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Abstract: We consider a singularly perturbed integral equation with weakly and rapidly varying
kernels. The work is a continuation of the studies carried out previously, but these were focused
solely on rapidly changing kernels. A generalization for the case of two kernels, one of which
is weakly, and the other rapidly varying, has not previously been carried out. The aim of this
study is to investigate the effects introduced into the asymptotics of the solution of the problem
by a weakly varying integral kernel. In the second part of the work, the problem of constructing
exact (more precise, pseudo-analytic) solutions of singularly perturbed problems is considered on
the basis of the method of holomorphic regularization developed by one of the authors of this paper.
The power series obtained with the help of this method for the solutions of singularly perturbed
problems (in contrast to the asymptotic series constructed in the first part of this paper) converge in
the usual sense.

Keywords: singularly perturbed; integral equations; regularization of the integral; weakly and
rapidly changing kernel; holomorphic integrals; family of homomorphisms; asymptotic and
pseudoholomorphic solutions

1. Introduction

In the first part of this work, we consider a singularly perturbed equation in which integral
operators contain both weakly and rapidly changing kernels. The problem of constructing a regularized
asymptotic solution for this problem, uniformly applicable over the entire time interval under
consideration, was previously solved but only for rapidly varying kernels (see, for example
References [1–4]). A generalization for the case of two kernels, one of which is weakly, and the other
rapidly varying, has not previously been carried out. The aim of the present study is to investigate
the effects introduced into the asymptotics of the solution by a weakly varying kernel. Notice that
this problem was not considered from the point of view of other methods of asymptotic integration
(for example, using the methods of References [5–7]).

The second part of our paper is devoted to the construction of approximate solutions of singularly
perturbed problems using the method of holomorphic regularization [8,9]. The analysis of asymptotic
methods for solving singularly perturbed problems shows that the solutions of such problems depend
in two ways on a small parameter: regularly and singularly. This dependence is especially vividly
demonstrated by the method of regularization of Lomov. Moreover, regularized series representing
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solutions of singularly perturbed problems can converge in the usual sense. In this connection,
it became necessary to study a special class of functions—pseudoholomorphic functions. This very
important part of the complex analysis is designed to substantiate the main provisions of the so-called
analytic theory of singular perturbations. On the other hand, the relevance of the theory is also
supported by the fact that pseudoholomorphic functions, in contrast to holomorphic functions,
are determined when the conditions of the implicit function theorem are violated.

The concept of a pseudoanalytic (pseudoholomorphic) function and the associated concept of
an essentially singular manifold are of a general mathematical nature, although they arose in the
framework of the regularization method for singular perturbations. First of all, they reflect the new
concept of a pseudoholomorphic solution of singularly perturbed problems, i.e., such a solution,
which is representable in the form of a series converging in the usual (but not asymptotic) sense in
powers of a small parameter. We must also take into account the fact that the modern mathematical
theory of the boundary layer [1], along with the Vasilyeva–Butuzov–Nefedov boundary-function
method [5] and the method of barrier functions [10], widely uses the notion of a pseudoholomorphic
solution. The importance of considering singularly perturbed problems from the standpoint of
the method of pseudoholomorphic solutions is illustrated by applications (see, for example,
References [11,12]).

2. An Equivalent Integro-Differential System and Its Regularization

We consider the singularly perturbed equation

εy (t, ε) =
∫ t

0
e

1
ε

∫ t
s µ(θ)dθK2(t, s)y(s, ε)ds +

∫ t

0
K1(t, s)y(s, ε)ds + h(t), t ∈ [0, T]. (1)

Differentiating Equation (1) with respect to t, will have

ε2
(

dy(t,ε)
dt

)
=

t
∫
0

(
µ (t) e

∫ t
s µ(θ) dθ

ε K2 (t, s) y (s, ε) + ε · e
∫ t

s µ(θ) dθ
ε

(
∂
∂t K2 (t, s)

)
y (s, ε)

)
ds+

+ε · K2 (t, t) y (t, ε) + ε ·
t
∫
0

(
∂
∂t K1 (t, s)

)
y (s, ε) ds + ε · K1 (t, t) y (t, ε) + ε · d

dt h (t) ,

or
ε2 dy

dt = (K1 (t, t) + K2 (t, t)) εy + µ (t) z+

+
t
∫
0

e
∫ t

s µ(θ) dθ
ε ∂

∂ t K2 (t, s) εy (s, ε) ds +
t
∫
0

∂
∂ t K1 (t, s) εy (s, ε) ds + ε · d

dt h (t) ,
(2)

where z (t, ε) =
t
∫
0

e
1
ε

t
∫
s

µ(θ)dθ
K2 (t, s) y (s, ε) ds. By differentiating this function with respect to t,

we also obtain

ε
dz
dt

= µ (t) · z +
t
∫
0

(
ε · e

∫ t
s µ(θ) dθ

ε

(
∂

∂t
K2 (t, s)

)
y (s, ε)

)
ds + ε · K2 (t, t) y. (3)

Finally, denoting by εy = v, rewriting Equations (2) and (3) in the form

ε dv
dt = (K1 (t, t) + K2 (t, t)) v + µ (t) z+

+
t
∫
0

e
∫ t

s µ(θ) dθ
ε ∂

∂ t K2 (t, s) v (s, ε) ds +
t
∫
0

∂
∂ t K1 (t, s) v (s, ε) ds + ε · ḣ (t) ,

ε dz
dt = µ (t) · z +

t
∫
0

(
e
∫ t

s µ(θ) dθ
ε

(
∂
∂t K2 (t, s)

)
v (s, ε)

)
ds + K2 (t, t) v.

We have obtained an integro-differential system of equations
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ε

(
dv
dt
dz
dt

)
=

(
K1 (t, t) + K2 (t, t) µ (t)

K2 (t, t) µ (t)

)(
v
z

)
+

+
∫ t

0 e
∫ t

s µ(θ) dθ
ε

(
∂

∂ t K2 (t, s) 0
∂
∂t K2 (t, s) 0

)(
v (s, ε)

z (s, ε)

)
ds +

∫ t
0

(
∂

∂ t K1 (t, s) 0
0 0

)(
v (s, ε)

z (s, ε)

)
ds+

+ε

(
ḣ (t)

0

)
,

(
v (0, ε)

z (0, ε)

)
=

(
h (0)

0

)
,

or
ε dw

dt = A(t)w +
∫ t

0 B (t, s)w(s, ε)ds+

+
∫ t

0 e
1
ε

∫ t
s µ(θ)dθG (t, s)w(s, ε)ds + εH(t), w(0, ε) = w0 ≡

(
h (0)

0

)
,

(4)

where w = {v, z}, matrixes A(t), A1(t), B (t, s) , G(t, s), and the vector function H (t) have the form

A (t) =

(
K1 (t, t) + K2 (t, t) µ (t)

K2 (t, t) µ (t)

)
, B (t, s) =

(
∂K1(t,s)

∂t 0
0 0

)
,

G (t, s) =

(
∂K2(t,s)

∂t 0
∂K2(t,s)

∂t 0

)
, H(t) =

(
ḣ (t)

0

)
, w0 ≡

(
h (0)

0

)
.

The roots of the characteristic equation of matrix A (t) :

λ2 − (µ (t) + K1 (t, t) + K2 (t, t)) λ + µ (t)K1 (t, t) = 0

form the spectrum σ (A (t)) = {λ1 (t) , λ2 (t)} of the matrix A (t) . We assume that the
following conditions hold:

1) h(t), µ (t) ∈ C∞([0, T],C), Kj (t, s) ∈ C∞(0 ≤ s ≤ t ≤ T,C), j = 1, 2;
2) µ (t) 6= 0, Re µ (t) ≤ 0 , λj (t) 6= 0, Re λj (t) ∀t ∈ [0, T] , j = 1, 2.

