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1. Introduction

The notion of pseudo-orbits very often appears in the several branches of modern theory of
dynamical systems, and, especially, the pseudo-orbit shadowing property usually plays an important
role in the investigation of stability theory and ergodic theory as well as expansivity. Let (X, d) be
a compact metric space, and let f : X → X be a homeomorphism. For δ > 0, a sequence of points
{xi}b

i=a ⊂ X (−∞ ≤ a < b ≤ ∞) is called a δ-pseudo-orbit of f if d( f (xi), xi+1) < δ for all a ≤ i ≤ b− 1.
Denote by f|A the restriction of f to a subset A of X. Let Λ ⊂ X be a closed f -invariant set, that is,

f (Λ) = Λ. We say that f|Λ has the shadowing property if for every ε > 0, there is δ > 0 such that for
any n ∈ N and δ-pseudo-orbit {xi}n−1

i=0 ⊂ Λ of f , there is y ∈ X ε-shadowing the pseudo-orbit, that is,
d( f i(y), xi) < ε for all 0 ≤ i ≤ n− 1. Notice that only δ-pseudo-orbits of f “contained in Λ” can be
ε-shadowed, but shadowing point y ∈ X is “not necessarily” contained in Λ. We say that f has the
shadowing property if X = Λ in the above definition. Since X is compact, it is not hard to show that if
f|Λ has the shadowing property, then every pseudo-orbit {xi}∞

i=−∞ ⊂ Λ can be shadowed by some
true orbit.

The notion of expansivity has been intensively studied by several researchers, mainly from the
topological view point, and lots of important fruitful results were obtained. Nowadays, expansive
theory of dynamical systems has been well developed in both of the geometric theory and ergodic
theory of dynamical systems as well as that of shadowing theory. Recently, the notion of the expansive
measures was introduced by Morales and Sirvent [1] as a generalization of the notion of expansivity
from the measure theoretical view point, and they exhibit the effectiveness of the use of it in expansive
theory of dynamical systems (see [2–4] among others).

In this paper, inspired by the work of Morales and Sirvent, we introduce the notion of shadowable
measures for a homeomorphism of a compact metric space as a generalization of the shadowing
property from the measure theoretical view point, and consider the set of diffeomorphisms of a closed
differentiable manifolds possessing the shadowable measures. The notion of such kind of measures is
recently introduced by Lee and Morales [2], and they consider the shadowability of pseudo-orbits of
a dynamical system from the measure theoretical view point. In our opinion, however, the introduced
measure does not properly reflect the behavior of pseudo-orbits of the system. In fact, for a given
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pseudo-orbit {xi}∞
i=0 of the system, they measure only the initial point x0 of the pseudo-orbit, whole of

the pseudo-orbit is not considered (see ([2], Definition 2.5)).
Recall that (X, d) is a compact metric space and f : X → X is a homeomorphism of X.

Let Xn = X× · · · × X (the n-times of direct product) be the sequences of points of X with length
n (n ∈ N), and denote byM(X) the space of Borel probability measures of X. For any µ ∈ M(X)

(which is not necessarily f -invariant), let µn = µ× · · · × µ (n-times) be the direct product measure of
Xn. For any δ > 0, denote by PO(δ, n) the space of δ-pseudo-orbits {xi}n−1

i=0 ∈ Xn of f , and for ε > 0,
denote by SPO(δ, ε, n) (⊂ PO(δ, n)) the set of δ-pseudo-orbits ε-shadowed by some point.

We say that µ ∈ M(X) is a shadowable measure of f (or simply, f is µ-shadowable) if for any ε > 0,
there exists δ > 0 such that

µn(SPO(δ, ε, n)) = µn(PO(δ, n))

for any n ∈ N (if A is a subset of X, then we define the shadowable measure for f|A by the same
manner). Observe that if f : X → X has the shadowing property, then f is µ-shadowable for any
µ ∈ M(X). Denote by supp(µ) the support of µ ∈ M(X). Then, since X is compact, we can see that
if f is µ-shadowable and f (supp(µ)) = supp(µ), then f : supp(µ) → supp(µ) has the shadowing
property (see Lemma 1 in Section 3).

