, (uk, hk) = (0, 0), let λ > 0, and assume that λΦ(uk, hk) = (uk, hk). Then, from (17),

we obtain:

1
2

d
dt

α|uk|2 + ν|∇uk|2 = λ(αF, uk)− λ(L1uk, uk)− λ(L2hk, uk) + λ(P(hk · ∇hk, uk),

1
2

d
dt
|hk|2 + χ|∇hk|2 = λ(G, hk)− λ(L3hk, hk)− λ(L4uk, hk) + λ(P(hk · ∇uk), hk)

(19)

Summing the above equalities, we obtain:

1
2

d
dt
(α|uk|2 + |hk|2) + ν|∇uk|2 + χ|∇hk|2

= λ(F, uk) + λ(G; hk)− λ(L1uk, uk)− λ(L2hk, uk) (20)

−λ(L3hk, hk)− λ(L4uk, hk)

+λ(P(hk · ∇hk), uk) + λ(P(hk · ∇uk, hk).

We observe that, since λ ≤ 1, we obtain:

λ(F, uk) ≤ |F||∇uk|,

λ(G, hk) ≤ |G||∇hk|.
(21)

Now, we use Lemma 1 to obtain:

−λ(L1uk, uk) = −λ(uk · ∇B1, uk) ≤ ε1|∇uk|2,
−λ(L2hk, uk)− λ(L4uk, hk) = −λ(hk · ∇B2, uk)− λ(uk · ∇B2, hk) ≤ ε3|∇uk||∇hk|,
−λ(L3hk, hk) = (hk · ∇B1, hk) ≤ ε2|∇hk|2.

(22)

Using the Young inequality, taking ε1 > 0, ε2 > 0, and ε3 > 0 suitable and summing the estimates (21)
and (22) together with the equality (20), we have:

1
2

d
dt
(α|uk|2 + |hk|2) + ν|∇uk|2 + χ|∇hk|2

≤ C|F|2 + C|G|2.
(23)

Integrating in t and using the periodicity of (uk, hk), we have:∫ τ

0

(
ν|∇uk|2 + χ|∇hk|2

)
dt ≤ CM2τ,

whence by the mean value theorem for integrals, there exists t∗ ∈ [0, τ] such that:

ν|∇uk(t∗)|2 + χ|∇hk(t∗)|2 ≤ CM2; (24)

M is defined in Theorem 5.
On the other hand, by using Lemma 3, with θ = 0 and β = 1/2,

|uk(t∗)| ≤ µ−1/2|∇uk(t∗)|
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and consequently:

|uk(t∗)|2 ≤ µ−1|∇uk(t∗)|2 ≤ C
µν

M2; (25)

analogously:

|hk(t∗)|2 ≤ µ−1|∇hk(t∗)|2 ≤ C
µχ

M2. (26)

Finally, by integrating again (23) from t∗ to t + τ, with t ∈ [0, τ], we obtain (18). As the map
Φ is continuous and compact in C0(τ; V k), we conclude the existence of a fixed point (uk, hk) for Φ.
Observe that (18) holds for this (uk, hk).

Lemma 4. Let (uk(t), hk(t)) be the solution of (16). Suppose that:

M < min

{(
ν

P1

)2
,
(

χ

P2

)2
, 1

}

where:
P1 = z ν

C µ1−γ + C1α C
ν µγ−3/2 + d5 + d4C

+2C1
C
χ µγ−3/2C,

P2 = d3
χ
C µ1−γ + C̃9

C
ν µγ−3/2 + d6 + d4C

+2C1
C
χ µγ−3/2C,

then we have:
|Aγuk(t)|2 + |Aγhk(t)|2 ≤ Eµ2γ−3M

with γ = n
4 −

1
2 .

Proof. The first part of the proof follows the proof of Lemma 2.1 of [11]. Indeed, taking A2γuk and
A2γhk as test functions in (16), we obtain:

α

2
d
dt
|Aγuk|2 + ν|A(1+2γ)/2uk|2 =

(α f (t)− αP(uk · ∇uk) + P(hk · ∇hk)− α(B1)t − νAB1, A2γuk)

− (αP(B1 · ∇B1) + P(uk · ∇B1)− P(B1 · ∇uk) + P(B2 · ∇hk), A2γuk)

+ (P(hk · ∇B2) + P(B2 · ∇B2), A2γuk),

(27)

1
2

d
dt
|Aγhk|2 + χ|A(1+2γ)/2hk|2 =

(−P(uk · ∇hk) + P(hk · ∇uk)− (B2)t − χAB2 − P(B1 · ∇hk), A2γhk)

+ (P(hk · ∇Bk
1)− P(uk · ∇B2)− P(B2 · ∇B1), A2γhk)

− (P(B2 · ∇uk)− P(B1 · ∇B2), A2γhk).

(28)

By using the Giga–Miyakawa estimate with θ = γ and ρ = (1 + 2γ)/2, we estimate terms in the
right-hand side of the above equalities as follows:

|(α f (t), A2γuk)| ≤ α| f |Ln/2 |A2γuk|Ln/(n−2) ≤ αĈM|A(1+2γ)/2uk|;
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here, we use Hölder’s inequality:

|(Pv · ∇b, A2γφ)| = |(A
2γ−1

2 Pv · ∇b, A
2γ+1

2 φ)|
≤ C|Aγv||A(1+2γ)/2b||A(1+2γ)/2φ|.