We denote by λ3 (t) ≡ µ (t) and (according to the method [13] of Lomov) we introduce
regularizing variables

τj =
1
ε

∫ t

0
λj(θ)dθ ≡

ψj(t)
ε

, j = 1, 2, 3. (5)

For the extension w̃ = {v(t, τ, ε), z(t, τ, ε)}, we get the following system:

∂w̃
∂t + ∑3

j=1 λj (t) ∂w̃
∂τj
− A(t)w̃−

∫ t
0 B (t, s) w̃(s, ψ(s)

ε , ε)ds−

−
∫ t

0 e
1
ε

∫ t
s λ3(θ)dθG (t, s) w̃(s, ψ(s)

ε , ε)ds = εH(t), w̃(t, τ, ε)|t=0, τ=0 = w0,
(6)

where τ = (τ1, τ2, τ3) , ψ = (ψ1, ψ2, ψ3) . However, Equation (6) cannot be considered completely
regularized, since the integral operator

Jw̃ =
∫ t

0
B (t, s) w̃(s,

ψ (s)
ε

, ε)ds +
∫ t

0
e

1
ε

∫ t
s λ3(θ)dθG (t, s) w̃(s,

ψ (s)
ε

, ε)ds

has not been regularized. To regularize the operator Jw̃, we introduce a class Mε = U|
τ=

ψ(t)
ε

,

asymptotically invariant with respect to the operator J (see Reference [13], p. 62). In this case,
we take as the space U the vector-valued functions representable by the sums of the form

w(t, τ) =
3

∑
j=1

wj(t)e
τj + w0(t), wj(t) ∈ C([0, T],C2), j = 0, 3. (7)



Axioms 2019, 8, 27 4 of 20

We must show that the image Jw(t, τ) of the functions of the form of Equation (7) can be
represented in the form of a series

Jw(t, τ) =
∞

∑
k=0

εk(
3

∑
j=1

w(k)
1 (t)eτj + w(0)

0 (t))|
τ=

ψ(t)
ε

,

converging asymptotically to Jw (as ε → +0) and that this convergence is uniform with respect to
t ∈ [0, T]. Substituting Equation (7) into Jw(t, τ), we obtain

Jw (t, τ) =
∫ t

0 B (t, s)
(

∑3
j=1 wj(s)e

1
ε

∫ s
0 λj(θ)dθ + w0(s)

)
ds+

+
∫ t

0 e
1
ε

∫ t
s λ3(θ)dθG (t, s)

(
∑3

j=1 wj(s)e
1
ε

∫ s
0 λj(θ)dθ + w0(s)

)
ds ≡

≡
∫ t

0 B (t, s)w0(s)ds +
∫ t

0 e
1
ε

∫ t
s λ3(θ)dθG (t, s)w0(s)ds+

+∑3
j=1
∫ t

0 B (t, s)wj(s)e
1
ε

∫ s
0 λj(θ)dθds+

+∑3
j=1
∫ t

0 G (t, s)wj(s)e
1
ε

∫ s
0 λj(θ)dθ+ 1

ε

∫ t
s λ3(θ)dθds ≡

≡
∫ t

0 B (t, s)w0(s)ds + e
1
ε

∫ t
0 λ3(θ)dθ

∫ t
0 G (t, s)w3(s)ds+

+
∫ t

0 e
1
ε

∫ t
s λ3(θ)dθG (t, s)w0(s)ds + ∑3

j=1
∫ t

0 B (t, s)wj(s)e
1
ε

∫ s
0 λj(θ)dθds+

+∑2
k=1
∫ t

0 G (t, s)wk(s)e
1
ε

∫ s
0 λk(θ)dθ+ 1

ε

∫ t
s λ3(θ)dθds.

(7a)

Applying the operation of integration by parts, we find that∫ t
0 e

1
ε

∫ t
s λ3(θ)dθG (t, s)w0(s)ds = −ε

∫ t
0

G(t,s)w0(s)
λ3(s)

de
1
ε

∫ t
s λ3(θ)dθ =

= ε
[

G(t,0)w0(0)
λ3(0)

e
1
ε

∫ t
0 λ3(θ)dθ − G(t,t)w0(t)

λ3(t)

]
+

+ε
∫ t

0 e
1
ε

∫ t
s λ3(θ)dθ ∂

∂s

(
G(t,s)w0(s)

λ3(s)

)
ds =

= ∑∞
m=0 εm+1[

(
Im
3 (G (t, s)w0 (s))

)
s=0 e

1
ε

∫ t
0 λ3(θ)dθ −

(
Im
3 (G (t, s)w0 (s))

)
s=t];∫ t

0 B (t, s)wj(s)e
1
ε

∫ s
0 λj(θ)dθds = ε

∫ t
0

B(t,s)wj(s)
λj(s)

de
1
ε

∫ s
0 λj(θ)dθ =

= ε
[ B(t,t)wj(t)

λj(t)
e

1
ε

∫ t
0 λj(θ)dθ − B(t,0)wj(0)

λj(0)

]
−

−
∫ t

0
∂
∂s

( B(t,s)wj(s)
λj(s)

)
e

1
ε

∫ s
0 λj(θ)dθds =

= ∑∞
m=0 (−1)m εm+1[

(
Im
j
(

B (t, s)wj (s)
))

s=t
e

1
ε

∫ t
0 λj(θ)dθ −

(
Im
j
(

B (t, s)wj (s)
))

s=0
];∫ t

0 G (t, s)wk(s)e
1
ε

∫ s
0 λk(θ)dθ+ 1

ε

∫ t
s λ3(θ)dθds = e

1
ε

∫ t
0 λ3(θ)dθ

∫ t
0 e

1
ε

∫ s
0 [λk(θ)−λ3(θ)]dθG (t, s)wk(s)ds =

= εe
1
ε

∫ t
0 λ3(θ)dθ

∫ t
0

G(t,s)wk(s)
λk(s)−λ3(s)

de
1
ε

∫ s
0 [λk(θ)−λ3(θ)]dθ =

= εe
1
ε

∫ t
0 λ3(θ)dθ{[

∫ t
0

G(t,t)wk(t)
λk(t)−λ3(t)

e
1
ε

∫ t
0 [λk(θ)−λ3(θ)]dθ − G(t,0)wk(0)

λk(0)−λ3(0)
]−

−
∫ t

0 e
1
ε

∫ s
0 [λk(θ)−λ3(θ)]dθ ∂

∂s

(
G(t,s)wk(s)
λk(s)−λ3(s)

)
ds} =

= ε[
∫ t

0
G(t,t)wk(t)
λk(t)−λ3(t)

e
1
ε

∫ t
0 λk(θ)dθ − G(t,0)wk(0)

λk(0)−λ3(0)
e

1
ε

∫ t
0 λ3(θ)dθ ]−

−εe
1
ε

∫ t
0 λ3(θ)dθ

∫ t
0 e

1
ε

∫ s
0 (λk(θ)−λ3(θ))dθ ∂

∂s

(
G(t,s)wk(s)
λk(s)−λ3(s)

)
ds =

= ∑∞
m=0 (−1)m εm+1[

(
Im
k3 (G (t, s)wk(s))

)
s=t e

1
ε

∫ t
0 λk(θ)dθ−

−
(

Im
k3 (G (t, s)wk(s))

)
s=0e

1
ε

∫ t
0 λ3(θ)dθ ],

where operators are introduced:

I0
j = 1

λj(s)
, Im

j = 1
λj(s)

∂
∂s Im−1

j , m ≥ 1, j = 1, 2, 3;

I0
k3 = 1

λk(s)−λ3(s)
, Im

k3 = 1
λk(s)−λ3(s)

∂
∂s Im−1

k3 , m ≥ 1, k = 1, 2.
(8)
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Consequently, for the operator Jw (t, τ) there is a decomposition

Jw (t, τ) ≡
∫ t

0 B (t, s)w0(s)ds + e
1
ε

∫ s
0 λ3(θ)dθ

∫ t
0 G (t, s)w3(s)ds+

+∑∞
m=0 εm+1[

(
Im
3 (G (t, s)w0 (s))

)
s=0 e

1
ε

∫ t
0 λ3(θ)dθ −

(
Im
3 (G (t, s)w0 (s))

)
s=t]

+∑∞
m=0 (−1)m εm+1 ∑3

j=1[
(

Im
j
(

B (t, s)wj (s)
))

s=t
e

1
ε

∫ t
0 λj(θ)dθ−

−
(

Im
j
(

B (t, s)wj (s)
))

s=0
]+

+∑∞
m=0 (−1)m εm+1 ∑2

k=1[
(

Im
k3 (G (t, s)wk(s))

)
s=t e

1
ε

∫ t
0 λk(θ)dθ−

−
(

Im
k3 (G (t, s)wk(s)) e

1
ε

∫ t
0 λ3(θ)dθ

)
s=0

].

