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Abstract: In this paper, an analytical method based on the Bernoulli differential equation for extracting
new complex soliton solutions to the Gilson–Pickering model is applied. A set of new complex soliton
solutions to the Gilson–Pickering model are successfully constructed. In addition, 2D and 3D graphs
and contour simulations to the complex soliton solutions are plotted with the help of computational
programs. Finally, at the end of the manuscript a conclusion about new complex soliton solutions
is given.
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1. Introduction

In the last several decades, many scientists have focused on new findings to the nonlinear
differential equation, such as travelling wave solutions, complex, trigonometric, Jacobi elliptic
functions, and so on. More recently, some methods have been considered as powerful tools for
finding new solutions to the new models. In this sense, Claire Gilson and Andrew Pickering have
introduced a model, after named the Gilson–Pickering equation (GPE), in 1995 [1]. Many other
properties of this model defined as

ut − εuxxt + 2kux − uuxxx − αuux − βuxuxx = 0, (1)

where ε, k, α, β are real constants have been investigated [2]. They have investigated this model
in Painleve analysis by giving travelling wave solutions. This model includes many other
nonlinear models, such as the Camassa–Holm equation, the Fornberg–Whitham equation, and the
Rosenau–Hyman equation [3,4]. A. Chen et al. have studied Bifurcation of travelling wave solutions
for Equation (1) [5]. The invariance and multiplier approach to the GPE have been introduced by
Ghodrat Ebadi et al. [6]. C. Li, S. Tang, W. Huang, and A. Chen have presented the solitary patterns and
periodic solutions for the generalized GPE in 2009 under some conditions [7]. Considering the special
values of the parameters in Equation (1) as ε = 1, α = −1, k = 0.5 and β = 3 the Fornberg–Whitham
equation reads [8]. Considered as ε = 0, α = 1, k = 0 and β = 3, then, Equation (1) turns into the
Rosenau-Hyman equation [7]. If these parameters are taken as ε = 1, α = −3, and β = 2, GPE reads as
the Fuchssteiner–Fokas–Camassa–Holm equation for the parameters [7]. For β = 1, some new types of
exponential function solutions, by using the first integral method, have been presented [9]. A. Irshad
et al. have employed the Tanh-Coth method to seek the solutions of Equation (1), and some hyperbolic
and exponential function solutions have been introduced to the literature [9]. Some important nonlinear
models including such properties have been presented [10–41].
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This manuscript is composed of the following sections. In Section 2, we present the Bernoulli
sub-equation function method (BSEFM) [42–46]. W.X. Ma et al. have presented the BSEFM in a
detailed manner and used it to find explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov
equation in [47]. Similarly, many different solutions, such as complex, Lump, and mixed Lump–soliton
solutions to the various models such as generalized Hirota-Satsuma-Ito, BKP and (2+1)-dimensional Ito
equations have been obtained in [48–50]. We apply BSEFM to the GPE to find new contour simulations
along with new solutions in Section 3. In the last section of the paper, we present a comprehensive
conclusion by mentioning new findings.

2. General Properties of BSEFM

The general steps of the BSEFM are given as follows:

Step 1. It can be considered that the following is a nonlinear partial differential equation:

P(ux, uxx, utt, uux, · · ·) = 0, (2)

and the travelling wave transformation is:

u(x, t) = U(ξ), ξ = mx− nt, (3)

in which m, n are real constants and non-zero, respectively. Substituting Equation (3) into Equation (2)
yields a nonlinear ordinary differential equation (NODE) as follows:

N
(
U, U′, U′′ , · · ·

)
= 0, (4)

where U = U(ξ), U′ = dU
dξ , U′′ = d2U

dξ2 , .