In particular, the estimates of the right side of (27) and (28) may be done for each term. We take into
account that ‖A2γu‖ ≤ C‖A(2γ+1)/2u‖ and estimate:

|(α(B1)t, A2γuk)| ≤ αC2|(B1)t||A(2γ+1)/2uk|,

|(νAB1, A2γuk)| ≤ |(νA
2γ−1

2 AB1, A
2γ+1

2 uk)|

≤ νC3|AB1||A(2γ+1)/2uk|;

similarly:
|(αP(B1 · ∇B1), A2γuk)| ≤ αC4|A2γB1||A(2γ+1)/2B1||A(2γ+1)/2uk|,

|(P(uk · ∇B1), A2γuk)| ≤ C5|A3γ/2B1||A(2γ+1)/2uk|2,

|(P(B1 · ∇uk), A2γuk)| ≤ C6|AγB1||A(2γ+1)/2uk|2,

|(P(B2 · ∇hk), A2γuk)| ≤ C7|AγB2||A(2γ+1)/2hk||A(2γ+1)/2uk|,

|(P(hk · ∇B2), A2γuk)| ≤ C8|A3γ/2B2||A(2γ+1)/2hk||A(2γ+1)/2uk|,

|(P(B2 · ∇B2), A2γuk)| ≤ C9|AγB2||A(2γ+1)/2B2||A(2γ+1)/2uk|.

Now, we bound the terms of (28):

|((B2)t, A2γhk)| ≤ |(A(2γ−1)/2(B2)t, A(2γ+1)/2hk)|
≤ C̃1‖(B2)t‖|A(2γ+1)/2hk|,

|χ(AB2, A2γhk)| ≤ |(χA(2γ−1)/2 AB2, A(2γ+1)/2hk)|
≤ C̃2|A(2γ+1)/2B2||A(2γ+1)/2hk|,

|(P(B1 · ∇hk), A2γhk)| = |(A(2γ−1)/2P(B1 · ∇hk), A(2γ+1)/2hk)|

≤ C|A(2γ−1)/2P(B1 · ∇hk)||A(2γ+1)/2hk|

≤ C̃3|AγB1||A(2γ+1)/2hk|2,

|(P(hk · ∇B1), A2γhk)| = |(A(2γ−1)/2P(hk · ∇B1), A(2γ+1)/2hk)|

≤ C|A(2γ+1)/2hk||A3γ/2B1||A(2γ+1)/2hk|

≤ C̃4|A3γ/2B1||A(2γ+1)/2hk|2;

here, we use θ = 2γ+1
2 and ρ = 3γ

2 in the Giga–Miyakawa estimate,

|(P(uk · ∇B2), A2γhk)| ≤ C̃5|A(2γ+1)/2uk||A3γ/2B2||A(2γ+1)/2hk|,
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|(P(B2 · ∇B1), A2γhk)| = |(A
2γ−1

2 P(B2 · ∇B1), A(2γ+1)/2hk)|

≤ C̃6|AγB2||A(2γ+1)/2B1||A(2γ+1)/2hk|,

|(P(B2 · ∇uk), A2γhk)| ≤ C̃7|AγB2||A(2γ+1)/2uk||A(2γ+1)/2hk|,

|(P(B1 · ∇B2), A2γhk)| ≤ C̃8|AγB1||A(2γ+1)/2B2||A(2γ+1)/2hk|.

Now, summing the above estimates, we get:

α

2
d
dt
|Aγuk|2 + 1

2
d
dt
|Aγhk|2 + ν|A

1+2γ
2 uk|2 + χ|A

1+2γ
2 hk|2

≤ zM|A
1+2γ

2 uk|+ M|A(2γ+1)/2hk|+ 2C1|Aγhk||A(2γ+1)/2hk||A
2γ+1

2 uk|

+M|A(2γ+1)/2hk||A
2γ+1

2 uk|+ C1α|Aγuk||A
2γ+1

2 uk|2 + M|A
2γ+1

2 uk|2

+C̃9|Aγuk||A(2γ+1)/2hk|2M|A(2γ+1)/2hk|2,

(29)

where we put:
αC2|(B1)t|+ νC3|AB1|+ αC4|A2γB1||A(2γ+1)/2B1|

+C9|AγB2||A(2γ+1)/2B2| = d2 ≤ M,

C̃1|(B2)t|+ C̃2|A(2γ+1)/2B2|+ C̃6|AγB2||A(2γ+1)/2B1|

+C̃8|AγB1||A(2γ+1)/2B2| = d3 ≤ M,

and:

C7|AγB2|+ C8|A3γ/2B2|+ C̃5|A3γ/2B2|+ C̃7|AγB2| = d4 ≤ M,

C5|A3γ/2B1|+ C6|AγB1| = d5 ≤ M,

C̃3|AγB1|+ C̃4|A3γ/2B1| = d6 ≤ M,
z = αĈ + 1.

We should mention that the constants that appear on the right-hand side of each estimation by the
Giga–Miyakawa inequalities are proper for the every inequality. This is why we have so many
constants. The presence of such an amount of constants in estimates reflects the difference with the
homogeneous case of [11].

By using Lemma 2, with θ = 0 and β = 1/2, we follow exactly the estimations done in [11] for
the proof of Lemma 2.1 and obtain:

|Aγuk(t∗)|2 + |Aγhk(t∗)|2 ≤
(

1
ν2 +

1
χ2

)
C2µ2γ−3M = Eµ2γ−3M.