(9)

It is not hard to show (see Reference [14]) that the series on the right-hand side of Equation (9)
converges to Jw(t, ε) (as ε→ +0) uniformly with respect to t ∈ [0, T]. We introduce operators of order
(on ε ) Rν : U → U:

R0w (t, τ) ≡
∫ t

0 B (t, s)w0(s)ds + eτ3
∫ t

0 G (t, s)w3(s)ds,
R1w (t, τ) =

G(t,0)w0(0)
λ3(0)

eτ3 − G(t,t)w0(t)
λ3(t)

+

+
3
∑

j=1

[ B(t,t)wj(t)
λj(t)

eτj − B(t,0)wj(0)
λj(0)

]
+

+
2
∑

k=1

[
(G(t,t)wk(t))
λk(t)−λ3(t)

eτk − (G(t,0)wk(0))
λk(0)−λ3(0)

eτ3
]

,

(10)

Rm+1w (t, τ) = [
(

Im
3 (G (t, s)w0 (s))

)
s=0eτ3 −

(
Im
3 (G (t, s)w0 (s))

)
s=t]+

+(−1)m 3
∑

j=1
[
(

Im
j
(

B (t, s)wj (s)
))

s=t
eτj −

(
Im
j
(

B (t, s)wj (s)
))

s=0
]+

+(−1)m 2
∑

k=1
[
(

Im
k3 (G (t, s)wk(s))

)
s=te

τk −
(

Im
k3 (G (t, s)wk(s)) eτ3

)
s=0],

m ≥ 1, τ = ψ(t)
ε .

Then, the image Jw(t, τ) can be written in the form

Jw(t, τ) = R0w(t, τ) +
∞

∑
m=0

εm+1Rm+1w(t, τ), (11)

where τ = ψ(t)
ε . We now extend the operator J on the series of the form

w̃(t, τ, ε) =
∞

∑
k=0

εkwk(t, τ) (12)

with coefficients wk(t, τ) ∈ U, k ≥ 0. The formal extension J̃ of the operator J on the series of the form
of Equation (12) is called the operator

J̃w̃(t, τ, ε)
de f
=

∞

∑
ν=0

εν
ν

∑
s=0

Rν−sws(t, τ). (13)

In spite of the fact that the extension in Equation (13) of the operator J is defined formally, it is
quite possible to use it (see Theorem 3 below) in constructing an asymptotic solution of a finite order
in ε. Now, it is easy to write out the regularized (with respect to Equation (1)) problem:

∂w̃
∂t

+
3

∑
j=1

λj (t)
∂w̃
∂τj
− A(t)w̃− J̃w̃ = εH(t), w̃(t, τ, ε)|t=0, τ=0 = w0. (14)
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3. The Solvability of Iterative Problems and the Asymptotic Convergence of Formal Solutions to
the Exact Ones

Substituting the series of Equation (12) into Equation (14) and equating the coefficients for the
same powers of ε, we obtain the following iteration problems:

L0w0(t, τ) ≡
3

∑
j=1

λj (t)
∂w0

∂τj
− A(t)w0 − R0w0 = 0, w0(0, 0) = w0; (15a)

L0w1(t, τ) = −∂w0

∂t
+ R1w0 + H (t) , w1(0, 0) = 0; (15b)

L0w2(t, τ) = −∂w1

∂t
+ R1w1 + R2w0; w2(0, 0) = 0; (15c)

· · ·

L0wk(t, τ) = − ∂wk−1
∂t + R1(t)wk−1 + R2wk−2+

+... + Rkw0, wk(0, 0) = 0, k ≥ 1,
(15d)

where R0w (t, τ) ≡ R0

(
∑3

j=1 w1(t)e
τj + w0(t)

)
=
∫ t

0 B (t, s)w0(s)ds + eτ3
∫ t

0 G (t, s)w3(s)ds.
Turning to the formulation of theorems on the normal and unique solvability of the iterative

problems of Equations (15a)–(15d), we denote by

ϕj (t) ≡
(

ϕ1
j (t)

ϕ2
j (t)

)
=

(
λj (t)− µ (t)

K2 (t, t)

)
, j = 1, 2,

the eigenvectors of the matrix A(t). As the eigenvectors χj(t) of the matrix A∗(t) we take the columns
of the matrix

(
Φ−1 (t)

)∗ ≡ (χ1 (t) , χ2 (t)) , where Φ (t) = (ϕ1 (t) , ϕ2 (t)) is the matrix whose columns
are the eigenvectors of the matrix A(t). Therefore, if ϕj (t) is λj (t)-eigenvector of the matrix A(t),
then χj(t) is an λ̄j (t)-eigenvector of the matrix A∗(t), and the systems

{
ϕj (t)

}
and {χk (t)} are

biorthonormal (see Reference [14], pp. 81–83), that is,

(
ϕj (t) , χk (t)

)
≡ δjk =

{
1, j = k,
0, j 6= k

(j, k = 1, 2) .

Each of the iterative systems of Equation (15d) has the form

L0w(t, τ) ≡
3

∑
j=1

λj (t)
∂w
∂τj
− A(t)w− R0w = P(t, τ), (16)

where P(t, τ) = ∑3
j=1 Pj(t)e

τj + P0(t) ∈ U. We prove the following assertion.

Theorem 1. Suppose that the conditions (1) –(2) are satisfied and P(t, τ) ∈ U. Then, the system of
Equation (16) is solvable in the space U if and only if

(Pj(t), χj(t)) ≡ 0 ∀t ∈ [0, T], j = 1, 2 . (17)

Proof. We will determine the solution of the system of Equation (16) as the sum of Equation (7).
Substituting Equation (7) into Equation (16) and equating separately the coefficients of eτj and the free
terms, we have

(λk (t) I − A (t))wk (t) = Pk (t) , k = 1, 2, (18a)

(λ3 (t) I − A (t))w3 (t)−
∫ t

0
G (t, s)w3 (s) ds = P3 (t) , (18b)
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−A (t)w0 (t)−
∫ t

0
B (t, s)w0 (s) ds = P0 (t) . (18c)

For the systems of Equation (18a) to be solvable in space C∞ ([0, T] ,C2), it is necessary and
sufficient that the identities of Equation (17) hold (see, for example, Reference [14], p. 84). Moreover,
these systems have a solution in the form of vector functions

wk (t) = αk (t) ϕk (t) +
2

∑
s=1,s 6=k

(Pk (t) , χs (t))
λk (t)− λs (t)

ϕs (t) , k = 1, 2,

where αk (t) ∈ C∞ ([0, T] ,C1) are arbitrary functions. Since λ3 (t) /∈ σ (A (t)) and 0 /∈ σ (A (t)),
the systems of Equations (18b) and (18c) can also be rewritten in the form

w3 (t)−
∫ t

0 (λ3 (t) I − A (t))−1 G (t, s)w3 (s) ds = (λ3 (t) I − A (t))−1 P3 (t) ,
w0 (t) +

∫ t
0 A−1 (t) B (t, s)w0 (s) ds = −A−1 (t) P0 (t) .

(19)

These Volterra integral systems have kernels belonging to the class C∞ ([0, T] ,C2×2) , so they
have unique solutions in the space C∞ ([0, T] ,C2) . The theorem is proved.

Remark 1. It follows from the proof of Theorem 1 that if the conditions of Equation (17) are satisfied, then the
system of Equation (17) has the following solution in the space U :

w(t, τ) = ∑2
k=1

[
αk (t) ϕk (t) + ∑2

s=1,s 6=k pks (t) ϕs (t)
]

eτk + w3 (t) eτ3 + w0 (t) ,(
pks (t) ≡

(Pk(t),χs(t))
λk(t)−λs(t)

, k, s = 1, 2
)

,
(20)

where αk (t) ∈ C∞ ([0, T] ,C1) are arbitrary functions, and vector-valued functions w3 (t) , w0 (t) are solutions
of the integral systems of Equation (19).

We now consider the system of Equation (16) under additional conditions

w(0, 0) = w∗,
< − ∂w

∂t + R1w + Q(t, τ), χj(t)e
τj >≡ 0, j = 1, 2,

(21)

where Q(t, τ) = ∑3
j=1 Qj(t)e

τj + Q0(t) are known functions of class U, w∗ ∈ C2 is a known constant
vector, the operator R1 is defined by the equality of Equation (10), and by the <,> we denote the inner
product (for each t ∈ [0, T]) in space U :

< p(t, u), q(t, u) >≡<
3

∑
j=1

pj(t)e
τj + p0(t),

3

∑
j=1

qj(t)e
τj + q0(t) >

de f
=

3

∑
k=0

(pk(t), qk(t)),

where ( , ) is an ordinary inner product in C2. The following assertion holds true.

Theorem 2. Suppose that the conditions (1)–(2) hold and the vector function P(t, τ) ∈ U satisfies the conditions
of Equation (17). Then, the system of Equation (16) under additional conditions of Equation (21) is uniquely
solvable in U.

