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Abstract

:

We study smooth exponentially harmonic maps from a compact, connected, orientable Riemannian manifold M into a sphere Sm⊂Rm+1. Given a codimension two totally geodesic submanifold Σ⊂Sm, we show that every nonconstant exponentially harmonic map ϕ:M→Sm either meets or links Σ. If H1(M,Z)=0 then ϕ(M)∩Σ≠∅.
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1. Introduction


Let M be a compact, connected, orientable n-dimensional Riemannian manifold, with the Riemannian metric g. Let ϕ:M→N be a C∞ map into another Riemannian manifold (N,h). The Hilbert-Schmidt norm of dϕ is ∥dϕ∥=tracegϕ∗h1/2:M→R. Let us consider the functional


E:C∞(M,N)→R,E(ϕ)=∫Mexp12∥dϕ∥2dvg.











A C∞ map ϕ:M→N is exponentially harmonic if it is a critical point of E i.e., dE(ϕs)/dss=0=0 for any smooth 1-parameter variation {ϕs}|s|<ϵ⊂C∞(M,N) of ϕ0=ϕ. Exponentially harmonic maps were first studied by J. Eells & L. Lemaire [1], who derived the first variation formula


ddsE(ϕs)s=0=−∫Mexpe(ϕ)hϕV,τ(ϕ)+ϕ∗∇e(ϕ)dvg








where e(ϕ)=12∥dϕ∥2 and τ(ϕ)∈C∞ϕ−1TN is the tension field of ϕ (cf. e.g., [2]). Also V=∂ϕs/∂ss=0 is the infinitesimal variation induced by the given 1-parameter variation. In particular, the Euler-Lagrange equations of the variational principle δE(ϕ)=0 are


−Δϕi+Γjki∘ϕ∂ϕj∂xα∂ϕk∂xβgαβ+∂ϕi∂xα∂e(ϕ)∂xβgαβ=0



(1)




where


Δu=−1G∂∂xαGgαβ∂u∂xβ,G=det[gαβ],








is the Laplace-Beltrami operator and Γjki are the Christoffel symbols of hij. The (partial) regularity of weak solutions to (1) was investigated by D.M. Duc & J. Eells (cf. [3]) when N=R and by Y-J. Chiang et al. (cf. [4]) when N=Sm. Differential geometric properties of exponentially harmonic maps, including the second variation formula for E, were found by M-C. Hong (cf. [5]), J-Q. Hong & Y. Yang (cf. [6]), L-F. Cheung & P-F. Leung (cf. [7]), and Y-J. Chiang (cf. [8]).



The purpose of the present paper is to further study exponentially harmonic maps ϕ winding in N=Sm, a situation previously attacked in [4], though confined to the case where M is a Fefferman space-time (cf. [9]) over the Heisenberg group Hn and ϕ:M→Sm is S1 invariant. Fefferman spaces are Lorentzian manifolds and exponentially harmonic maps of this sort are usually referred to as exponential wave maps (cf. e.g., Y-J. Chiang & Y-H. Yang, [10]). Base maps f:Hn→Sm associated (by the S1 invariance) to ϕ:M→Sm turn out to be solutions to degenerate elliptic equations [resembling (cf. [11]) the exponentially harmonic map system (1)] and the main result in [4] is got by applying regularity theory within subelliptic theory (cf. e.g., [12]).



Through this paper, M will be a compact Riemannian manifold and ϕ:M→Sm an exponentially harmonic map. Although the properties of an exponentially harmonic map may differ consistently from those of ordinary harmonic maps (see the emphasis by Y-J. Chiang, [13]), we succeed in recovering, to the setting of exponentially harmonic maps, the result by B. Solomon (cf. [14]) that for any nonconstant harmonic map ϕ:M→Sm from a compact Riemannian manifold either ϕ(M)∩Σ≠∅ or ϕ:M→Sm∖Σ isn’t homotopically null. Here Σ⊂Sm is an arbitrary codimension 2 totally geodesic submanifold.



The ingredients in the proof of the exponentially harmonic analog to Solomon’s theorem (see [14]) are (i) setting the Equation (1) in divergence form


−∇∗expe(ϕ)∇ϕi+2e(ϕ)expe(ϕ)ϕi=0








(got by a verbatim repetition of arguments in [4]), (ii) observing that Sm∖Σ is isometric to the warped product manifold S+m−1×wS1, and (iii) applying the Hopf maximum principle (to conclude that there are no nonconstant exponentially harmonic maps into hemispheres).




2. Exponentially Harmonic Maps into Warped Products


Let S=L×R, where L is a Riemannian manifold with the Riemannian metric gL. Let w∈C∞(S) such that w(y)>0 for any y∈S and let us endow S with the warped product metric


h=Π1∗gL+w2dt⊗dt,








where t=t˜∘Π2, t˜ is the Cartesian coordinate on R, and


Π1:S→L,Π2:S→R,








are projections. The Riemannian manifold (S,h) is customarily denoted by L×wR. Let ϕ:M→S be an exponentially harmonic map and let us set


F=Π1∘ϕ,u=Π2∘ϕ.