Let T∗ = sup
{

T/
∣∣∣Aγuk (t∗)

∣∣∣2 + ∣∣∣Aγhk (t∗)
∣∣∣2 ≤ Eµ2γ−3M, t ∈ [t∗, T)

}
. We will prove by

contradiction that T∗ = ∞. In fact, if T∗ is finite, it should follow that ∀t ∈ [t∗, T∗). Again, by following
the proof of Lemma 2.1 in [11], we obtain:

|Aγuk(t∗)|2 + |Aγhk(t∗)|2 ≤ Eµ2γ−3M, t ∈ [t∗, T).
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and:
|Aγuk(T∗)|2 + |Aγhk(T∗)|2 = Eµ2γ−3M,

where E =
(

1
ν2 +

1
χ2

)
C2. Therefore, for such a value t = T∗, we may estimate:

zM|A(1+2γ)/2uk| ≤ z
ν

C
µ3/2−γ|Aγuk|M1/2|A(1+2γ)/2uk|

≤ z
ν

C
µ1−γ M1/2|A(1+2γ)/2uk|2

where we use the inequality |Aγuk| ≤ µ−1/2|A(1+2γ)/2uk|. Similarly,

d3M|A(1+2γ)/2hk| ≤ d3
χ
C µ1−γ M1/2|A(1+2γ)/2hk|2,

C1α
∣∣∣Aγuk

∣∣∣ ∣∣∣A(1+2γ)/2uk
∣∣∣2 ≤ C1α C

ν µγ−3/2M1/2|A(1+2γ)/2uk|2,

d5M|A(1+2γ)/2uk|2 ≤ d5M1/2|A(1+2γ)/2uk|2,

C̃9|Aγuk||A(1+2γ)/2hk|2 ≤ C̃9
C
ν µγ−3/2M1/2|A(1+2γ)/2hk|2,

d6M|A(1+2γ)/2hk|2 ≤ d6M1/2|A(1+2γ)/2hk|2,

and:
d4M|A(1+2γ)/2hk||A(1+2γ)/2uk| ≤ d4M1/2C

{
|A(1+2γ)/2hk|2 + |A(1+2γ)/2uk|2

}
,

2C1|Aγhk||A(1+2γ)/2hk||A(1+2γ)/2uk|

≤ 2C1
C
χ µγ−3/2M1/2C

{
|A(1+2γ)/2hk|2 + |A(1+2γ)/2uk|2

}
.

Consequently, the above estimate and (29) imply:

α

2
d
dt
|Aγuk|2 + 1

2
d
dt
|Aγhk|2 + ν|A

1+2γ
2 uk|2 + χ|A

1+2γ
2 hk|2

≤ P1M1/2|A(1+2γ)/2uk|2 + P2M1/2|A(1+2γ)/2hk|2,

where:
P1 = z ν

C µ1−γ + C1α C
ν µγ−3/2 + d5 + d4C

+2C1
C
χ µγ−3/2C,

P2 = d3
χ
C µ1−γ + C̃9

C
ν µγ−3/2 + d6 + d4C

+2C1
C
χ µγ−3/2C,

Then, if M < min
{(

ν
P1

)2
,
(

χ
P2

)2
, 1
}

, we have:

α

2
d
dt
|Aγuk|2 + 1

2
d
dt
|Aγhk|2 < 0, at t = T∗.

Thus, in a neighborhood of t = T∗, it follows that:

|Aγuk(t)|2 + |Aγhk(t)|2 ≤ Eµ2γ−3M for any t ∈ [T∗, T∗ + δ).
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which implies T∗ = ∞. Then, we have:

|Aγuk(t)|2 ≤ Eµ2γ−3M for any t ∈ (−∞, ∞)

|Aγhk(t)|2 ≤ Eµ2γ−3M for any t ∈ (−∞, ∞)

since uk(t) and hk(t) are periodical.

5. Estimates of the Higher Order Derivatives

In this section, we derive estimates of derivatives of higher order. We need these estimates in
order to show the convergence of the approximate solutions. According to Lemma 4, for sufficiently
small M, the approximate solutions satisfy:

sup
t
|Aγuk(t)| ≤ C1(M), sup

t
|Aγhk(t)| ≤ C2(M) (30)

with γ = n
4 −

1
2 , where C1(M) and C2(M) are constants depending on M and on a norm involving the

border function βi(x, t) and independent of k. We may write a lemma, which is similar to Lemma 3.1
of [11],

Lemma 5. Let (uk(t), hk(t)) be the solution of (16) given above. Set:

M0 =

(∫ τ

0
(|F(t)|2 + |G(t)|2)dt

) 1
2

, M1 =

(∫ τ

0
|(Ft(t)|2 + |Gt(t)|2dt

) 1
2

.

Then, we have:

sup
0≤t≤τ

|∇uk(t)|2 ≤ C(M0, M), sup
0≤t≤τ

|∇hk(t)|2 ≤ C(M0, M),

and:
sup

t
(α|uk

t (t)|2 + |hk
t (t)|2) ≤ C(M0,M1, M),

where C(M0, M) and C(M0, M1, M) denote constants depending on M0, M1 being independent of k.

Proof. We repeat here the trick with test functions used by us in the proof of Lemma 1. Taking Auk

and Ahk as test functions in (16), we get:(
αuk

t + νAuk, Auk
)

= (F − αP(uk · ∇uk) + P(hk · ∇hk), Auk)

+(L1(uk), Auk) + (L2(hk), Auk),

(hk
t + χAhk, Ahk) = (G− P(uk · ∇hk) + P(hk · ∇uk), Ahk)

+(L3(hk), Ahk) + (L4(uk), Ahk),

Then, we follow the same lines that we did in the proof of Lemma 3.1 of [11], recalling that the
estimates (30) are sufficiently small (if M is small), and, by hypotheses |ABi| and |AγBi| (i = 1, 2), also
being sufficiently small, we can obtain the following inequality:

d
dt

(
α|uk|2 + |∇hk|2

)
+ 2ν|Auk|2 + 2χ|Ahk|2 ≤ C (31)

where the constant C > 0 depends on ∂Ω, Bi, i = 1, 2, M, f .
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Integrating (31) and recalling the periodicity of ∇uk(t) and ∇hk(t), we have:∫ τ

0
(2ν|Auk|2 + 2χ|Ahk|2)dt ≤ D1

where D1 ≥ Cτ.
Finally, applying the mean value theorem for integrals, we have that there exists t∗ ∈ [0, τ] such that:

|Auk(t∗)|2 + |Ahk(t∗)|2 ≤ τ−1D.

