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Abstract

:

In this paper, we prove that on any contact manifold (M,ξ) there exists an arbitrary C∞-small contactomorphism which does not admit a square root. In particular, there exists an arbitrary C∞-small contactomorphism which is not “autonomous”. This paper is the first step to study the topology of Cont0(M,ξ)∖Aut(M,ξ). As an application, we also prove a similar result for the diffeomorphism group Diff(M) for any smooth manifold M.
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1. Introduction


For any closed manifold M, the set of diffeomorphisms Diff(M) forms a group and any one-parameter subgroup f:R→Diff(M) can be written in the following form


f(t)=exp(tX).











Here, X∈Γ(TM) is a vector field and exp:Γ(TM)→Diff(M) is the time 1 flow of vector fields. From the inverse function theorem, one might expect that there exists an open neighborhood of the zero section U⊂Γ(TM) such that


exp:U⟶Diff(M)








is a diffeomorphism onto an open neighborhood of Id∈Diff(M). However, this is far from true ([1], Warning 1.6). So one might expect that the set of “autonomous” diffeomorphisms


Aut(M)=exp(Γ(TM))








is a small subset of Diff(M).



For a symplectic manifold (M,ω), the set of Hamiltonian diffeomorphisms Hamc(M,ω) contains “autonomous” subset Aut(M,ω) which is defined by


Aut(M,ω)={exp(X)|Xisatime−independentHamiltonianvectorfieldwhosesupportiscompact}.











In [2], Albers and Frauenfelder proved that on any symplectic manifold there exists an arbitrary C∞-small Hamiltonian diffeomorphism not admitting a square root. In particular, there exists an arbitrary C∞-small Hamiltonian diffeomorphism in Hamc(M,ω)∖Aut(M,ω).



Polterovich and Shelukhin used spectral spread of Floer homology and Conley conjecture to prove that Hamc(M,ω)∖Aut(M,ω)⊂Hamc(M,ω) is C∞-dense and dense in the topology induced from Hofer’s metric if (M,ω) is closed symplectically aspherical manifold ([3]). The author generalized this theorem to arbitrary closed symplectic manifolds and convex symplectic manifolds ([4]).



One might expect that “contact manifold” version of these theorems hold. In this paper, we prove that there exists an arbitrary C∞-small contactomorphism not admitting a square root. In particular, there exists an arbitrary C∞-small contactomorphism in Cont0c(M,ξ)∖Aut(M,ξ). So, this paper is a contact manifold version of [2]. As an application, we prove that there exists an arbitrary C∞-small diffeomorphism in Diff0c(M) not admitting a square root. This also implies that there exists an arbitrary C∞-small diffeomorphism in Diff0c(M)∖Aut(M).




2. Main Result


Let M be a smooth (2n+1)-dimensional manifold without boundary. A 1-form α on M is called contact if (α∧(dα)n)(p)≠0 holds on any p∈M. A codimension 1 tangent distribution ξ on M is called contact structure if it is locally defined by ker(α) for some (locally defined) contact form α. A diffeomorphism ϕ∈Diff(M) is called contactomorphism if ϕ*ξ=ξ holds (i.e., ϕ preserves the contact structure ξ). Let Cont0c(M,ξ) be the set of compactly supported contactomorphisms which are isotopic to Id through compactly supported contactomorphisms. In other words, Cont0c(M,ξ) is a connected component of compactly supported contactomorphisms (Contc(M,ξ)) which contains Id.


Cont0c(M,ξ)={ϕ1|ϕt(t∈[0,1])isanisotopyofcontactomorphismsϕ0=Id,∪t∈[0,1]supp(ϕt)iscompact}











Let X∈Γc(TM) be a compactly supported vector field on M. X is called contact vector field if the flow of X preserves the contact structure ξ (i.e., exp(X)*ξ=ξ holds). Let Γξc(TM) be the set of compactly supported contact vector fields on M and let Aut(M,ξ) be their images


Aut(M,ξ)={exp(X)|X∈Γξc(TM)}.











We prove the following theorem.



Theorem 1.

Let (M,ξ) be a contact manifold without boundary. Let W be any C∞-open neighborhood of Id∈Cont0c(M,ξ). Then, there exists ϕ∈W such that


ϕ≠ψ2








holds for any ψ∈Cont0c(M,ξ). In particular, W∖Aut(M,ξ) is not empty.





Remark 1.

If ϕ is autonomous (ϕ=exp(X)), ϕ has a square root ψ=exp(12X).





Corollary 1.

The exponential map exp:Γξc(TM)→Cont0c(M,ξ) is not surjective.