Proof. Since the conditions of Equation (17) are satisfied, the system of Equation (16) has a solution for
Equation (20) in the space U, where αj (t) are arbitrary functions for now. Subordinating Equation (18)
to the initial condition w(0, 0) = w∗, we obtain the equality

α1 (0) ϕ1 (0) + p12 (0) ϕ2 (0) + α2 (0) ϕ2 (0) + p21 (0) ϕ1 (0) = w∗,
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where w∗ = w∗−w3 (0)−w0 (0) . Multiplying both sides of this equation scalarly in turn by χ1(0) and
χ2 (0), taking into account the biorthonormality of the eigenvector systems

{
ϕj (t)

}
,{χk (t)}, we have

α1 (0) = (w∗, χ1 (0))− p21 (0) , α2 (0) = (w∗, χ2 (0))− p12 (0) . (22)

We now calculate the expression − ∂w
∂t + R1w + Q(t, τ). Taking into account Equation (21) and the

form of the operator R1w (t, τ) , we have (here and everywhere below, a fatty dot denotes differentiation
with respect to t.)

− ∂w
∂t + R1w + Q(t, τ) = −∑2

k=1 (αk (t) ϕk (t) + pks (t) ϕs (t))
• eτk−

−ẇ3 (t) eτ3 − ẇ0 (t) +
G(t,0)w0(0)

λ3(0)
eτ3 − G(t,t)w0(t)

λ3(t)
+

+∑3
j=1

[ B(t,t)wj(t)
λj(t)

eτj − B(t,0)wj(0)
λj(0)

]
+

+∑2
k=1

[
G(t,t)wk(t)
λk(t)−λ3(t)

eτk − G(t,0)wk(0)
λk(0)−λ3(0)

eτ3
]
+ ∑3

j=1 Qj(t)e
τj + Q0(t).

When writing the conditions of Equation (21) in this expression, it is necessary to preserve only
terms containing exponentials eτ1 and eτ2 , that is, Equation (21) is equivalent to the conditions

< −
2
∑

k=1

(
αk (t) ϕk (t) +

2
∑

s=1,s 6=k
pks (t) ϕs (t)

)•
eτk+

+
2
∑

k=1

(
B(t,t)
λk(t)

+ G(t,t)
λk(t)−λ3(t)

)(
αk (t) ϕk (t) +

2
∑

s=1,s 6=k
pks (t) ϕs (t)

)
eτk+

+
2
∑

k=1
Qj(t)eτk , χj (t) eτj >≡ 0, j = 1, 2,

or

(−(α1 (t) ϕ1 (t) + p12 (t) ϕ2 (t))
• +

(
B(t,t)
λ1(t)

+ G(t,t)
λ1(t)−λ3(t)

)
(α1 (t) ϕ1 (t) + p12 (t) ϕ2 (t)) +

+Q1 (t) , χ1 (t)) ≡ 0,

(−(α2 (t) ϕ2 (t) + p21 (t) ϕ1 (t))
• +

(
B(t,t)
λ2(t)

+ G(t,t)
λ2(t)−λ3(t)

)
(α2 (t) ϕ2 (t) + p21 (t) ϕ1 (t)) +

+Q2 (t) , χ2 (t)) ≡ 0.

Performing inner multiplication here, we obtain differential equations

α̇1 (t) +
(

ϕ̇1 (t)−
(

B (t, t)
λ1 (t)

+
G (t, t)

λ1 (t)− λ3 (t)

)
ϕ1 (t) , χ1 (t)

)
α1 (t) = g1 (t) ,

α̇2 (t) +
(

ϕ̇2 (t)−
(

B (t, t)
λ2 (t)

+
G (t, t)

λ2 (t)− λ3 (t)

)
ϕ2 (t) , χ2 (t)

)
α2 (t) = g2 (t) ,

where gj (t) are known scalar functions, j = 1, 2. Adding the initial conditions of Equation (22) to
these equations, we find uniquely the functions αj (t) in the solution of Equation (20) of the system of
Equation (16), and therefore, we construct a solution of this system in the space U in a unique way.
The theorem is proved.

Applying Theorems 1 and 2 to iterative problems, we uniquely determine their solutions in space
U and construct the series of Equation (12). As in Reference [2], we prove the following assertion.

Theorem 3. Assume that the conditions (1)–(2) are satisfied for the system of Equation (2). Then, for
ε ∈ (0, ε0 ] (ε0 > 0 is sufficiently small) the system of Equation (2) has a unique solution w(t, ε) ∈ C1([0, T],C2);
and here we have the estimate

||w(t, ε)− wεN(t)||C[0,T] ≤ cNεN+1, N = 0, 1, 2, ...,
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where wεN(t) is the restriction (for τ = ψ(t)
ε ) N-partial sum of the series of Equation (12) (with coefficients

wk (t, τ) ∈ U, satisfying the iterative problems of Equation (15d)), the constant cN > 0 does not depend on ε

at ε ∈ (0, ε0].

Since y (t, ε) = 1
ε v (t, ε) , the series

1
ε

∞

∑
k=0

vk

(
t,

ψ (t)
ε

)
≡ 1

ε
v0

(
t,

ψ (t)
ε

)
+ v1

(
t,

ψ (t)
ε

)
+ εv2

(
t,

ψ (t)
ε

)
+ ...

is an asymptotic solution (for ε→ +0 ) of the original problem of Equation (1), that is, the estimate

||y(t, ε)−
N

∑
k=−1

εkvk+1

(
t,

ψ (t)
ε

)
||C[0,T] ≤ CNεN+1, N = −1, 0, 1, ..., (23)

is correct, where the constant CN > 0 does not depend on ε ∈ (0, ε0].

Conclusion 1. The influence of the weakly varying integral kernel K0(t, s) on the asymptotic
of the solution of the problem of Equation (1) consists of two factors: Firstly, the kernel K0(t, s)
participates in the formation of the matrix A(t) and its eigenvectors and eigenvalues, secondly, it
participates in the construction of the limit operator L0, which leads to an additional integral system
w0 (t) +

∫ t
0 A−1 (t) B (t, s)w0 (s) ds = −A−1 (t) P0 (t) in the solvability of conditions Equation (17) of

iterative problems.

4. The Limit Transition in the Problem of Equation (1). Solving the Initialization Problem

It follows from Equation (23) that the exact solution of the problem of Equation (1) is represented
in the form

y (t, ε) = 1
ε v0

(
t, ψ(t)

ε

)
+ v1

(
t, ψ(t)

ε

)
+ εF (t, ε) ,

‖F (t, ε)‖Cn ≤ F̄ = const (∀ (t, ε) ∈ [0, T]× (0, ε0]) ,
(24)

therefore, in order to study the passage to the limit (for ε → +0) in the solution of the
problem of Equation (1), it is necessary to find the solutions of the two iteration problems of
Equation (15d) (k = 0, 1) under the conditions of Equation (18) for the solvability of the third problems
of Equation (15c). We start with the problem of Equation (15a):

L0w0(t, τ) ≡
3
∑

j=1
λj (t)

∂w0
∂τj
− A(t)w0 − R0w0 = 0, w0(0, 0) = w0(

R0w (t, τ) =
∫ t

0 B (t, s)w0(s)ds + eτ3
∫ t

0 G (t, s)w3(s)ds
)

.
(15a)

Since the right-hand side of the system of Equation (15a) P(0) (t, τ) = ∑3
j=1 P(0)

j (t) eτj + P(0)
0 (t)

is identically zero, it has (according to Theorem 1) a solution

w0(t, τ) =
2

∑
k=1

α
(0)
k (t) ϕk (t) eτk + w(0)

3 (t) eτ3 + w(0)
0 (t) ,

where the vector functions w(0)
3 (t) , w(0)

0 (t) satisfy the equations

w(0)
3 (t)−

∫ t
0 (λ3 (t) I − A (t))−1 G (t, s)w(0)

3 (s) ds = 0,

w(0)
0 (t) +

∫ t
0 A−1 (t) B (t, s)w0 (s) ds = 0.

These equations are homogeneous, and therefore, they have the unique solutions
w(0)

3 (t) = w(0)
0 (t) ≡ 0, and the solution of the system of Equation (15a) is written in the form
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w0(t, τ) =
2

∑
k=1

α
(0)
k (t) ϕk (t) eτk . (25)

Let χk (t) =
{

χ1
k (t) , χ2

k (t)
}

, k = 1, 2. Subordinating Equation (24) to the initial condition
w0(0, 0) = w0 , we find the values

α
(0)
k (0) =

(
w0, χk (0)

)
= h (0) χ̄1

k (0) , k = 1, 2. (26)

For the final computation of the functions α
(0)
k (t), we pass to the next iteration problem

L0w1(t, τ) = −
2

∑
k=1

(
α
(0)
k (t) ϕk (t)

)•
eτk + R1w0 + H (t) , w1(0, 0) = 0, (15b)

where
R1w0 = R1

(
∑2

k=1 α
(0)
k (t) ϕk (t) eτk

)
=

= ∑3
j=1

[
B(t,t)α(0)j (t)ϕk(t)

λj(t)
eτj −

B(t,0)α(0)j (0)ϕj(0)
λj(0)

]
+

+∑2
k=1

[
G(t,t)α(0)k (t)ϕk(t)

λk(t)−λ3(t)
eτk − G(t,0)α(0)k (0)ϕk(0)

λk(0)−λ3(0)
eτ3

]
.