Let M be a closed C∞ manifold, and let Diff(M) be the space of diffeomorphisms of M endowed
with the C1-topology. In this paper, we denote by S the set of f ∈ Diff(M) possessing the shadowing
property. It is well-known that f ∈ intS if and only if f satisfies both Axiom A and the strong
transversality condition (see [5–7] among others), where int means the C1-interior of the set.

Hereafter, let P( f ) be the set of periodic points of f ∈ Diff(M), and let Ω( f ) be the set of
non-wandering points of it. Let Λ ⊂ M be a closed f -invariant set. Recall that Λ is hyperbolic if
the tangent bundle TΛ M has a D f -invariant splitting Es ⊕ Eu with constants C > 0 and 0 < λ < 1
such that

‖D f n|Es
x‖ ≤ Cλn and ‖D f−n|Eu

x ‖ ≤ Cλn

for all x ∈ Λ and n ≥ 0. It is well-known that if Λ is hyperbolic, then f|Λ has the shadowing property
(see [8]). Recall that the shadowing point is not necessarily contained in Λ.

We say that f satisfies Axiom A if Ω( f ) is hyperbolic and Ω( f ) = P( f ). The stable manifold of a
point x is the set

Ws(x) = {y ∈ M : d( f n(x), f n(y))→ 0 as n→ ∞}.

The unstable manifold Wu(x) of x is also defined analogously for n→ −∞. It is well-known that
if Λ is hyperbolic, then Ws(x) and Wu(x) are both immersed manifolds for each x ∈ Λ (for instance,
see [8]). Let f satisfies Axiom A. We say that f satisfies the strong transversality condition if all the
stable and the unstable manifolds are transverse at any point of their intersection.

To describe our results, let us introduce some notation on probability measures of M. Let us
endowM(M) with the weak topology. It is well-known that the set of f -invariant measures,M f (M),
is a non-empty compact subset ofM(M). We say that µ ∈ M(M) is atomic if there exists a point
x ∈ M such that µ({x}) > 0 (denote by A(M) the set of atomic measures of M). It is known that the
set of non-atomic measures is a residual set inM(M) (see [9]).

We define two subsets PS and PIS of Diff(M) as follows from a measure-theoretical view point
and characterize them in the context of geometric theory of differentiable dynamical systems.

PS = { f ∈ Diff(M) : f is µ-shadowable for any µ ∈ M(M) \ A(M)}, and

PIS = { f ∈ Diff(M) : f is µ-shadowable for any µ ∈ M f (M) \ A(M)},
Recall that if f ∈ S , then f is µ-shadowable for any µ ∈ M(M) \ A(M). Thus

S ⊂ PS ⊂ PIS .

In this paper, we prove the following two theorems.
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Theorem 1. f ∈ intPS if and only if f satisfies both Axiom A and the strong transversality condition.

The proof is based on the main result of [7], and the result is obtained by proving that intPS ⊂
intS (see Section 3).

Denote by F 1(M) the set of f ∈ Diff(M) such that there is a C1-neighborhood U ( f ) of f with
property that every p ∈ P(g) (g ∈ U ( f )) is hyperbolic. It is proved by Hayashi [10] that f ∈ F 1(M) if
and only if f satisfies both Axiom A and no-cycle condition. The proof of the second result is based on
Hayashi, and the result is obtained by proving that intPIS ⊂ F 1(M) (see Section 4).

Theorem 2. f ∈ intPIS if and only if f satisfies both Axiom A and the no-cycle condition.

Owing to the above two theorems, the relationship between uniform hyperbolicity and
C1-robustness of the existence of shadowable measures turns out to be clear.

2. Examples

Recall that if a dynamical system has the shadowing property, then any probability mesasure
is shadowable. The dynamical systems considered in this section do not have the shadowing
property. First two examples have a measure that is not shadowable, but the last example has
a shadowable measure.

Example 1. (The identity map of the unit interval).