Step 2. Supposing the trial solution of Equation (4) is as following:

U =
s

∑
i=0

aiFi = a0 + a1F + a2F2 + · · ·+ asFs, (5)

and
F′ = bF + dFM, (6)

where F = F(ξ) is the Bernoulli differential polynomial and also b 6= 0, d 6= 0, M ∈ R− {0, 1, 2}.
Putting Equation (5) along with Equation (6) into Equation (4) produces an equation of polynomial
Ω(F) of F as following:

Ω(F) = ρrFr + · · ·+ ρ1F + ρ0 = 0. (7)

We can obtain a relationship between s and M under the rules of the balance principle.

Step 3. Setting the coefficients of Ω(F) to all be zero gives an algebraic system of equations:

ρi = 0, i = 0, · · · , r. (8)

Solving this system, we get the values of a0, . . . , as.

Step 4. When we solve Equation (6), we obtain the following two situations according to b and d:

F(ξ) =
[
−d
b + E

eb(M−1)ξ

] 1
1−M , b 6= d,

F(ξ) =

[
(E−1)+(E+1)tanh

(
b(1−M)ξ

2

)
1−tanh

(
b(1−M)ξ

2

)
] 1

1−M

, b = d, E ∈ R.
(9)



Axioms 2019, 8, 18 3 of 14

Substituting Equation (5) into Equation (4), we can find the polynomial of F. Considering all the
coefficients of same power of F to zero gives an algebraic system of equations. By solving this system
via several computational programs, we can find some new values of parameters of a0, . . . , as. This
process gives many solutions to the model considered. For a better understanding of the solutions
obtained in this manner, we can draw 2D, 3D, and contour graphical simulations of solutions for
suitable values of parameters.

3. Application of the BSEFM

In this section, BSEFM has been successfully applied to the GPE to find more and new complex
soliton solutions.

Example 1. Taking the travelling wave transformation asu(x, t) = U(ξ), ξ = mx− nt which m, n are real
constants and non-zero, respectively, we get the following NODE:

2εnm2U′′ − 2m3UU′′ + m3(1− β)
(
U′
)2 − αmU2 + (4km− 2n)U = 0, (10)

in here, ε, n, m, β, α, k are both real constants and non-zero. Between U′′ and U2, relationship between s and M
can be obtained as following:

2M = s + 2. (11)

Case 1: If we define s = 4 and M = 3 in Equation (11), we can write the following travelling
wave solution:

U = a0 + a1F + a2F2 + a3F3 + a4F4, (12)

U′ = a1bF + a1dF3 + 2a2bF2 + 2a2dF4 + 3a2bF3 ++3a3dF5

+4a4bF4 + 4a4dF6,
(13)

and
U′′ = b2Fa1 + 4bdF3a1 + 3d2F5a1 + 4b2F2a2 + 12bdF4a2 ++8d2F6a2 + 9b2F3a3

+24bdF5a3 + 15d2F7a3 + 16b2F4a4 ++40bdF6a4 + 24d2F8a4,
...

(14)

where a4 6= 0, b 6= 0, d 6= 0. Putting Equations (12)–(14) into Equation (10), a system of algebraic
equations, including various powers of F, can be obtained. Solving this system by using various
computer programs, such as Mathematica, Maple, and Matlap, gives new complex soliton solutions,
as follows:

Case 1.1. For b 6= d, the following coefficients can be selected:

β = −2, a0 = 2kε, a1 = 0, a3 = 0, a4 =
−a2

2
12kε , b = − 12dkε

a2
, n = 5ia2

48dε3/2 ,
m = ia2

24dkε3/2 , α = − 1
2ε .