Keeping, as in Theorem 2, only the terms containing exponentials eτ1 and eτ2 , we write down
conditions of Equation (17) in the form (see Equation (26)):

α̇
(0)
k (t) =

(
B (t, t) ϕk (t)

λk (t)
+

G (t, t) ϕk (t)
λk (t)− λ3 (t)

− ϕ̇k (t) , χk (t)
)

α
(0)
k (t) ,

α
(0)
k (0) = h (0) χ̄1

k (0) , k = 1, 2,

from which we find that
α
(0)
k (t) = h (0) χ̄1

k (0) e
∫ t

0 qk(θ)dθ , k = 1, 2, (27)

where it is denoted: qk (t) ≡
(

B(t,t)ϕk(t)
λk(t)

+ G(t,t)ϕk(t)
λk(t)−λ3(t)

− ϕ̇k (t) , χk (t)
)

, k = 1, 2. Thus, the solution of

the problem of Equation (15a) is found in the form of Equation (25), where the functions α
(0)
k (t)

are Equation (27). Similarly, we can find the solution of the problem of Equation (15b). However,
having in mind to solve the initialization problem in the future, we must put v0

(
t, ψ(t)

ε

)
≡ 0 in

Equation (24). This identity holds if and only if α
(0)
k (t) ≡ 0 (k = 1, 2) ⇔ h (0) = 0 (remember

that v0

(
t, ψ (t)

ε

)
=

2
∑

k=1
α
(0)
k (t)ϕ1

k (t) e
ψk(t)

ε , ϕ1
j (t) = λj (t)− µ (t) , j = 1, 2 and see Equation (27)),

we will therefore carry out further calculations for h (0) = 0. In this case, w0 (t, τ) ≡ 0, R1w0 ≡ 0,
and the problem of Equation (15b) takes the form

L0w1(t, τ) ≡
3

∑
j=1

λj (t)
∂w1

∂τj
− A(t)w1 − R0w1 = H (t) , w1(0, 0) = 0.

Since here P(1) (t, τ) = H (t)
(

P(1)
j (t) ≡ 0, j = 1, 2, 3, P(1)

0 (t) = H (t)
)

, in formula

w1(t, τ) =
2

∑
k=1

[
α
(1)
k (t) ϕk (t) +

2

∑
s=1,s 6=k

p(1)ks (t) ϕs (t)

]
eτk + w(1)

3 (t) eτ3 + w(1)
0 (t)
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for the solution of the problem of Equation (15b) functions p(1)ks (t) ≡ 0 (k, s = 1, 2) , functions w(1)
3 (t)

and w(1)
0 (t) are solutions of the integral equations

w(1)
3 (t)−

∫ t
0 (λ3 (t) I − A (t))−1 G (t, s)w(1)

3 (s) ds = 0⇔ w(1)
3 (t) ≡ 0,

w(1)
0 (t) +

∫ t
0 A−1 (t) B (t, s)w(1)

0 (s) ds = −A−1 (t) H (t) ,
(28)

therefore, the solution of the problem will be as follows:

w1(t, τ) =
2

∑
k=1

α
(1)
k (t) ϕk (t) eτk + w(1)

0 (t) , (29)

where α
(1)
k (t), for the time being, are arbitrary functions, k = 1, 2, and the vector-valued function

w(1)
0 (t) is a solution of the system of Equation (28). Subordinating Equation (29) to the initial condition

w1(0, 0) = 0, we obtain

∑2
k=1 α

(1)
k (0) ϕk (0) = −w(1)

0 (0) ≡ A−1 (0) H (0)⇒
α
(1)
k (0) =

(
A−1 (0) H (0) , χk (0)

)
=
(

H (0) , A−1 (0) χk (0)
)
=

=
(

H (0) , λ̄k (0) χk (0)
)
= λk (0) (H (0) , χk (0)) ,

i.e., {
α
(1)
1 (0) = λ1 (0) ḣ (0) χ̄1

1 (0) ,

α
(1)
2 (0) = λ2 (0) ḣ (0) χ̄1

2 (0) .
(30)

For the final calculation of the solution of Equation (29) of the problem of Equation (15b), let us
pass to the following problem (note that w0 ≡ 0):

L0w2(t, τ) = −∂w1

∂t
+ R1w1, w2(0, 0) = 0. (15c)

Substituting here the function of Equation (29), we obtain the system

L0w2(t, τ) = −∑2
k=1

(
α
(1)
k (t) ϕk (t)

)•
eτk+

+
G(t,0)w(1)

0 (0)
λ3(0)

eτ3 − G(t,t)w(1)
0 (t)

λ3(t)
+

+∑3
j=1

[
B(t,t)α(1)j (t)ϕj(t)

λj(t)
eτj −

B(t,0)α(1)j (0)ϕj(0)
λj(0)

]
+

+∑2
k=1

[
G(t,t)α(1)k (t)ϕk(t)

λk(t)−λ3(t)
eτk − G(t,0)α(1)k (0)ϕk(0)

λk(0)−λ3(0)
eτ3

]
= 0.

Keeping here, as in Theorem 2, only terms containing exponentials eτ1 and eτ2 , we write the
conditions of Equation (17) for the solvability of this system in the form

α̇
(1)
k (t) =

(
B(t,t)ϕk(t)

λk(t)
+ G(t,t)ϕk(t)

λk(t)−λ3(t)
− ϕ̇k (t) , χk (t)

)
α
(1)
k (t) ,

α
(1)
1 (0) = λ1 (0) ḣ (0) χ̄1

1 (0) , α
(1)
2 (0) = λ2 (0) ḣ (0) χ̄1

2 (0) ,

from which we uniquely find the functions α
(1)
k (t) :

α
(1)
k (t) = λk (0) ḣ (0) χ̄1

k (0) e
∫ t

0 qk(θ)dθ , k = 1, 2,

and therefore, we uniquely construct the solution of Equation (29) of the problem of Equation (15b).
In this case, the equality holds (remember that w0 (t, τ) ≡ 0)
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w (t, ε) = ε

 2

∑
k=1

λk (0) ḣ (0) χ̄1
k (0) e

t∫
0

qk(θ)dθ

ϕk (t) e
ψk(t)

ε + w(1)
0 (t)

+ ε2F1 (t, ε)⇒

⇒ y (t, ε) =
2

∑
k=1

λk (0) ḣ (0) χ̄1
k (0) e

t∫
0

qk(θ)dθ

ϕ1
k (t) e

ψk(t)
ε + v(1)0 (t) + ε f1 (t, ε) , (31)

where w(1)
0 (t) =

{
v(1)0 (t) , z(1)0 (t)

}
is the solution of the integral system



v(1)0 (t) +
t∫
0

(
∂
∂t K1 (t, s)

)
v(1)0 (s)

K1 (t, t)
ds = −

d
dt h (t)

K1 (t, t)
,

z(1)0 (t)−

 t∫
0

K2 (t, t)
(

∂
∂t K1 (t, s)

)
v(1)0 (s)

µ (t)K1 (t, t)
ds

 =
K2 (t, t)

(
d
dt h (t)

)
µ (t)K1 (t, t)

.

(32a)

It follows from Equation (31) that when Re λk (t) < 0 (∀t ∈ [0, T] , k = 1, 2) there is a passage to
the limit ∥∥∥y (t, ε)− v(1)0 (t)

∥∥∥
C[δ,T]

→ 0 (ε→ +0) ,

where δ ∈ (0, T) is an arbitrary fixed constant, and w(1)
0 (t) =

{
v(1)0 (t) , z(1)0 (t)

}
. However, in our case,

there can be purely imaginary eigenvalues (Re λk (t) ≡ 0) , so the indicated limit transition does not
hold. The following problem is posed: to find a class Σ = {h (t) , K1 (t, s) , K2 (t, s)} of initial data of
Equation (1) for which the passage to the limit∥∥∥y (t, ε)− v(1)0 (t)

∥∥∥
C[0,T]

→ 0 (ε→ +0) , (∗)

takes place on the whole segment [0, T] , including the boundary layer zone. This task is called the
initialization problem. . It is clear from Equation (31) that the limit transition (∗) occurs if and only if
ḣ (0) = 0, therefore, the following result follows from Equation (32a).