Let I be the unit interval [0, 1], and let idI : I → I be the identity map, that is, idI(x) = x for
x ∈ I. It is well-known that the identity map of I does not have the shadowing property. Let µ be the
Lebesgue probability measure on I. Then we can see that there exists ε0 > 0 such that for any n ∈ N
and δ > 0, there is a subset

Γn
δ ⊂ PO(δ, n)

with the property that µn(Γn
δ ) > 0 and non of any element in Γn

δ can be ε0-shadowed.
For any integer m > 0 and 0 ≤ i ≤ 3m− 1, denote by Im

i = [ i
3m , i+1

3m ]. First we put Jm
i = Im

i for
0 ≤ i ≤ 3m− 1, and then set Jm

i = Im
3m−1 for i ≥ 3m. It is easy to see that for any xi ∈ Jm

i (i ≥ 0),

d(idI(xi), xi+1) = d(xi, xi+1) ≤
2

3m
<

1
m

so that {xi}∞
i=0 is a 1

m -pseudo-orbit of idI . Set

Γn
δ =

n−1

∏
i=0

Jm
i ⊂ Xn.

Then

µn

(
PO

(
1
m

, n
))
≥ µn (Γn

δ ) = µn

(
n−1

∏
i=0
|Jm

i |
)

=

(
1

3m

)n
> 0

for n > 0.
Since idI is the identity map, it is not hard to show that there exists ε0 > 0 (say, ε0 = 1/3) such that

for any 1
m -pseudo-orbit {xi}∞

i=0 (m� 0) of idI , there is n such that {xi}n−1
i=0 cannot be ε0-shadowed by

any point y ∈ I.

Example 2. (Rotation maps of the unit circle).
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Let S1 = {e2πiθ : θ ∈ R} ⊂ C, and define a metric on S1 by

d(e2πiθ1 , e2πiθ2) = min{|θ1 − θ2|, 1− |θ1 − θ2|}.

For α ∈ R, let ρα : S1 → S1 be a rotation map defined by ρα(e2πiθ) = e2πi(α+θ).
Then the map ρα does not have the shadowing property. In fact, the identity map idS1 does not

have the shadowing property. For any (small) δ > 0, put xj = e2πijδ (j ∈ N). Then since

d(idS1(xj), xj+1) = d(xj, xj+1) = d(e2πijδ, e2πi(j+1)δ) = δ

for any j ∈ N, the sequence {xj}∞
j=0 is a δ-pseudo-orbit of idS1 . It is easy to see that the pseudo-orbit

cannot be 1
3 -shadowed by idS1 -orbit for any y ∈ S1.

Observe that if |θ1 − θ2| is small enough, then

d(ρα(e2πiθ1), ρα(e2πiθ2)) = d(e2πi(α+θ1), e2πi(α+θ2)) = |θ1 − θ2|.

Thus, it is not hard to show that the rotation map does not have the shadowing property as in the
case idS1 .

Let µ be the usual Lebesgue probability measure on S1 so that µ is ρα-invariant. Then, as in the
case of the identity map of the unit interval I, the measure of the set of non-shadowable pseudo-orbits
is positive.

As stated before, the last example does not have the shadowing property, but has a shadowable
measure. For the description, we need some notations.

Let M2 be a surface, and let f ∈ Diff(M2) satisfy Axiom A. The so-called C0-transversality
condition for f is introduced by [11]. Roughly speaking, we say that the stable manifold Ws(z) and
the unstable manifold Wu(z) of z ∈ M2 are C0-transverse at z if these sets cross at z as the graph
of the function y = x3 crosses the x-axis at the origin in the xy-plane. We say that f satisfies the
C0-transversality condition if all the stable and the unstable manifolds are C0-transverse at any point
of their intersection. It is proved therein that f satisfies the C0-transversality condition if and only if
f has the shadowing property.

Example 3. (Axiom A diffeomorphisms with no-cycles).