By using Lemma 2, with θ = 1
2 , β = 1, we have:

|∇uk(t∗)|2 ≤ µ−1|Auk(t∗)|2 ≤ µ−1τ−1D

and:
|∇hk(t∗)|2 ≤ µ−1|Ahk(t∗)|2 ≤ µ−1τ−1D.

Now, integrating the inequality (31) from t∗ to t + τ (t ∈ [0, τ]), we deduce easily:

sup
t
|∇uk(t)| ≤ C(M0, M), sup

t
|∇hk(t)| ≤ C(M0, M) (32)

where C(M0, M) is independent of k.
Similarly, taking uk

t and hk
t as test functions in (16), we can show that:

sup
t
|uk

t (t)| ≤ C(M0, M1, M), sup
t
|hk

t (t)| ≤ D(M0, M1, M).

This completes the proof of lemma.

The proof of the following lemma is omitted, since it is similar to the proofs of the previous
lemmas, and one can follow the methodology of Lemma 3.2 of [11].

Lemma 6. Let (uk(t), hk(t)) be the approximate solution of (16) given above. Then, we have:

sup
t
|Auk(t)| ≤ C(M0, M1, M), sup

t
|Ahk(t)| ≤ C(M0, M1, M)

∫ τ

0
(|Auk

t (t)|2 + |Ahk
t (t)|2)dt ≤ C(M0,M1, M),∫ τ

0
(|uk

tt(t)|2 + |hk
tt(t)|2)dt ≤ C(M0,M1, M).

6. Proof of Theorem 5 and Theorem 6

In this section, we partially use a similar strategy to prove the uniqueness and existence theorems
that were applied in [11] to the case of homogeneous boundary condition. First, we prove Theorem 5.
By the Aubin–Lions theorem, it follows from estimates (18) that there are subsequences uk(t) and hk(t)
such that:

uk → u, hk → h, strongly in L∞(τ; V).

We may write by using Lemma 12:

uk → u, hk → h, w∗ in L∞(τ; D(A)),

uk
t → ut, hk

t → ht, w∗ in L∞(τ; V),



Axioms 2019, 8, 44 15 of 24

in which the functions u(t) and h(t) satisfy:

u, h ∈ H2(τ; H) ∩ H1(τ; D(A)) ∩ L∞(τ; D(A)) ∩W1,∞(τ; V).

Our aim is to show that:
uk

t → ut, hk
t → ht, strongly in L∞(τ; H).

We may take φ = ut and φ = ht in Lemma 4, with X = V , Y = B = H. In such way, we establish
the desired convergences. After the establishing of these convergences, we take the limit along the
previous subsequences in (16), and we conclude that (u, h) is a periodic strong solution of (1)–(3).
This proves Theorem 5 dedicated to the existence of the periodic solution.

To prove Theorem 6 dedicated to the uniqueness, we consider that (u1, h1) and (u2, h2) are two
solutions of the problem (1)–(3). By defining the differences:

w = u1 − u2, z = h1 − h2,

we have from (14):

α
dw
dt

+ νAw = −αPw · ∇u1 − αPu2 · ∇w + Pz · ∇h1 + Ph2 · ∇z− L1(w)− L2(z),
dz
dt

+ χAz = −Pw · ∇h1 − Pu2 · ∇z + Pz · ∇u1 + Ph2 · ∇w− L3(z)− L4(w),
(33)

Then, by multiplying the first equation of (33) (respectively the second equation of (33)) by w
(respectively by z) and integrating on Ω, we obtain, repeating mainly the approach used in Section 5
of [11],

1
2

d
dt
(α|w|2 + |z|2) + ν|∇w|2 + χ|∇z|2

= α(Pw · ∇w, u1)− (Pz · ∇w, h1) + (Pw · ∇w, B1)− (Pz · ∇w, B2)

+(Pw · ∇z, h1)− (Pz · ∇z, u1)− (Pz · ∇z, B1) + (Pw · ∇z, B2).

Now, by Giga0-Miyakawa (|A−δPu · ∇v| ≤ C1|Aθu||Aρv|) with δ = γ and θ = ρ = 1/2, we have,
repeating the approach used in Section 5 of [11],

|α(Pw · ∇w, u1)| ≤ C1|∇w|2|Aγu1| ≤ C1C(M)|∇w|2,

|(Pz · ∇w, h1)| ≤ C1C(M)|∇z||∇w| ≤ C1C(M)

2
|∇z|2 + C1C(M)

2
|∇w|2,

Similarly, we may evaluate |(Pw · ∇w, B1)| , |(Pw · ∇w, B2)| , |(Pz · ∇w, B2)| , |(Pw · ∇z, h1)| ,
|(Pz · ∇z, u1)| , |(Pz · ∇z, B1)| , |(Pw · ∇z, B2)| . Then, by using the estimates above, we have:

1
2

d
dt
(α|w|2 + |z|2) + ν|∇w|2 + χ|∇z|2 ≤ D(M)(ν|∇w|2 + χ|∇z|2),

where D(M) is an appropriate constant depending on M, such that D(M) → 0 when M → 0. Now,
we can write:

d
dt
(α|w|2 + |z|2) ≤ 2(D(M)− 1)(ν|∇w|2 + χ|∇z|2).