We also consider the diffeomorphism version of this theorem and corollary. Let M be a smooth manifold without boundary and let Diffc(M) be the set of compactly supported diffeomorhisms


Diffc(M)={ϕ∈Diff(M)|supp(ϕ)iscompact}.











Let Diff0c(M) be the connected component of Diffc(M) (i.e., any element of Diff0c(M) is isotopic to Id). We define the set of autonomous diffeomorphisms by


Aut(M)={exp(X)|X∈Γc(TM)}.











By combining the arguments in this paper and in [2], we can prove the following theorem.



Theorem 2.

Let M be a smooth manifold without boundary. Let W be any C∞-open neighborhood of Id∈Diff0c(M). Then, there exists ϕ∈W such that


ϕ≠ψ2








holds for any ψ∈Diffc(M). In particular, W∖Aut(M) is not empty.





Corollary 2.

The exponential map exp:Γc(TM)→Diff0c(M) is not surjective.






3. Milnor’s Criterion


In [1], Milnor gave a criterion for the existence of a square root of a diffeomorphism. We use this criterion later. We fix l∈N≥2 and a diffeomorphism ϕ∈Diff(M). Let Pl(ϕ) be the set of “l-periodic orbits” which is defined by


Pl(ϕ)={(x1,⋯,xl)|xi≠xj(i≠j),xj=ϕj−1(x1),x1=ϕ(xl)}/∼.











This equivalence relation ∼ is given by the natural Z/lZ-action


(x1,⋯,xl)→(xl,x1,⋯,xl−1).











Proposition 1

(Milnor [1], Albers-Frauenfelder [2]). Assume that ϕ∈Diff(M) has a square root (i.e., there exists ψ∈Diff(M) such that ϕ=ψ2 holds). Then, there exists a free Z/2Z-action on P2k(ϕ) (k∈N). In particular, ♯P2k(ϕ) is even if ♯P2k(ϕ) is finite.






4. Proof of Theorem 1


Proof. 

Before stating the proof of Theorem 1, we introduce the notion of a contact Hamiltonian function. Let M be a smooth manifold without boundary and let α∈Ω1(M) be a contact form on M (ξ=ker(α)). A Reeb vector field Rα∈Γ(TM) is the unique vector field which satisfies


α(Rα)=1dα(Rα,·)=0.











For any smooth function h∈Cc∞(M), there exists only one contact vector field Xh∈Γξc(TM) which satisfies


Xh=h·Rα+ZwhereZ∈ξ.











In fact, Xh is a contact vector field if and only if LXh(α)|ξ=0 holds (L is the Lie derivative). So,


LXh(α)(Y)=dh(Y)+dα(Xh,Y)=dh(Y)+dα(Z,Y)=0








holds for any Y∈ξ. Because dα is non-degenerate on ξ, above equation determines Z∈ξ uniquely. Xh is the contact vector field associated to the contact Hamiltonian function h. We denote the time t flow of Xh by ϕht and time 1 flow of Xh by ϕh.



Let (M,ξ) be a contact manifold without boundary. We fix a point p∈(M,ξ) and a sufficiently small open neighborhood U⊂M of p. Let (x1,y1,⋯,xn,yn,z) be a coordinate of R2n+1. Let α0∈Ω1(R2n+1) be a contact form


α0=12∑1≤i≤n(xidyi−yidxi)+dz








on R2n+1. By using the famous Moser’s arguments, we can assume that there exists an open neighborhood of the origin V⊂R2n+1 and a diffeomorphism


F:V⟶U



(1)




which satisfies


ξ|U=ker((F−1)*α0).











So, we first prove the theorem for (V,ker(α0)) and apply this to (M,ξ).



We fix k∈N≥1 and R>0 so that


{(x1,y1,⋯,z)∈R2n+1||(x1,⋯,yn)|<R,|z|<R}⊂V








holds. Let f∈Cc∞(V) be a contact Hamiltonian function. Then its contact Hamiltonian vector field Xf can be written in the following form


Xf(x1,⋯,z)=∑1≤i≤n(−∂f∂yi+xi2∂f∂z)∂∂xi+∑1≤i≤n(∂f∂xi+yi2∂f∂z)∂∂yi+(f−∑1≤i≤nxi2∂f∂xi−∑1≤i≤nyi2∂f∂yi)∂∂z.











Let e:R2n⟶R be a quadric function


e(x1,y1,⋯,xn,yn)=x12+y12+∑2≤i≤nxi2+yi22.











We define a contact Hamiltonian function h on V by


h(x1,y1,⋯,xn,yn,z)=β(z)ρ(e(x1,y1,⋯,xn,yn)).