We represent two-torus T2 as the square [−2, 2]× [−2, 2] with identified opposite sides in the
Euclidean space R2. Let g : T2 → T2 be a diffeomorphism with the following properties (see Figure 1):

(1) the non-wandering set Ω(g) of g is the union of 4 hyperbolic fixed points, that is, Ω(g) =

{p1, p2, p3, p4}, where p1 is a source, p4 is a sink, and p2, p3 are saddles;

(2) with respect to coordinates (v, w) ∈ [−2, 2]× [−2, 2], the following conditions hold:

(2.1) p1 = (1, 2), p2 = (1, 0), p3 = (−1, 0), p4 = (−1, 2),

(2.2) Wu(p2) ∪ {p3} = Ws(p3) ∪ {p2} = [−2, 2]× {0},

Ws(p2) = {1} × (−2, 2), Wu(p3) = {−1} × (−2, 2),

where Ws(pi) and Wu(pi) are the stable and unstable manifolds (i = 2, 3), respectively,
defined as usual;

(2.3) there exist neighborhoods V2, V3 of p2, p3 such that

g(x) = pi + Dpi g(x− pi) if x ∈ Vi,
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(2.4) there exists a neighborhood V of the point O = (0, 0) such that g(V) ⊂ V3, g−1(V) ⊂ V2

and g−1 is affine on g(V),

(2.5) the eigenvalues of Dp3 g are µ, ν with µ > 1, 0 < ν < 1, and the eigenvalues of Dp2 g are
λ, κ with 0 < λ < 1, κ > 1.

Please note that g satisfies both Axiom A and the no-cycle condition (i.e., it is Ω-stable) but does
not have the shadowing property. Indeed, since Ws(p3) \ {p3} = Wu(p2) \ {p2}, the stable manifold
and the unstable manifold are not C0-transverse, and thus g does not have the shadowing property.
However, we show herewith that there exists shadowable measure for g.

O

I

U

source

2

2

-2

-2
sink

p
1

p
2

p
3

p
4

Figure 1. The structure of the stable and unstable manifolds.

Indeed, put I = [−2, 2]× {0} and let U be a small neighborhood of I (see Figure 1). Define ν

as the Lebesgue measure on T2 \U such that ν(T2) = 1 and ν(U) = 0. Observe that for any δ > 0
and n ∈ N, we can construct a δ-pseudo-orbit {xi}n−1

i=0 of g starting at a neighborhood of p1, passing
through I, and arriving at a neighborhood of p4. It is easy to see that there exists ε > 0 such that for
any δ > 0, there exists this kind of δ-pseudo-orbit {xi}n−1

i=0 which cannot be ε-shadowed by any orbit
of g. Since ν(U) = 0, the νn-measure of the set of such a kind of δ-pseudo-orbits is 0.

On the other hand, since g is, in a sense, hyperbolic in the outside of U, we can see that
any pseudo-orbit can be shadowed by an orbit of g. For, since p4 is a sink fixed point, there is a
neighbourhood W(p4) of p4 and 0 < η < 1 such that for any x, y ∈ W(p4), d(g(x), g(y)) ≤ ηd(x, y).
For any ε > 0, choose δ > 0 small enough so that δ < ε(1− η). Let {xi}n−1

i=0 be a δ-pseudo-orbit of g
contained in W(p4). If d(y, x0) < ε for some y ∈ M, then

d(g(y), x1) ≤ d(g(y), g(x0)) + d(g(x0), x1) < εη + δ < ε

by the choice of δ. Moreover, since d(g(x1), x2) < δ, we have

d(g2(y), x2) ≤ d(g(g(y)), g(x1)) + d(g(x1), x2) < εη + δ < ε.

By continuing this manner, we can see that d(gi(y), xi) < ε for any 0 ≤ i ≤ n− 1. Thus, we have
the following.

Claim 1. For any ε > 0, there is δ > 0 such that any δ-pseudo-orbit {xi}n−1
i=0 of g which is contained in W(p4)

can be ε-shadowed by some point.

Observe that since p1 is a source fixed point, a similar property also holds in a neighbourhoof
W(p1) of p1 with respect to g−1. The assertion of the following claim can be easily checked.
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Claim 2. There are a constant N > 0 and δ0 > 0 such that for any δ-pseudo-orbit {xi}n−1
i=0 of g (0 < δ < δ0), if

{xi}n−1
i=0 ∩ {W(p4) ∪W(p1) ∪U} = ∅,

then n ≤ N.