Theorem 4. Suppose that the conditions (1)–(2) are satisfied. Then, the passage to the limit (∗) holds if and
only if h (0) = ḣ (0) = 0 (here, v(1)0 (t) is the solution of the first equation of the system of Equation (32a)).

Conclusion 2. Thus, the initialization class Σ has the form Σ =
{

h (t) : h (0) = ḣ (0) = 0
}

. Here,
the kernels Kj (t, s) can be arbitrary, provided that conditions (1)–(2) are satisfied.

Example 1. Consider the equation

εy (t, ε) =

t∫
0

e−
1
ε (t−s) (e−s − 1

)
y (s, ε) ds +

t∫
0

(
−2e−sy (s, ε)

)
ds + t2. (32b)

Here, h (t) = t2, µ (t) = −1, K1 (t, s) = −2e−s, K2 (t, s) = e−s − 1. The characteristic equation of

the matrix A (t) =

[
−e−t − 1 −1

e−t − 1 −1

]
has two roots λ1 (t) = −2, λ2 (t) = −e−t. Using the algorithm

developed above, we find that

v(1)0 (t) +
t∫
0

(
∂
∂t K1 (t, s)

)
v(1)0 (s)

K1 (t, t)
ds = −

d
dt h (t)

K1 (t, t)
⇔ v(1)0 (t) = tet.
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Since ḣ (0) = 0, the main term of the asymptotic of the solution of our Equation (32b) coincides with
v(1)0 (t) (see Equation (31)). By Theorem 4, there is a passage to the limit:∥∥y (t, ε)− tet∥∥

C[0,T] → 0 (ε→ +0) .

We note that the function v(1)0 (t) = tet is a solution of the integral equation
t∫
0
(−2e−sy (s)) ds + t2 = 0,

which is degenerative with respect to Equation (1). If only h (0) = 0, but ḣ (0) 6= 0, then from Equation (31),
we would have obtained that

y (t, ε) = v1

(
t,

ψ (t)
ε

)
+ εF (t, ε) ,

and the function v1

(
t, ψ(t)

ε

)
contains exponents e

−2t
ε and e

1
ε (e−t−1), which prevent uniform convergence of the

solution y (t, ε) on the whole interval [0, T] to the limit function. In this case, uniform convergence will occur
only outside the boundary layer [δ, T] (δ ∈ (0, T)) .

The analysis of asymptotic methods for solving singularly perturbed problems shows that the
solutions of such problems depend in two ways on a small parameter: regularly and singularly.
This dependence is especially vividly demonstrated by the method of regularization of Lomov. Moreover,
regularized series representing solutions of singularly perturbed problems can converge in the usual
sense. In this connection, it became necessary to study a special class of functions—pseudoholomorphic
functions. This very important part of the complex analysis is designed to substantiate the
main provisions of the so-called analytic theory of singular perturbations. On the other hand,
the relevance of the theory is also dictated by the fact that pseudoholomorphic functions, in contrast
to holomorphic functions, are determined when the conditions of the implicit function theorem are
violated. The concept of a pseudoanalytic (pseudoholomorphic) function and the associated concept
of an essentially singular manifold are of a general mathematical nature, although they arose in the
framework of the regularization method for singular perturbations. First of all, they reflect the new
concept of a pseudoholomorphic solution of singularly perturbed problems, i.e., such a solution, which
is representable in the form of a series converging in the usual (but not asymptotic) sense in powers of
a small parameter. We must also take into account the fact that the modern mathematical theory of the
boundary layer [13], along with the Vasilyeva–Butuzov–Nefedov’s boundary-function method [5,6],
widely uses the concept of a pseudoholomorphic solution. The following sections of our work are
devoted to the construction of exactly such solutions [15].

5. Pseudoholomorphic Functions in the Theory of Singular Perturbations. Basic Concepts
and Statements

We consider the set of functions F(z, w, ε), where w = (w1, . . . , wk),F = (F1, . . . , Fk), holomorphic
in a polydisc D = Dz0 × Dw0 × D0, in which

Dz0 = {z : |z− z0| < R0}, Dw0 = {w : |wj − w0,j| < Rj, j = 1, k}, D0 = {ε : |ε| < ε0}.

Definition 1. A function w(z, ε), defined implicitly by the equation

F(z, w, ε) = 0, (33)

is said to be pseudoholomorphic at a point of ε = 0 of rank r, if the following conditions are satisfied:
10. F(z0, w0, 0) = 0;
20. ∂wj Fi

∣∣∣
ε=0

= 0 ∀(z, w) ∈ Dz0 × Dw0 , i = 1, r, j = 1, k;

30. det || fij|| 6= 0 ∀(z, w) ∈ Dz0 × Dw0 , where fij = ∂2
εwj

Fi

∣∣∣
ε=0

, i = 1, r, j = 1, k; fij = ∂wj Fi

∣∣∣
ε=0

,

i = r + 1, k, j = 1, k.
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40. w(z, ε) is unbounded in any sufficiently small neighborhood of a point ε = 0 and there exists a set
E0 ⊂ D0, for which the point ε = 0 is a limit point and such that it is bounded on a set Tz0 × E0, where Tz0 is
a compact that belongs Dz0 and contains a point z0.

From definition , it follows that

Fi(z, w, ε) = ϕi(z)− εUi,1(z, w)− . . .− εnUi,n(z, w)− . . . , i = 1, r ;
Fi(z, w, ε) = Ui,0(z, w) + εUi,1(z, w) + . . . + εnUi,n(z, w) + . . . , i = r + 1, k ,

(34)

and these series converge uniformly on any compact set Dz0 × Dw0 in some neighborhood of the point
ε = 0 (depending on the compact).

We compose the following system of equations:

U1,1(z, w) = ϕ1(z)/ε,
...

Ur,1(z, w) = ϕr(z)/ε,
Ur+1,0(z, w) = 0,

...
Uk,0(z, w) = 0,

(35)

which will be used in the future. We shall call Equation (35) the main system.
Suppose that the entire functions Ψ1, . . . , Ψr of one variable with the asymptotic values a1, . . . , ar

are such that the sets ωi = {qi : qi = Ψi(ϕi(z)/ε)} ⊂ Cqi are bounded if z ∈ Tz0 and ε ∈ E0, where Tz0

and Ez0 are sets satisfying the condition 40 of the Definitions 1. We also assume that the points ai close
these sets: ω̄i = ωi ∪ {ai}, i = 1, r. We introduce the notations: Ψ = (Ψ1, . . . , Ψr), ϕ = (ϕ1, . . . , ϕr),
a = (a1, . . . , ar).

Definition 2. The set Ω(Ψ, ϕ, Tz0 , E0) = ω1 × . . . × ωr ⊂ Cq1 × . . . × Cq2 is called an essentially
singular manifold, generated by the functions Ψ and ϕ on the set Tz0 × E0; we call the set
Ω̄(Ψ, ϕ, Tz0 , E0)=ω̄1 × . . .× ω̄r an extended essentially singular manifold.

Let us formulate sufficient conditions for the existence of a pseudoholomorphic function. For this,
along with the system of Equation (35), we consider the system

U1,1(z, w) = q1,
...

Ur,1(z, w) = qr,
Ur+1,0(z, w) = 0,

...
Uk,0(z, w) = 0.

(36)

Theorem 5. If a functionw = W0(z, q) that is a solution of the system of Equation (36) is holomorphic on
a compact Q̄ = Tz0 × Ω̄(Ψ, ϕ, Tz0 , E0) and maps it to a polydisk Dw0 , then the function w(z, ε), implicitly
defined by Equation (33), is pseudoholomorphic at the point ε = 0.
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Proof. We represent the vector of Equation (33) in the form of a system as follows:

U1,1(z, w) + εU1,2(z, w) + . . . + εnU1,n+1(z, w) + . . . = ϕ1(z)/ε,
...

Ur,1(z, w) + εUr,2(z, w) + . . . + εnUr,n+1(z, w) + . . . = ϕr(z)/ε,
Ur+1,0(z, w) + εUr+1,1(z, w) + . . . + εnUr+1,n(z, w) + . . . = 0,

...
Uk,0(z, w) + εUk,1(z, w) + . . . + εnUk,n(z, w) + . . . = 0,

(37)

and calculate the values of the functions Ψ1, . . . , Ψr from the left and right parts of the first r equations:

Ψ1(U1,1(z, w) + εU1,2(z, w) + . . . + εnU1,n+1(z, w) + . . .) = Ψ1(ϕ1(z)/ε),
...