(15)

If these are entered into the Equation (12), together with Equation (9), the following novel complex
solutions are given:

u1(x, t) =
288c2k3ε3e−

i√
ε
(5kt−2x)

+ 192a2ck2ε2e−
i

2
√

ε
(5kt−2x)

+ 2kεa2
2(

12ckεe−
i

2
√

ε
(5kt−2x)

+ a2

)2 , (16)

here c, k, ε, a2 ∈ R− {0}. Considering the suitable values of parameters in Equation (16), 2D, 3D,
and contour surfaces can be plotted as follows (Figures 1–3):
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Case 1.2. When

β = −2, a1 = 0, a3 = 0, a0 = 2kε, a4 = −2idma2
√

ε, b = i
2m
√

ε
,

n = 3km
(

1− 8idkmε3/2

a2+24idkmε3/2

)
, α = − a2

εa2+24idkmε5/2 ,
(17)

this gives rise to another new complex soliton solution, as following solution:

u2(x, t) = 2kε + a2

ce
− i

m
√

ε
(mx−3kmt(1− 8idkmε3/2

a2+24idkmε3/2 ))

+2idm
√

ε

−2idm
√

εa2

(
ce
− i

m
√

ε
(mx−3kmt(1− 8idkmε3/2

a2+24idkmε3/2 )) + 2idm
√

ε

)−2

,
(18)

where c, k, ε, a2, d, m are both real constants and non-zero. With suitable values of parameters entered
into Equation (18), the following surfaces can be observed as (Figures 4–6):
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where κ = 24dkε
a2

, v = a2
12kε , and k, ε, a2, d, c are both real constants and non-zero. Considering the

suitable values of parameters in Equation (20), the 2D, 3D, and contour surfaces can be observed as
following (Figures 7–9):Axioms 2019, 8, x FOR PEER REVIEW 7 of 14 

  
Figure 7. three-dimensional graphs of Equation (20). 

  

Figure 8. two-dimensional graphs of Equation (20). 

  

Figure 9. The contour simulations of Equation (20). 

Case 1.4. Other coefficients for b d≠ can be considered as follows: 

20 10 10 20
x

60

40

20

20

40
Imu

20 10 10 20
x

60

50

40

30

20

10

10
ReuFigure 7. Three-dimensional graphs of Equation (20).



Axioms 2019, 8, 18 7 of 14

Axioms 2019, 8, x FOR PEER REVIEW 7 of 14 

  
Figure 7. three-dimensional graphs of Equation (20). 

  

Figure 8. two-dimensional graphs of Equation (20). 

  

Figure 9. The contour simulations of Equation (20). 

Case 1.4. Other coefficients for b d≠ can be considered as follows: 

20 10 10 20
x

60

40

20

20

40
Imu

20 10 10 20
x

60

50

40

30

20

10

10
Reu

Figure 8. Two-dimensional graphs of Equation (20).

Axioms 2019, 8, x FOR PEER REVIEW 7 of 14 

  
Figure 7. three-dimensional graphs of Equation (20). 

  

Figure 8. two-dimensional graphs of Equation (20). 

  

Figure 9. The contour simulations of Equation (20). 

Case 1.4. Other coefficients for b d≠ can be considered as follows: 

20 10 10 20
x

60

40

20

20

40
Imu

20 10 10 20
x

60

50

40

30

20

10

10
Reu

Figure 9. The contour simulations of Equation (20).

Case 1.4. Other coefficients for b 6= d can be considered as follows:

β = −2, a1 = 0, a3 = 0, a0 = 2kε, a2 = ia4
2dm
√

ε
, b = i

2m
√

ε
, n =

3km(32d2km2ε2+a4)
48d2km2ε2+a4

,

α = − a4
48d2km2ε2+εa4

.
(21)

Taking these coefficients in Equation (12), together with Equations (9) and (21), the following new
soliton solution to Equation (1) can be obtained:

u4(x, t) = 2kε + a4

(
ce
−i

m
√

ε
(mx− 3km

48d2km2ε2+a4
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+ 2idm
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√
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,
(22)

where k, ε, a4, c, m, d are both real constants and non-zero (Figures 10–12).
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Considering Equation (25) along with Equation (9) into Equation (23) produces another novel 
complex soliton solution: 
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 and 3, , , , ,k a c d mε are both real constants and non-zero. With 

suitable values of parameters in Equation (26), 2D, 3D, and contour surfaces can be seen as (Figures 
13–15): 

Figure 12. Contour simulations of Equation (22).