It is not hard to show that for any ε > 0, there exists 0 < δ1 < δ0 such that any δ-pseudo-orbit
{xi}n−1

i=0 of g (0 < δ < δ1) with n ≤ N can be ε-shadowed some point. Combining this fact with
the assertion of Claim 1, we can see that the map g has the shadowing property in the outside of U.
Thus ν is a shadowable measure.

3. Proof of Theorem 1

In this section, we give a proof of Theorem A. Let f ∈ Diff(M). As we explained before, it has
shown that f ∈ intS if and only if f satisfies both Axiom A and the strong transversality condition.
Thus, to get the conclusion, it is enough to show that intPS ⊂ intS .

In the following lemma, let (X, d) be a compact metric space, and let f : X → X be
a homeomorphism.

Lemma 1. Let µ ∈ M(X). If f is µ-shadowable, then for any ε > 0, there exist δ > 0 such that for any n ≥ 1
and δ-pseudo-orbit {xi}n−1

i=0 ⊂ supp(µ) of f , there is y ∈ X ε-shadowing the pseudo-orbit.

Proof. Since µ is shadowable, for any ε > 0, there exists a δ > 0 such that for any n ∈ N,

µn

(
SPO

(
2δ,

ε

2
, n
))

= µn(PO(2δ, n)).

Fix n and let a δ-pseudo-orbit {xi}n−1
i=0 ⊂ supp(µ) of f be given. Then there exists y ∈ X such

that d( f i(y), xi) < ε for 0 ≤ i ≤ n− 1. Indeed, choose 0 < r < min{ δ
2 , ε

2} such that d(x, y) < r implies
d( f (x), f (y)) < δ

2 , and put

Wn
r =

n−1

∏
i=0

Br(xi),

where Br(x) = {y ∈ X : d(x, y) < r}. Then we have µn(Wn
r ) > 0 since {xi}n−1

i=0 ⊂ supp(µ). For any
sequence {x′i}

n−1
i=0 ∈Wn

r ⊂ Xn we have

d( f (x′i), x′i+1) ≤ d( f (x′i), f (xi)) + d( f (xi), xi+1) + d(xi+1, x′i+1)

<
δ

2
+ δ + r < 2δ,

and so {x′i}
n−1
i=0 is a 2δ-pseudo-orbit of f . Thus, there is y ∈ X such that

d( f i(y), x′i) <
ε

2
(0 ≤ i ≤ n− 1)

for some {x′i}
n−1
i=0 in Wn

r since µ is a shadowable measure, and thus we have

d( f (y), xi) = d( f (y), x′i) + d(x′i , xi) < ε (0 ≤ i ≤ n− 1).

End of the proof of Theorem 1. Suppose f ∈ intPS , and let µL be the Lebesgue measure on M.
Then, since supp(µL) = M, the proof of Theorem 1 quickly follows from Lemma 1, so that Theorem 1
is proved.
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4. Proof of Theorem 2

In what follows, we give a proof of Theorem 2. Recall that f ∈ F 1(M) if and only if f satisfies
both Axiom A and no-cycle condition by [10]. Thus, to get the conclusion, it is enough to show that
intPIS ⊂ F 1(M). Suppose f ∈ intPIS . The existence of the non-hyperbolic periodic point of f
easily gives a small periodic curve with period l for some ϕ C1-nearby f such that the restriction of
the map ϕl to the curve is the identity map (see End of the proof of Theorem 2 below). From this,
we will show that periodic points of any g, C1-nearby f , are all hyperbolic. This kind of result was
first obtained by the first author in ([12], Proposition 1). To show this fact we use the next lemma
several times.

Lemma 2. Let f ∈ Diff(M) and let U ( f ) be given. Then there is δ > 0 such that for a finite set
{x1, x2, · · · , xN}, a neighborhood U of {x1, x2, · · · , xN} and linear maps Li : Txi M → Tf (xi)

M satisfying
‖Li − Dxi f ‖ ≤ δ for all 1 ≤ i ≤ N, there are ε0 > 0 and g ∈ U ( f ) such that

(a) g(x) = f (x) if x ∈ M \U, and
(b) g(x) = exp f (xi)

◦Li ◦ exp−1
xi

(x) if x ∈ Bε0(xi) for all 1 ≤ i ≤ N.