Ψr(Ur,1(z, w) + εUr,2(z, w) + . . . + εnUr,n+1(z, w) + . . .) = Ψr(ϕr(z)/ε),

and then in the left-hand sides of these equations we distinguish the main terms:

Ψ1(U1,1(z, w)) + εV1(z, w, ε) = Ψ1(ϕ1(z)/ε),
...

Ψr(Ur,1(z, w)) + εVr(z, w, ε) = Ψr(ϕr(z)/ε).
(38)

Using the notations introduced earlier, we rewrite the system of Equation (36):

Ψ1(U1,1(z, w)) + εV1(z, w, ε) = q1,
...

Ψr(Ur,1(z, w)) + εVr(z, w, ε) = qr,
Ur+1,0(z, w) = 0,

...
Uk,0(z, w) = 0.

(39)

When ε = 0, the system of Equation (39) has a solution w = W0(z, q), holomorphic on a set
Q̄, that which maps to a compact, belonging to Dw0 , and therefore, in accordance with the implicit
function theorem, in some neighborhood σzq of each point (z, q) ∈ Q̄ this system has a solution
w that is holomorphic at the point ε = 0 : W(z, q, ε) = ∑∞

n=0 εnWn(z, q). From the covering {σzq}
of a compact set Q̄, we choose a finite subcover, then the function W(z, q, ε) will be holomorphic
uniformly on Q̄ in a neighborhood |ε| < ε1, where ε1 is the smallest number of the corresponding
finite subcoverings. The boundedness of the function w(z, ε) = W(z, Ψ1(ϕ1(z)/ε), . . . , Ψr(ϕr(z)/ε), ε)

for ε→ 0 (ε ∈ E0) follows from the fact that the point (z, ε) belongs to an extended essentially singular
manifold Ω̄(Ψ, ϕ, Tz0 , E0). The theorem is proved.

Remark 2. It follows from Theorem 5 that a pseudoholomorphic function decomposes into a power series with
coefficients that depend in a singular way on ε:

W(z, ε) =
∞

∑
n=0

εnWn(z, Ψ1(ϕ1(z)/ε), . . . , Ψr(ϕr(z)/ε)) (40)

and this series converges for |ε| < ε1 (ε ∈ E0) uniformly on Tz0 .

6. *-Pseudoholomorphic Functions

In applications, for example, in the mathematical theory of the boundary layer [3], we have to
impose less restrictive conditions on pseudomorphic functions.
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Definition 3. A *-transformation of a function F(z, w, ε) = (F1, ..., Fk) , defined by the equalities of
Equation (34), is a vector-valued function of (k + 3) variables:

F∗(z, w, ε, ε∗) = (F∗1(z, w, ε, ε∗), . . . , F∗k(z, w, ε, ε∗)),

where the components with numbers i = 1, r have the form

F∗i(z, w, ε, ε∗) = ϕi(z)− ε∗Ui,1(z, w)− . . .− ε∗ε
n−1U1,n(z, w)− . . . ,

(that is, they are obtained from Fi(z, w, ε) by replacing εn by ε∗εn−1, n = 1, 2, . . .), and when i = r + 1, k they
remain unchanged: F∗i(z, w, ε, ε∗) ≡ Fi(z, w, ε).

Obviously, the function F∗(z, w, ε, ε∗) is holomorphic in a polydisc D× D0∗, where D0∗ = { ε∗ :
|ε ∗ | < ε0}, and the equation F∗(z, w, ε, ε∗) = 0 implicitly defines a functionw = w∗(z, ε, ε∗) for which
the equality w(z, ε) = w∗(z, ε, ε∗) holds true.

Definition 4. A function w(z, ε) is said to be *-pseudoholomorphic, if the function w∗(z, ε, ε∗) is holomorphic
with respect to the second variable at the point ε = 0 uniformly with respect toz ∈ Tz0 for each fixed ε∗ ∈ E0.

Theorem 6. If a function W0(z, q) is holomorphic on a set Q = Tz0 × Ω(Ψ, ϕ, Tz0 , E0) and maps it to
a polydisk Dw0 , then the function w(z, ε) is * -pseudoholomorphic at a point ε = 0.

Proof. We fix ε∗ ∈ E0, then choose arbitrarily z ∈ Tz0 , and let q∗ = Ψ(ϕ(z)/ε∗). It is clear that
for the system 

Ψ1(U1,1(z, w)) + εV1(z, w, ε) = q1∗,
...

Ψr(Ur,1(z, w)) + εVr(z, w, ε) = qr∗,
Fr+1(z, w, ε) = 0,

...
Fk(z, w, ε) = 0

(41)

the conditions of the implicit function theorem are satisfied, and since the set of all such q∗ compacts
(for a fixed ε∗and z ∈ Tz0 ), the proof is completed in the same way as in the previous theorem.

Corollary 1. Thus, the solution of the system of Equation (41) can be represented in the form of a series in
powers of ε :

w(z, ε, ε∗) =
∞

∑
n=0

εnWn(z, Ψ1(ϕ1(z)/ε∗), . . . , Ψr(ϕr(z)/ε∗)) (42)

which converges uniformly on Tz0 at |ε| < ε1, where ε1 > 0 and depends on ε∗. In addition, from the proof of
Theorem 6, it follows that if ε∗ = ε (ε is fixed and belongs to the circle of convergence of this series), then uniform
convergence will be observed even on a narrower set Tz0∗ ⊂ Tz0 (z0 ∈ Tz0∗ ).

The main question that arises in connection with the notion of *-pseudoholomorphy is the
following: when can a *-pseudoholomorphic function be extended to the whole compact Tz0?
The answer to this question will be given in the scalar case, i.e., when n = r = 1. Note that in this case

F(z, w, ε) = ϕ(z)− εU1(z, w)− . . .− εnUn(z, w)− . . . (43)

and ∂wU1(z, w) 6= 0 in the in bidisk Dz0 × Dw0 .
Furthermore, we assume that the condition (R) is fulfilled: all the functions participating in the

analysis take real values, when their arguments are real.
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LetA(Dz0) andA(Dz0 ×Dw0), where Dw0 = {w : |w−w0| < R} be the algebras of holomorphic
functions, respectively, in the domains Dz0 and Dz0 × Dw0 . In connection with the condition (R),
we will assume that z0 and w0 are real.

Theorem 7. If {Hε} is a holomorphic at the point ε = 0 family of homomorphisms of an algebraA(Dz0) into an
algebra A(Dz0 × Dw0) such that H0 = I and the functions ϕ(z), F (z, w, ε) ≡ Hε[ϕ(z)] satisfy the condition
(R), and the conditions of Theorem 6 on the compact set Tz0 = [z0, z0 + ∆] ⊂ Dz0 hold true, then the function
w(z, ε), implicitly defined by the equation F (z, w, ε) = 0, admits a pseudoholomorphic extension to Tz0 .

We preface the proof of Theorem 7 with the following lemma.

Lemma 1. The mappings Hε : A(Dz0) → A(Dz0 × Dw0) for each sufficiently small ε satisfy the
commutation relation

Hε[ϕ(z)] = ϕ(Hε[z]). (44)

Proof. Indeed, since ϕ(z) ∈ Az0 , then ϕ(z) = ∑∞
k=0 ck(z− z0)

k, and, therefore,

Hε

[
∞

∑
k=0

ck(z− z0)
k

]
=

∞

∑
k=0

ck Hε[(z− z0)
k] =

∞

∑
k=0

ck(Hε[z− z0])
k =

=
∞

∑
k=0

ck(Hε[z]− Hε[z0])
k =

∞

∑
k=0

ck(Hε[z]− z0)
k = ϕ(Hε[z]),

thus, Equation (44) is proved.