Here, β:R→[0,1] and ρ:R≥0→R≥0 are smooth functions which satisfy the following five conditions.




	
supp(ρ)⊂[0,R22]



	
ρ(r)≥ρ′(r)·r, −π2k<ρ′(r)≤π2k



	
There exists an unique a∈[0,R22] which satisfies the following conditions


ρ′(r)=π2k⟺r=aρ(a)=π2k·a.











	
supp(β)⊂[−R2,R2]



	
β(0)=1, β−1(1)=0








Then, we can prove the following lemma.



Lemma. 1.

Let h∈Cc∞(V) be a contact Hamiltonian function as above. Then,


[q,ϕh(q),⋯,ϕh2k−1(q)]∈P2k(ϕh)








holds if and only if


q∈{(x1,y1,0,⋯,0)∈V|x12+y12=a}=def.Sa








holds.





Proof of Lemma 1.

In order to prove this lemma, we first calculate the behavior of the function z(ϕht(q)) for a fixed q∈V (Here, z is the (2n+1)-th coordinate of R2n+1).


ddt(z(ϕht(q)))=h−∑1≤i≤nxi2∂h∂xi−∑1≤i≤nyi2∂h∂yi=β(z){ρ(e)−∑1≤i≤nxi2∂∂xi(ρ(e))−∑1≤i≤nyi2∂∂yi(ρ(e))}=β(z){ρ(e)−ρ′(e)·e}≥0











In the last inequality, we used the condition 2. So, this inequality implies that


ϕh2k(q)=q⟹ddt(z(ϕht(q)))=0








holds.



Next, we study the behavior of xi(ϕht(q)) and yi(ϕht(q)). Let πi be the projection


πi:R2n+1⟶R2.(x1,y1,⋯,xn,yn,z)↦(xi,yi)











Then, Yhi=πi(Xh) can be decomposed into the angular component Yhi,θ and the radius component Yhi,r as follows


Yhi,θ(x1,y1,⋯,z)=−∂h∂yi∂∂xi+∂h∂xi∂∂yiYhi,r(x1,y1,⋯,z)=(12∂h∂z)(xi∂∂xi+yi∂∂yi).











Let wi be the complex coordinate of (xi,yi) (wi=xi+−1yi). Then, the angular component causes the following rotation on wi, if we ignore the z-coordinate,


arg(wi)⟶arg(wi)+2ρ′(e(x1,⋯,yn))β(z)Cit










Ci=1i=1122≤i≤n.











By conditions 2, 3, and 5 in the definition of β and ρ, |2ρ′(e(x1,⋯,yn))β(z)Ci| is at most 2π2k and the equality holds if and only if (x1,y1,⋯,xn,yn,z)∈Sa holds. On the circle Sa, ϕh is the 2π2k-rotation of the circle Sa. This implies that Lemma 1 holds. □





Next, we perturb the contactomorphism ϕh. Let (r,θ) be a coordinate of (x1,y1)∈R2∖(0,0) as follows


x1=rcosθ,y1=rsinθ.











We fix ϵk>0. Then ϵk(1−cos(kθ)) is a contact Hamiltonian function on R2∖(0,0)×R2n−1 and its contact Hamiltonian vector field can be written in the following form


Xϵk(1−cos(kθ))=−ϵkkrsin(kθ)∂∂r+ϵk(1−cos(kθ))∂∂z.











So ϕϵk(1−cos(kθ)) only changes the r of (x1,y1)-coordinate and z-coordinate as follows


(r,θ,x2,y2,⋯,xn,yn,z)↦(r2−2ϵkksin(kθ),θ,x2,⋯,yn,z+ϵk(1−cos(kθ))).











We fix two small open neighborhoods of the circle Sa as follows


Sa⊂W1⊂W2⊂R2∖(0,0)×R2n−1Xh(p)≠0onp∈W2.











We also fix a cut-off function η:R2n+1→[0,1] which satisfies the following conditions


η((x1,⋯,z))=1((x1,⋯,z)∈W1)η((x1,⋯,z))=0((x1,⋯,z)∈R2n+1∖W2)ϕhj(R2n+1∖W2)∩supp(η)=∅(1≤j≤2k).











We will use the last condition in the proof of Lemma 2. Then, η(x1.⋯,z)·ϵk(1−cos(kθ)) is defined on R2n+1. We denote this contact Hamiltonian function by gϵk. We define ϕϵk∈Cont0c(R2n+1,ker(α0)) by the composition ϕgϵk∘ϕh.



Lemma. 2.

We take ϵk>0 sufficiently small. We define 2k points {ai}1≤i≤2k by


ai=(acos(iπk),asin(iπk),0,⋯,0))∈Sa.