Observe that the assertion (b) implies that

g(x) = f (x) if x ∈ {x1, x2, · · · , xN}

and that Dxi g = Li for all 1 ≤ i ≤ N. The proof is essentially contained in the proof of ([13], Lemma 1).

End of the proof of Theorem 2. Suppose f ∈ int(PIS), and we show that f ∈ F 1(M).
By contradiction, assume that f /∈ F 1(M) and we shall derive a contradiction. Since f ∈ int(PIS),
there exists a C1-neighborhood U ( f ) of f such that for any g ∈ U ( f ) and any µ ∈ Mg(M) \ A(M),
g is µ-shadowable. On the other hand, it follows from the assumption ( f /∈ F 1(M)) that there are
g ∈ U ( f ) and non-hyperbolic periodic point p of g.

At first, by Lemma 2, with a small modification of the map g with respect to the C1-topology, we
may assume that Dpgπ(p) has only one eigenvalue λ with modulus equal to 1 (or only one pair of
complex conjugated eigenvalues, see Case 2 below). Denote by Ec

p the eigenspace corresponding to λ.

Case 1. dim Ec
p = 1.

In this case, we suppose further that λ = 1 for simplicity (the other case is similar).
Then, by Lemma 2, there are ε0 > 0 and ϕ ∈ U ( f ) such that ϕπ(p)(p) = gπ(p)(p) = p and

ϕ(x) = expgi+1(p) ◦Dgi(p)g ◦ exp−1
gi(p)(x)

if x ∈ Bε0(gi(p)) for 0 ≤ i ≤ π(p)− 2, and

ϕ(x) = expp ◦Dgπ(p)−1(p)g ◦ exp−1
gπ(p)−1(p)

(x)

if x ∈ Bε0(gπ(p)−1(p)). We can choose 0 < ε1 < ε0 such that

ϕi(Bε1(p)) ⊂ Bε0(ϕi(p)) (0 ≤ i ≤ π(p))

and
ϕi(Bε1(p)) ∩ ϕj(Bε1(p)) = ∅ (0 ≤ i 6= j ≤ π(p)− 1).

Define a small arc with its center at p by

Lc
p = expp(Ec

p(ε1))
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Here Ec
p(ε1) is the ε1-ball in Ec

p centered at the origin Op. Since the eigenvalue λ of Dpgπ(p)|Ec
p

is 1, we have

ϕi(Lp) ∩ ϕj(Lp) = ∅ (0 ≤ i 6= j ≤ π(p)− 1),
ϕπ(p)(Lp) = Lp, and
ϕπ(p)|Lp is the identity map.

Denote by Es
p the eigenspace corresponding to the eigenvalues of Dpgπ(p) with modulus less

than 1, and by Eu
p the eigenspace corresponding to the eigenvalues with modulus more than 1. Then

Tp M = Es
p ⊕ Ec

p ⊕ Eu
p .

For x ∈ Bε0(p) we define

Lsu
x = expp

(
exp−1

p (x) + Es
p ⊕ Eu

p

)
∩ Bε0(p).

If we put ε2 = τ · ε1
4 for 0 < τ < 1, then, we may assume

ε2 < min

d(y, z)

∣∣∣∣∣∣ y ∈
⋃

x∈Bε2 (p)

Lsu
x , z ∈ Lp \ B ε1

4
(p)

 (<
ε1

4
)

by reducing τ if necessary.
Let mLp be a normalized Lebesgue measure on Lp. We define µ ∈ Mϕ(M) by

µ(C) =
1

π(p)

π(p)−1

∑
j=0

mLp

(
ϕ−j

(
C ∩ ϕj(Lp)

))
for any Borel set C of M. Observe that µ ∈ Mϕ(M) \ A(M).