Thus, considering that D (M) < 1, we conclude that L = 2(1− D(M)) > 0, and then, from the above
inequality, we have:

d
dt
(α|w|2 + |z|2) ≤ −L(ν|∇w|2 + χ|∇z|2). (34)
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On the other hand, recall that we can choose the basis {wi; i = 1, 2, ...} such that the eigenfunctions wi
of A are also eigenfunctions of Aγ and that we can write:

Awi = µiwi, Aγwi = µ
γ
i wi

where µi is the eigenvalue of A. We obtain that:

|∇w| ≤ µ1/2 |w| and |∇z| ≤ µ1/2 |z| ,

then from (34), we can write:

d
dt
(α|w|2 + |z|2) ≤ −L(νµ|w|2 + χµ|z|2)

≤ −Q(α|w|2 + |z|2),

where Q = Lµ min {ν, χ}
(

1
α + 1

)
> 0.

Finally,
(α|w(t)|2 + |z(t)|2 ≤ (α|w(0)|2 + |z(0)|2)e−Qt,

for any t ∈ (0, ∞).
Since w(t) and z(t) are periodic in t, for any t ∈ (−∞,+∞), there exists a positive integer n0 such

that t + n0τ > 0 and:

α|w(t)|2 + |z(t)|2 = α|w(t + n0τ)|2 + |z(t + n0τ)|2.

Hence, it follows,
α|w(t)|2 + |z(t)|2 ≤ (α|w(0)|2 + |z(0)|2)e−Qnt

(n ≥ n0), which implies:
α|w(t)|2 + |z(t)|2 = 0,

and finally, u1 = u2 and h1 = h2. Thus, Theorem 6 is proven.

7. Asymptotic Stability

In this section, we prove the theorem of stability, for the two-dimensional case, by using the
method of [23] and comment on the proof for the three-dimensional case.

Proof of Theorem 7. Let {(u2(t), h2(t))}t≥0 be a strong solution of the system (1)–(3) with
inhomogeneous conditions (u0, h0), which satisfies (9), and suppose {(u1 (t) , h1 (t))}t≥0 is another
strong solution. Let w = u1 − u2 and z = h1 − h2, then by substituting in the system (14), we have:

α
dw
dt

+ νAw + αPw · ∇u1 + αPu2 · ∇w− Pz · ∇h1 − Ph2 · ∇z

+Pw · ∇B1 + PB1 · ∇w− PB2 · ∇z− Pz · ∇B2 = 0,

(35)

dz
dt

+ χAz + Pw · ∇h1 + Pu2 · ∇z− Pz · ∇u1 − Ph2 · ∇w

−Pz · ∇B1 + PB1 · ∇z− PB2 · ∇w + Pw · ∇B2 = 0.

(36)
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Now, taking the L2(Ω) inner product of (35) with Aw and observing that:

α (w · ∇u1, Aw) = α (w · ∇w, Aw) + α (w · ∇u2, Aw) ,

(z · ∇h1, Aw) = (z · ∇zAw) + (z · ∇h2, Aw) ,

we have:
α

2
d
dt
|∇w|2 + ν |Aw|2 = −α (w · ∇w, Aw)− α (w · ∇u2, Aw)

−α (u2 · ∇w, Aw) + (z · ∇z, Aw)

+ (z · ∇h2, Aw) + (h2 · ∇z, Aw)

− (w · ∇B1, Aw)− (B1 · ∇w, Aw)

+ (B2 · ∇z, Aw) + (z · ∇B2, Aw) .

(37)

In the same way, taking the L2(Ω) inner product of (36) with Az and observing that:

(w · ∇h1, Az) = (w · ∇z, Az) + (w · ∇h2, Az)

(z · ∇u1, Az) = (z · ∇w, Az) + (z · ∇u2, Az)

we have:
1
2

d
dt
|∇z|2 + χ |Az|2 = −(w · ∇z, Az)− (w · ∇h2, Az)

−(u2 · ∇z, Az) + (z · ∇w, Az)

+(z · ∇u2, Az) + (h2 · ∇w, Az)

+(z · ∇B1, Az)− (B1 · ∇z, Az)

+(B2 · ∇w, Az)− (w · ∇B2, Az).

(38)

Now, we must limit each term on the right side of the Equality (37),

|−α(w · ∇w, Aw)| ≤ α |w|L4 |∇w|L4 |Aw| ≤ αCε |w|2L4 |∇w|2L4 + αε |Aw|2

≤ αCCεε |w| |∇w| |∇w| |Aw|+ αε |Aw|2

≤ αCCεδ |w|2 |∇w|4 + αCεδ |Aw|2 + αε |Aw|2

≤ αCCεδ |w|2 |∇w|4 + ν

44
|Aw|2 ,

(
αCεδ + αε <

ν

44

)
,

where we have used the fact that u2 is a strong solution of the system (1)–(3),

|−α(w · ∇u2, Aw)| ≤ αC |w|H2 |∇u2| |Aw|
≤ αC |∇u2| |Aw|2 ≤ C (γ1, γ2) |Aw|2 ,

|−α(u2 · ∇w, Aw)| ≤ α |u2|L4 |∇w|L4 |Aw| ≤ αC |u2|1/2 |∇u2|1/2 |∇w|1/2 |Aw|3/2

≤ αCCε |u2|2 |∇u2|2 |∇w|2 + ν

44
|Aw|2 ,

(
αCε <

ν

44

)
,
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|(z · ∇z, Aw)| ≤ |z|L4 |∇z|L4 |Aw| ≤ C |z|1/2 |∇z|1/2 |∇z|1/2 |Az|1/2 |Aw|

≤ C
(

Cε |z| |∇z|2 |Az|+ ε |Aw|2
)