Proof of Theorem 7. We differentiate Equation (12) with respect to z and w:

∂zHε[ϕ(z)] = ϕ′(Hε[z])∂zHε[z],
∂wHε[ϕ(z)] = ϕ′(Hε[z])∂w Hε[z],

from which, it follows that
εFz + f (z, w, ε)Fw = 0, (45)

where f (z, w, ε) = −ε∂z Hε[z]/∂wHε[z] is a holomorphic function at the point ε = 0, which differs from
zero in the domain Dz0 × Dw0 for a sufficiently small ε. Equation (45) is the equation of integrals of the
differential equation

ε
dw
dz

= f (z, w, ε), (46)

and we seek its solution in the form of a series in powers of ε , assuming the operator ∂z to be
a subordinate operator f ∂w. We have [8], for an arbitrary function ϕ(z) ∈ Az0 , that

F (z, w, ε) ≡ Hε[ϕ(z)] =
= ϕ(z)− ε

∫ w
w0

ϕ′(z)dw1
f (z,w1,ε) + ε2

∫ w
w0

(
∂
∂z

∫ w1
w0

ϕ′(z)dw2
f (z,w2,ε)

)
dw1

f (z,w1,ε) − . . . .
(47)

By uniqueness, the solution of the equation F (z, w, ε) = 0 is the solution w̃1(z, ε) of the Cauchy
problem for the differential Equation (46) with the initial condition w̃1(z0, ε) = w0, which, in accordance
with Theorem 7, is a *-pseudoholomorphic function in a neighborhood |ε| < ε1 (see Corollary 1) and is
defined on some interval [z0, z0 + ∆1] ⊂ [z0, z0 + ∆] (recall that Equation (46) is considered in the real
domain). We will assume that the small parameter in Equation (46) satisfies the inequality 0 < ε < ε1,
ϕ′(z) < 0 ∀z ∈ [z0, z0 + ∆]. We show how in the real case we can find ∆1. Thus, the series

W̃1(z, ε, ε∗) =
∞

∑
n=0

εnWn(z, Ψ(ϕ(z)/ε∗)), (48)
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where Ψ is an entire function, that satisfies Theorem 6, in the scalar case, converges uniformly
on the interval Tz0 = [z0, z0 + ∆] (ε∗ and ε are fixed!). Suppose also (without loss of generality)
that an essentially singular manifold is a half-open interval (p, Ψ(0)), where p is the asymptotic
value of the function Ψ, and hence the set Q = Tz0 × Ω(Ψ, ϕ, Tz0 , E0) is a rectangle. If ε > ε∗,
then w1(z, ε) = W̃1(z, ε, ε) it is defined on the entire segment Tz0 (ie ∆1 = ∆), because the
graph of the function q = ϕ(z) completely belongs to Q. If ε < ε∗, then w1(z, ε) = W̃1(z, ε, ε),
where z ∈ [z0, z0 + ∆1] and ∆1 is found from the equation ϕ(z0 + ∆1)/ε = ϕ(z0 + ∆1)/ε∗. We now
consider the Cauchy problem

ε dw
dz = f (z, w, ε),

w(z1, ε) = v1,
(49)

where z1 = z0 + ∆1, v1 = w̃1(z1, ε). The general integral of this equation can be represented in the form

∫ w

v1

ϕ′(z)dw1

f (z, w1, ε)
− ε

∫ w

v1

(
∂

∂z

∫ w1

v1

ϕ′(z)dw2

f (z, w2, ε)

)
dw1

f (z, w1, ε)
+ . . . =

ϕ(z)− ϕ(z1)

ε
. (50)

The solution w̃2(z, ε), obtained from it, is defined on the interval [z1, z2], where z2 = z1 + ∆2

and ∆2 is determined from the equation ϕ(z1+∆2)−ϕ(z1)
ε = ϕ(z0+∆)

ε∗
. If |ϕ′(z)| ≤ l ∀z ∈ Tz0 ,

then in accordance with the Lagrange theorem we have

∆2 ≥
εϕ(z0 + ∆)

ε∗l
. (51)

Then, Equation (46) is considered with the initial condition w(z2, ε) = v2, when v2 = w̃2(z2, ε).
A general integral analogous to Equation (50) is constructed, and so on. Since the estimate of
Equation (51) is constant on an interval Tz0 , then in a finite number of steps the solution will be
constructed on it. The Theorem is proved.

We give two examples of constructing pseudoholomorphic solutions in the real domain.

Example 2. We consider the Cauchy problem for the scalar equation (n = r = 1){
εy′ = f (t, y), t ∈ [t0, T],
y(t0, ε) = y0.

(52)

We assume that the function f (t, y) admits a holomorphic extension to the bidisk Dt0 × Dy0 , where Dt0 = {z :
|z− t0 | < R0, R0 > T}, Dy0 = {w : |w− y0| < R}, and is not equal to zero there. Then, the general
integral has the form:

ϕ(t)− εϕ′(t)
∫ y

y0

dy1
f (t,y1)

+ ε
∫ y

y0

(
∂
∂t

∫ y1
y0

ϕ′(t)dy2
f (t,y2)

)
dy1

f (t,y1)
−

−ε2
∫ y

y0

(
∂
∂t

∫ y1
y0

(
∂
∂t

∫ y2
y0

ϕ′(t)dy3
f (t,y3)

)
dy2

f (t,y2)

)
dy1

f (t,y1)
+ . . . = 0.

Hence, we obtain a *-pseudoholomorphic solution

y(t, ε) =
∞

∑
n=0

εnYn

(
t,

ϕ(z)
ε

)
, (53)

where ϕ(t) ∈ A t0 and such that the conditions of Theorem 6 are satisfied.
We write out the formulas for the first terms of the series of Equation (53):

Y1 = − V1

V2

∣∣∣∣
y=Y0(t,ϕ(t)/ε)

, Y2 = −
V11V2

2 − 2V12V1V2 + V22V2
1

2V2
2

∣∣∣∣∣
y=Y0(t,ϕ(t)/ε)

,
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where

V1 = −
∫ y

y0

(
∂

∂t

∫ y1

y0

ϕ′(t)dy2

f (t, y2)

)
dy1

f (t, y1)
;

V2 =
ϕ′(t)
f (t, y)

;

V11 = 2
∫ y

y0

(
∂

∂t

∫ y1

y0

(
∂

∂t

∫ y2

y0

ϕ′(t)dy3

f (t, y3)

)
dy2

f (t, y2)

)
dy1

f (t, y1)
;

V12 = − 1
f (t, y)

(
∂

∂t

∫ y

y0

ϕ′(t)dy1

f (t, y1)

)
;

V22 = −
ϕ′(t) f ′y(t, y)

f 2(t, y)
.

We recall that y = Y0(t, ϕ(t)/ε) is the bounded solution (for ε→ +0 ) of the equation

ϕ′(t)
∫ y

y0

dy1

f (t, y1)
=

ϕ(t)
ε

.

In particular, if f (t, y) = y2 − e2t, t0 = 0, y0 = 0, then

y(t, ε) = etth
1− et

ε
+

ε

2
th2 1− et

ε
+ . . . .

Example 3. Consider the Cauchy problem for Tikhonov’s system [7] (here, n = 2, r = 1){
y′ = g(t, y, v),
εv′ = f (t, y, v), t ∈ [t0, T],

y(t0, ε) = y0, v(t0, ε) = v0.
(54)

Denote by ȳ(t) the solution of the limit problem f (t, y, y′) = 0, y(t0) = 0, and by L = ∂t + g∂y – the
first-order linear partial differential operator. Then, ϕ(t)− ε

∫ v
v0

ϕ′(t)dv1
f (t,y,v1)

− ε2
∫ v

v0

(
L
∫ v1

v0

ϕ′(t)dv2
f (t,y,v2)

)
dv1

f (t,y,v1)
− . . . = 0,

y− ȳ(t)− ε
∫ v

v0

L(y−ȳ(t))dv1
f (t,y,v1)

+ ε2
∫ v

v0

(
L
∫ v1

v0

L(y−ȳ(t))dv2
f (t,y,v2)

)
dv1

f (t,y,v1)
− . . . = 0

are independent first integrals of the system of Equation (54). Hence, we obtain a *-pseudoholomorphic solution
of this system:

y(t, ε) = ȳ(t) + ε
∫ v

v0

L(y− ȳ(t))dv1

f (t, y, v1)

∣∣∣∣ y = ȳ(t)
v = V0(t, ϕ(t)/ε)

+ . . . ;

v(t, ε) = V0(t, ϕ(t)/ε) + ε
f (t,y,v)
ϕ′(t)

[∫ v
v0

(
L
∫ v1

v0

ϕ′(t)dv2
f (t,y,v2)

)
dv1

f (t,y,v1)
−

−
∫ v

v0

L(y−ȳ(t))dv1
f (t,y,v1)

· ∂
∂y

∫ v
v0

ϕ′(t)dv1
f (t,y,v1)

] ∣∣∣ y = ȳ(t)
v = V0(t, ϕ(t)/ε)

+ . . . .

Here, v = V0(t, ϕ(t)/ε) is the bounded solution (for ε→ +0 ) of the equation

ϕ′(t)
∫ v

v0

dv1

f (t, ȳ(t), v1)
=

ϕ(t)
ε

.
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Conclusion 3. The algorithms developed in this paper allow one to theoretically substantiate
two main approaches in the general theory of singular perturbations: an approach related to
approximate (asymptotic) solutions, and an approach related to pseudoholomorphic (exact) solutions
of such problems.
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