Let δ > 0. By the continuity of ϕ, there exists 0 < δ1 < ε2 such that d(x, y) < δ1
2 implies

d(ϕi(x), ϕi(y)) <
δ

2

for x, y ∈ M and 0 ≤ i ≤ π(p)− 1. Choose an integer m > 0 such that ε1
2 < mδ1 < 3ε1

4 . Then there
are points

x0, x1, x2, · · · , xm−1 ∈ Lp

such that

(i) x0 = p,
(ii) B δ1

2
(xk) ∩ B δ1

2
(xk+1) 6= ∅ for 0 ≤ k ≤ m− 2,

(iii) d(x0, xk) <
3ε1
4 (k = 1, 2, · · · , m− 1), d(x0, xm−1) >

3ε1
8 .

For any 0 ≤ k ≤ m− 1 and 0 ≤ ` ≤ π(p)− 1), we set

Ikπ(p)+` = ϕ`(B δ1
2
(xk) ∩ Lp).

The set Sm is defined by

Sm = {{yi} ∈ Mmπ(p) | yi ∈ Ii, 0 ≤ i ≤ mπ(p)− 1}.
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Then it is easily checked that Sm ⊂ PO(δ, mπ(p)) and µmπ(p)(Sm) > 0. We show that

SPO
(

δ,
ε2

2
, mπ(p)

)
∩ Sm = ∅.

Let {yi} ∈ Sm and y ∈ M satisfy d(ϕi(y), yi) <
ε2
2 for 0 ≤ i ≤ mπ(p)− 1. Since

d(ϕkπ(p)(y), p) ≤ d(ϕkπ(p)(y), ykπ(p)) + d(ykπ(p), xkπ(p)) + d(xkπ(p), p)

<
ε1

8
+

δ1

2
+

3ε1

4
< ε1,

we have d(ϕkπ(p)+j(y), ϕj(p)) ≤ ε0 for 0 ≤ k ≤ m− 1 and 0 ≤ j ≤ π(p)− 1. If we put exp−1
p (y) =

vs + vc + vu, vσ ∈ Eσ
p (σ = s, c, u), then we have

ϕ(m−1)π(p)(y)

= expp

(
Dpg(m−1)π(p)(vu) + Dpg(m−1)π(p)(vc) + Dpg(m−1)π(p)(vs)

)
∈ expp

(
vc + Eu

p ⊕ Es
p

)
∩ Bε0(p)

⊂
⋃

x∈Bε2 (p)

Lsu
x .

Since
d(p, y(m−1)π(p)) ≥ d(p, xm−1)− d(xm−1, y(m−1)π(p)) ≥

3ε1

8
− ε1

8
=

ε1

4
,

we have d(ϕ(m−1)π(p)(y), y(m−1)π(p)) ≥ ε2, which is a contradiction.
Therefore we have SPO(δ, ε2

2 , mπ(p)) ∩ Sm = ∅. But this contradicts with ϕ ∈ U ( f ).

Case 2. dim Ec
p = 2.

In the proof of the second case, to avoid notational complexity, we consider only the case g(p) = p.
As in the first case, by Lemma 2, there are ε0 > 0 and ϕ ∈ U ( f ) such that ϕ(p) = g(p) = p and

ϕ(x) = expg(p) ◦Dpg ◦ exp−1
p (x)

if x ∈ Bε0(p). With a small modification of the map Dpg, we may suppose that there is l > 0 (the
minimum number) such that Dpgl(v) = v for any v ∈ Ec

p(ε0) by Lemma 2.
Take v0 ∈ Ec

p(ε0) such that ‖v0‖ = ε0
4 , and set

Jp = expp

({
t · v0 : 1 ≤ t ≤ 1 +

ε0

4

})
.

Then Jp is an arc such that

ϕi(Jp) ∩ ϕi(Jp) = ∅ (0 ≤ i 6= j ≤ l − 1),
ϕl(Jp) = Jp, and
ϕl |Jp is the identity map.

Let mJp be the normalized Lebesgue measure on Jp and set

µ(C) =
1
l

l−1

∑
j=0

mJp

(
ϕ−j

(
C ∩ ϕj(Jp)

))
for a Borel set C.

Then µ ∈ Mϕ(M) \ A(M). As in the first case, we can prove that ϕ is not µ-shadowable,
which contradicts the fact that ϕ ∈ U ( f ). Thus, Theorem 2 is proved.
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