≤ CCε,δ |z|2 |∇z|4 + χ

48
|Az|2 + ν

44
|Aw|2 ,

(
Cε <

ν

44

)
,

|(z · ∇h2, Aw)| ≤ C |z|H2 |∇h2| |Aw| ≤ C |∇h2| |Az| |Aw|

≤ C (γ1, γ2)

2
|Az|2 + C (γ1, γ2)

2
|Aw|2 ,

|(h2 · ∇z, Aw)| ≤ |h2|L4 |∇z|L4 |Aw| ≤ C |h2|1/2 |∇h2|1/2 |∇z|1/2 |Az|1/2 |Aw|
≤ CCε |h2| |∇h2| |∇z| |Az|+ Cε |Aw|2

≤ CCε,δ |h2|2 |∇h2|2 |∇z|2 + Cδ |Az|+ Cε |Aw|2

≤ CC (γ1, γ2)Cε,δ |∇z|2 + χ

48
|Az|+ ν

44
|Aw|2 ,

|(w · ∇B1, Aw)| ≤ C |w|H2 |∇B1| |Aw| ≤ C (γ1, γ2) |Aw|2 , (C |∇B1| ≤ C (γ1, γ2)) ,

|(B1 · ∇w, Aw)| ≤ |B1|L4 |∇w|L4 |Aw| ≤ C |B1|1/2 |∇B1|1/2 |∇w|1/2 |Aw|3/2

≤ CCε |B1|2 |∇B1|2 |∇w|2 + ν

44
|Aw|2 ,

|(B2 · ∇z, Aw)| ≤ |B2|L4 |∇z|L4 |Aw| ≤ C |B2|1/2 |∇B2|1/2 |∇z|1/2 |Az|1/2 |Aw|
≤ CCε |B2| |∇B2| |∇z| |Az|+ Cε |Aw|2

≤ CCε,δ |B2|2 |∇B2|2 |∇z|2 + Cδ |Az|+ Cε |Aw|2

≤ CCε,δ |B2|2 |∇B2|2 |∇z|2 + χ

48
|Az|+ ν

44
|Aw|2 ,

|(z · ∇B2, Aw)| ≤ C |z|H2 |∇B2| |Aw| ≤ C |∇B2| |Az| |Aw|

≤ C |∇B2|
(

Cε |Az|2 + ε |Aw|2
)

≤ χ

48
|Az|2 + ν

44
|Aw|2 .

Now, we must limit each term on the right side of the Equality (38),

|−(w · ∇z, Az)| ≤ |w|L4 |∇z|L4 |Az| ≤ C |w|1/2 |∇w|1/2 |∇z|1/2 |Az|3/2

≤ Cδ |w|2 |∇w|2 |∇z|2 + δ |Az|2

≤ Cδτ |w|4 |∇w|4 + τ |∇z|4 + χ

48
|Az|2 ,

|−(w · ∇h2, Az)| ≤ C |w|H2 |∇h2| |Az| ≤ C |∇h2| |Aw| |Az|

≤ C (γ1, γ2)

2
|Aw|2 + C (γ1, γ2)

2
|Az|2 ,

|(u2 · ∇z, Az)| ≤ CCδ |u2|2 |∇u2|2 |∇z|2 + χ

48
|Az|2 ,

|(z · ∇w, Az)| ≤ |z|L4 |∇w|L4 |Az| ≤ C |z|1/2 |∇z|1/2 |∇w|1/2 |Aw|1/2 |Az|

≤ Cδ,ε,λ |z|4 |∇z|4 + λ |∇w|4 + ν

44
|Aw|2 + χ

48
|Az|2 ,
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|(z · ∇u2, Az)| ≤ C |z|H2 |∇u2| |Az| ≤ C |∇u2| [|∇z|+ |Az|] |Az|
≤ C |∇u2| |∇z| |Az|+ C |∇u2| |Az|2

≤ CCδ |∇u2|2 |∇z|2 + χ

48
|Az|2 + C (γ1, γ2) |Az|2 ,

|(h2 · ∇w, Az)| ≤ |h2|L4 |∇w|L4 |Az| ≤ C |h2|1/2 |∇h2|1/2 |∇w|1/2 |Aw|1/2 |Az|
≤ Cδ |h2| |∇h2| |∇w| |Aw|+ δ |Az|2

≤ Cδ,ε |h2|2 |∇h2|2 |∇w|2 + ν

44
|Aw|2 + χ

48
|Az|2 ,

|(B1 · ∇z, Az)| ≤ CCε |B1|2 |∇B1|2 |∇z|2 + χ

44
|Az|2

≤ CCε |∇z|2 + κ
48
|Az|2 ,

(
CCε |B1|2 |∇B1|2 ≤ CCε

)
,

|(z · ∇B1, Az)| ≤ C |z|H2 |∇B1| |Az| ≤ C |∇B1| [|∇z|+ |Az|] |Az|
≤ C |∇B1| |∇z| |Az|+ C |∇B1| |Az|2

≤ CCδ |∇B1|2 |∇z|2 + Cδ |Az|2 + C |∇B1| |Az|2

≤ CCδ |∇z|2 + χ

48
|Az|2 + C (γ1, γ2) |Az|2 , (C |∇B1| ≤ C (γ1, γ2)) ,

|(w · ∇B2, Az)| ≤ C |w|H2 |∇B2| |Az| ≤ C |∇B2| |Aw| |Az|
≤ C |∇B2| ε |Aw|2 + C |∇B2|Cδ |Az|2

≤ ν

44
|Aw|2 + C (γ1, γ2) |Az|2 , (C |∇B2|Cδ ≤ C (γ1, γ2)) ,

|(B2 · ∇w, Az)| ≤ |B2|L4 |∇w|L4 |Az| ≤ C |B2|1/2 |∇B2|1/2 |∇w|1/2 |Aw|1/2 |Az|
≤ Cδ |B2| |∇B2| |∇w| |Aw|+ δ |Az|2

≤ CCδ,ε |∇w|2 + ν

44
|Aw|2 + χ

48
|Az|2 .