Then P2k(ϕϵk) has only one point [a1,a2,⋯,a2k].





Proof of Lemma 2.

The proof of this lemma is as follows. On W1, ϕgϵk only changes the r-coordinate of (x1,y1) and z-coordinate. So, ϕϵk increases the angle of each (xi,yi) coordinate at most 2π2k and the equality holds on only Sa. On the circle Sa, the fixed points of ϕgϵk are 2k points {ai}. From the arguments in the proof of Lemma 1, this implies that


[a1,a2,⋯,a2k]∈P2k(ϕϵk)








holds and this is the only element of P2k(ϕϵk) on W1. So, it suffices to prove that this is the only element in P2k(ϕϵk) if ϵk>0 is sufficiently small. We prove this by contradiction. Let {ϵk(j)>0}j∈N be a sequence which satisfies ϵk(j)→0. We assume that there exists a sequence


[b1(j),⋯,b2k(j)]∈P2k(ϕϵk(j))∖[a1,a2,⋯,a2k].











We may assume without loss of generality that b1(j)∉W1 holds because


(b1(j),⋯,b2k(j))∉W12k








holds. We may assume that b1(j) converges to a point b∉W1. Then, ϕh2k(b)=b holds. If Xh(b)≠0, ϕh increases the angle of every (xi,yi) coordinate less than 2π2k and this contradicts ϕh2k(b)=b. Thus Xh(b)=0 holds. Because we assumed Xh(p)≠0 on p∈W2, Xh(b)=0 implies that b∉W2 holds. Let N∈N be a large integer so that b1(N)∉W2 holds. Then, ϕhj(R2n+1∖W2)∩supp(η)=∅(1≤j≤2k) implies that ϕϵk(N)j(b1(N))=ϕhj(b1(N)) holds for 1≤j≤2k and [b1(N),⋯,b2k(N)]∈P2k(ϕh) holds. This contradicts Lemma 1 because b1(N)∉Sa. So, we proved Lemma 2. □





We assume that ϵk>0 is sufficiently small so that the conclusion of Lemma 2 holds and we define ϕk by ϕk=ϕϵk. Thus, we have constructed ϕk∈Cont0c(V,Ker(α0)) which does not admit a square root for each k∈N. Without loss of generality, we may assume that ϵk→0 holds. Then ϕk converges to Id.



Finally, we prove Theorem 1. We define ψk∈Cont0c(M,ξ) for k∈N as follows. Recall that F is a diffeomorphism which was defined in Equation (1).


ψk(x)=F∘ϕk∘F−1(x)x∈Uxx∈M∖U











Lemma 2 implies that


P2k(ψk)={[F(a1),⋯,F(a2k)]}








holds. Proposition 1 implies that ψk does not admit a square root. Because p∈M is any point and U is any small open neighborhood of p, we proved Theorem 1. □






5. Proof of Theorem 2


Proof. 

Let M be a m-dimensional smooth manifold without boundary. We fix a point p∈M. Let U be an open neighborhood of p and let V⊂Rm be an open neighborhood of the origin such that there is a diffeomorphism


F:V⟶U.











In order to prove Theorem 2, it suffices to prove that there exists a sequence ψk(k∈N) so that




	
ψk does not admit a square root



	
supp(ψk)⊂U



	
ψk⟶Id as k⟶+∞








hold.



First, assume that m is odd (m=2n+1). In this case, α0 is a contact form on V. Let ϕk be a contactomorphism which we constructed in the proof of Theorem 1




	
ϕk∈Contoc(V,ker(α0))



	
♯P2k(ϕk)=1.








We define ψk∈Diff0c(M) by


ψk(x)=F∘ϕk∘F−1(x)x∈Uxx∈M∖U.











Then, ♯P2k(ψk)=1 holds and this implies that ψk does not admit a square root and satisfies the above conditions. So, we proved Theorem 2 if m is odd.



Next, assume that m is even (m=2n). Let ω0 be a standard symplectic form on (x1,y1,⋯,xn,yn)∈R2n which is defined by


ω0=∑1≤i≤ndxi∧dyi.











By using the arguments in [2], we can construct a sequence ϕk∈Hamc(V,ω0) for k∈N which satisfies the following conditions




	
♯P2k(ϕk)=1



	
ϕk⟶Id as k⟶+∞.








We define ψk∈Diff0c(M) by


ψk=F∘ϕk∘F−1x∈Uxx∈M∖U.











Then ♯P2k(ψk)=1 holds and this implies that ψk does not admit a square root and satisfies the above conditions. Hence, we have proved Theorem 2. □
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