Case 2: Taking s = 6 and M = 4 in Equation (11), we can write the following travelling wave solution:

U = a0 + a1F + a2F2 + a3F3 + a4F4 + a5F5 + a6F6, (23)
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U′ = a1F′ + 2a2F′F + 3a3F′F2 + 4a4F′F3 + 5a5F′F4 + 6a6F′F5,
...

(24)

where a6 6= 0, F′ = bF + dF4, b 6= 0, d 6= 0, When we put Equations (23) and (24) into Equation
(10), we can find a system including various powers of F. Solving this system with the help of using
different computer programs, such as Mathematica, Maple, and Matlap, gives the following coefficients
and soliton solutions:

Case 2.1. For b 6= d, the following coefficients can be chosen as:

β = −2, a0 = 2kε, a1 = a2 = a4 = a5 = 0, a6 = −3idma3
√

ε, b = i
3m
√

ε
,

n = 3km
(

1− 12idkmε3/2

36idkmε3/2+a3

)
, α = − a3

εa3+36idkmε5/2 .
(25)

Considering Equation (25) along with Equation (9) into Equation (23) produces another novel
complex soliton solution:

u5(x, t) = 2kε +
a3

ce
−i√

ε
(x−3kt+iωt)

+ 3idm
√

ε
− 3idm

√
εa3(

ce
−i√

ε
(x−3kt+iωt)

+ 3idm
√

ε

)2 , (26)

where ω = 36dk2mε3/2

36idkmε3/2+a3
and k, ε, a3, c, d, m are both real constants and non-zero. With suitable values

of parameters in Equation (26), 2D, 3D, and contour surfaces can be seen as (Figures 13–15):Axioms 2019, 8, x FOR PEER REVIEW 10 of 14 
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Case 2.2. Other coefficients for Equation (1) and for b 6= d can be considered as follows:

β = −2, a0 = 2kε, a1 = a2 = a4 = a5 = 0, a6 = da3
b , n = ik(−8dkε+ba3)

b
√

ε(−12dkε+ba3)
,

m = i
3b
√

ε
, α = ba3

12dkε2−bεa3
.

(27)

Regulating Equation (23) under the terms of Equations (9) and (27), another new complex solution
for Equation (1) can be found as following:

u6(x, t) = 2kε +
da3

b

(
− d

b + ce
−ix√

ε
+

3ikt(−8dkε+ba3)√
ε(−12dkε+ba3)

)2 +
a3

− d
b + ce

−ix√
ε
+

3ikt(−8dkε+ba3)√
ε(−12dkε+ba3)

, (28)

in which k, ε, b, d, c, a3 are both real constants and non-zero (Figures 16–18).
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4. Conclusions

This manuscript presents a set of complex soliton solutions to the GPE with the help of BSEFM.
New complex soliton solutions, such as exponential, rational, and the complex exponential are obtained.
To give better understanding of the physical importance of the solutions found in this paper, the process
of choosing the suitable values for the parameters is shown, and the three- and two-dimensional graphs
and contour simulations of the these solutions are drawn. The alternative points of view to the solutions
(i.e., Equations (16), (18), (20), (22), (26), and (28)) can be seen in the 3D and 2D graphs in Figures 1, 2,
4, 7, 10, 13 and 16, Figure 5, Figure 8, Figure 11, Figure 14, Figure 17, respectively. The contour patterns
on which the wave propagates along the x-axis for complex solutions obtained in this paper can be
also viewed from Figure 3, Figure 6, Figure 9, Figure 12, Figure 15, Figure 18, separately as imaginary
and real parts of the solutions. The contour surfaces are another and new alternative simulation to
the 3D graph, giving more detailed information in terms of physical properties of the constructed
solutions. Comparing such results, produced in this manuscript, with the papers which have been
published in [1,4], it can be seen that these complex soliton solutions are entirely new for the GPE.
The calculations show that this method is a reliable and efficient scheme which yields many complex
results to the other nonlinear partial differential equations.
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