Adding Equalities (37) and (38), from the previous estimates, we obtain:

d
dt

(
α |∇w|2 + |∇z|2

)
+

(
3
2

ν− 6C (γ1, γ2)

)
|Aw|2 +

(
3
2

χ− 8C (γ1, γ2)

)
|Az|2

≤ 2αCCεδ |w|2 |∇w|4 + 2αCCε |u2|2 C (γ1, γ2) |∇w|2 + 2CCε,δ |z|2 |∇z|4

+2CC (γ1, γ2)Cε,δ |∇z|2 + 2Cε |B1|2 |∇B1|2 |∇w|2 + 2CCε,δ |B2|2 |∇B2|2 |∇z|2

+2Cδτ |w|4 |∇w|4 + 2Cε |u2|2 C (γ1, γ2) |∇z|2 + 2Cδ,ε,λ |z|4 |∇z|4

+2λ |∇w|4 + 2CCδC (γ1, γ2) |∇z|2 + 2Cδ,ε |h2|2 C (γ1, γ2) |∇w|2

+2CCε |B1|2 |∇B1|2 |∇z|2 + 2CCδ |∇B1|2 |∇z|2 + 2Cδ,ε |B2|2 |∇B2|2 |∇w|2 .

Let:

Π = 2 max



αCCεδ, αCCε |u2|2 , CCε,δ, CCε,δ, Cε |B1|2 |∇B1|2 ,

CCε,δ |B2|2 |∇B2|2 , Cδτ , Cε |u2|2 , Cδ,ε,λ, λ, CCδ,

Cδ,ε |h2|2 , CCε |B1|2 |∇B1|2 , CCδ |∇B1|2 , Cδ,ε |B2|2 |∇B2|2


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d
dt

(
α |∇w|2 + |∇z|2

)
+

(
3
2

ν− 6C (γ1, γ2)

)
|Aw|2 +

(
3
2

χ− 8C (γ1, γ2)

)
|Az|2

≤ Π
{[
|w|2 |∇w|2 + 2C (γ1, γ2) + 2 + |w|4 |∇w|2 + |∇w|2

]
|∇w|2

+
[
|z|2 |∇z|2 + 3C (γ1, γ2) + 3 + |z|4 |∇z|2

]
|∇z|2

}
.

(39)

Now, we can choose γ1 and γ2 small, so that the following inequalities hold,

C (γ1, γ2) <
ν

12
and C (γ1, γ2) <

χ

16
,

then, from Inequality (39), we get,

d
dt

(
α |∇w|2 + |∇z|2

)
+ ν |Aw|2 + χ |Az|2

≤ Π
{[

1
α

(
1 + |w|2 + |w|4

)
|∇w|2 + 2

α
C (γ1, γ2) +

2
α

]
α |∇w|2

+
[(
|z|2 + |z|4

)
|∇z|2 + 3C (γ1, γ2) + 3

]
|∇z|2

}
,

or
d
dt

(
α |∇w|2 + |∇z|2

)
+ ν |Aw|2 + χ |Az|2

≤ ΠP(t)
(

α |∇w|2 + |∇z|2
)

,

(40)

where:

P(t) =
1
α

(
1 + |w|2 + |w|4

)
|∇w|2 +

(
|z|2 + |z|4

)
|∇z|2 +

(
2
α
+ 3
)
(C (γ1, γ2) + 1) .

Then, from (40) and (34), we have:

d
dt

(
α |w|2 + |z|2

)
+ L

(
ν |∇w|2 + χ |∇z|2

)
≤ 0, (41)

d
dt

(
α |∇w|2 + |∇z|2

)
+ ν |Aw|2 + χ |Az|2

≤ ΠP (t)
(

α |∇w|2 + |∇z|2
)

.

(42)

Note that from (41), we can infer that:

α |w(t)|2 + |z(t)|2 ≤ e−βLt
(

α |w(0)|2 + |z(0)|2
)

, ∀t ≥ 0, (43)

where β = min
{ ν

α
, χ
}

.

Now, to derive the bound for α |∇w|2 + |∇z|2 , we take g(t) = α |∇w(t)|2 + |∇z(t)|2 and rewrite
(42) as:

g′ (t) ≤ ΠP (t) g (t) . (44)

Now, for any positive t1 > 0, by integrating (41) over the interval [t1, t1 + 1] , we obtain that:

Lβ
∫ t1+1

t1

(
α |∇w(s)|2 + |∇z(s)|2

)
ds ≤ α |w(t1)|2 + |z(t1)|2 . (45)
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By the mean value theorem, there exists a number t0 ∈ [t1, t1 + 1] such that:

Lβ
(

α |∇w(t0)|2 + |∇z(t0)|2
)
≤ α |w(t1)|2 + |z(t1)|2 ≤ e−βLt1

(
α |w(0)|2 + |z(0)|2

)
. (46)

Next, for any 0 < δ ≤ 1, the integration of (44) over the interval [t0, t0 + δ], we obtain:

g(t0 + δ) ≤ e
∫ t0+δ

t0
ΠP(s)dsg(t0) ≤ (Lβ)−1 e−βLt1

(
α |w(0)|2 + |z(0)|2

)
e
∫ t0+1

t0
ΠP(s)ds. (47)

Note that: ∫ t0+1

t0

ΠP (s) ds = Π
∫ t0+1

t0

P (s) ds

= Π
∫ t0+1

t0

[
1
α

(
1 + |w|2 + |w|4

)
|∇w|2 +

(
|z|2 + |z|4

)
|∇z|2

]
ds

+Π
∫ t0+1

t0

[(
2
α
+ 3
)
(C (γ1, γ2) + 1)

]
ds,

(48)

then by (43) and (45), each term of the above integral is bound and does not depend on the choice of
t1, t0 and δ. Hence, we infer from (47) that there exists a constant c1 independent of t1 and t0 such that:

g (t1 + 1) = g (t0 + (t1 + 1− t0)) ≤ c1e−βLt1 ,

which implies that:
α |∇w(t)|2 + |∇z(t)|2 ≤ c1e−βL(t−1),

for any t > 1. Thus, the proof of the theorem is complete.

Remark 7. In this proof, in order to estimate some terms, for example the term |−α (w · ∇w, Aw)| , we use
the following Sobolev and Ladyzhenskaya inequality for ϕ ∈ H1,

|ϕ|L4 ≤ C |ϕ|1/2
L2 |∇ϕ|1/2

L2 ,

where C is a constant depending on the size of the domain, which is valid for the two-dimensional case.
The three-dimensional case is similar, but we would have to use the inequality:

|ϕ|L4 ≤ C |ϕ|1/4
L2 |∇ϕ|3/4

L2 ;

however, this three-dimensional case will not be done in this work.

Now, we prove Theorem 9 on stability.

Proof. Let (u0, h0) ∈ V × V and F, G ∈ H1(τ; H) (τ > 0). We assume that (u0, h0) and F, G satisfy
the following conditions:

sup0≤t≤τ |F|L N
2 (Ω)

+ sup0≤t≤τ |G|L N
2 (Ω)

≤ M,

sup0≤t≤τ |∇u0(t)|2 ≤ C(M0, M),

sup0≤t≤τ |∇h0(t)|2 ≤ C(M0, M).

Now, we denote by (u1(x, y, z, t), h1(x, y, z, t)) the solution to the system (1) with the initial condition
(u0, h0), which is possible by Theorem 7.
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Now, we should show that the sequences {un
1} and {hn

1} given by:

un
1 (x, y, z) ≡ u1(x, y, z, nτ); hn

1 (x, y, z) = h1(x, y, z, nτ).

are Cauchy sequences in L2(Ω). In fact, because of the periodicity of the solutions for positive integers
m > k, we can write a strong solution of the system (1):

u2(x, y, z, t) ≡ u1(x, y, z, t + (m− k)τ),

h2(x, y, z, t) ≡ h1(x, y, z, t + (m− k)τ),

with the initial condition (u2(x, y, z, 0), h2(x, y, z, 0)).
Moreover, we can see that:

θ (x, y, z, t) = u1(x, y, z, t)− u2(x, y, z, t),

ξ (x, y, z, t) = h1(x, y, z, t)− h2(x, y, z, t)

satisfy the system (33). Hence, taking t = kτ, we obtain from (43) that:

α|θ(t)|2 + |ξ(t)|2 ≤ (α|θ(0)|2 + |ξ(0)|2) exp(−βLkτ)

or:
α|u1 (kτ)− u1 (mτ) |2 + |h1 (kτ)− h1 (mτ) |2 ≤ (α|θ(0)|2 + |ξ(0)|2)e(−βLkτ),

but under the hypotheses:
α|θ(0)|2 + |ξ(0)|2 ≤ 2C (M0, M) ,

thus, we deduce that the sequences
{

un
1
}

n∈N and {hn
1}n∈N are Cauchy sequences in L2(Ω).

Now, let u1(x, y, z) and h1(x, y, z) be the L2 limit of
{

un
1
}

n∈N and
{

hn
1
}

n∈N, respectively. On the
other hand, we know that:

sup
0≤t≤τ

|un
1 |2H1 ≤ C(M0, M) and sup

0≤t≤τ

|hn
1 |2H1 ≤ C(M0, M).

Thus, we obtain subsequences
{

nj
}

j∈N and {nl}l∈N of N such that:

∇u
nj
1 ⇀ ∇u1 and ∇hnl

1 ⇀ ∇h1 in L2(Ω) weakly

Thus, (u1, h1) ∈ V ×V and satisfy:

|u1|2H1 ≤ C(M0, M) and |h1|2H1 ≤ C(M0, M).

On the other hand, we denote by (u(x, y, z, t), h(x, y, z, t)) the solution of the system (1) with the initial
condition (u1, h1), and we will show that this is time-periodic. In fact, let:

θ (x, y, z, t) = u(x, y, z, t)− u1(x, y, z, t + nτ)

ξ(x, y, z, t) = h(x, y, z, t)− h1(x, y, z, t + nτ)

and we observe that (θ, ξ) satisfies the system (33). Then, by (43), we obtain:

α|u(τ)− un+1
1 |2 + |h(τ)− hn+1

1 |2 ≤ (α|u1 − un
1 |2 + |h1 − hn

1 |2)e(−βLτ).
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Finally, taking the limit n→ ∞, we get:

α|u(τ)− u(0)|2 + |h(τ)− h(0)|2 = 0.

8. Navier–Stokes Equation

Note that the Navier–Stokes equations:

∂u
∂t
− η

ρ
∆u + u · ∇u = f − 1

ρ
∇p∗,

u = β(x, t) on ∂Ω,

div u = 0

are a particular case of the MHD equations when the magnetic field h is identically zero; in this case,
when h = 0, we prove the existence and uniqueness of periodic strong solutions to the NS equations
with inhomogeneous boundary conditions. In [22], Morimoto showed the existence and uniqueness of
weak solutions with inhomogeneous boundary conditions to the NS equations. On the other hand,
when the magnetic field h is identically zero, we can reproduce the results on the asymptotic stability,
obtained by Hsia et al. for the Navier–Stokes equations in [23].
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