We need to establish the following



Lemma 1.

Let M be a compact, connected, orientable Riemannian manifold andϕ=(F,u):M→S=L×wRa nonconstant exponentially harmonic map. Then u is a solution to


w∘ϕΔu+∂w∂t∘ϕ∥∇u∥2



(2)






=w∘ϕ(∇u)e(ϕ)+2(∇u)(w∘ϕ).











If additionally∂w/∂t=0 then ϕ(M)⊂L×{tϕ}for some tϕ∈R.





Also for an arbitrary test function φ∈C∞(M) we set


ϕs(x)=F(x),u(x)+sφ(x),x∈M,|s|<ϵ,








so that {ϕs}|s|<ϵ is a 1-parameter variation of ϕ. For each x0∈M let {Eα:1≤α≤n}⊂C∞(U,T(M)) be a local g-orthonormal (i.e., g(Eα,Eβ)=δαβ) frame, defined on an open neighborhood U⊂M of x0. Then


∥dϕs∥2=tracegϕs∗h=∑α=1nϕs∗h(Eα,Eα)








on U. On the other hand


ϕs∗h(X,X)=F∗gL(X,X)+(w∘ϕs)2X(u)+sX(φ)2



(3)




for every tangent vector field X∈X(M). Formula (3) for X=Eα yields


∥dϕs∥2=∥dF∥2+w∘ϕs2∥∇u∥2+2sg(∇u,∇φ)+s2∥∇φ∥2.











Hence (differentiating with respect to s)


ddsE(ϕs)s=0=∫Mexpe(ϕ)w∘ϕ2g(∇u,∇φ)



(4)






+w∘ϕwt∘ϕφ∥∇u∥2dvg








where wt=∂w/∂t. Moreover


expe(ϕ)w∘ϕ2g∇u,∇φ



(5)






=divφexpe(ϕ)(w∘ϕ)2∇u










+φexpe(ϕ)w∘ϕ2Δu−(∇u)expe(ϕ)(w∘ϕ)2








where div:X(M)→C∞(M) is the divergence operator with respect to the Riemannian volume form


dvg=Gdx1∧⋯∧dxn








i.e., LXdvg=div(X)dvg and Δ is the Laplace-Beltrami operator (on functions) i.e., Δu=−div(∇u). Substitution from (5) into (4) together with Green’s lemma yields [by {dE(ϕs)/ds}s=0=0 and the density of C∞(M) in L2(M)]


w∘ϕΔu+wt∘ϕ∥∇u∥2



(6)






=w∘ϕ(∇u)e(ϕ)+2(∇u)(w∘ϕ)








which is (2) in Lemma 1. When wt=0 Equation (6) is


divexpe(ϕ)(w∘ϕ)2∇u=0.



(7)







Equation (7) is part of the Euler-Lagrange system associated to the variational principle δE(ϕ)=0. Next (by (7))


divw∘ϕ2uexpe(ϕ)∇u=expe(ϕ)w∘ϕ2∥∇u∥2.



(8)







Let us integrate over M in (8) and use Green’s lemma. We obtain


∫Mexpe(ϕ)w∘ϕ2∥∇u∥2dvg=0








yielding (as ϕ is assumed to be nonconstant) u(x)=tϕ for some tϕ∈R and any x∈M. Q.e.d.




3. Exponentially Harmonic Maps Omitting a Codimension 2 Sphere Aren’t Null Homotopic


Let Σ⊂Sm be a codimension 2 totally geodesic submanifold. A continuous map ϕ:M→Smmeets Σ if ϕ(M)∩Σ≠∅ and links Σ if ϕ(M)∩Σ=∅ and ϕ:M→Sm∖Σ is not null homotopic. The purpose of the section is to establish



Theorem 1.

Let ϕ:M→Sm be a nonconstant exponentially harmonic map from a compact, connected, orientable Riemannian manifold M into the sphere Sm⊂Rm+1. If Σ⊂Sm is a codimension 2 totally geodesic submanifold, then φ either meets or links Σ.





Proof. 

The proof is by contradiction, i.e., we assume that ϕ doesn’t meet Σ and the map ϕ:M→Sm∖Σ is null homotpic. Let (ξj) be a system of coordinates on Rm+1 such that Σ is given by the equations ξ1=ξ2=0. Let S+m−1⊂Rm be the hemisphere


S+m−1=y=(y′,ym)∈Rm−1×R:y∈Sm−1,ym>0.











Let us consider the map


I:S+m−1×S1→Sm∖Σ,I(y,ζ)=ymu,ymv,y′,










y=y′,ym∈S+m−1,ζ=u+iv∈S1⊂C.











Let gN denote the canonical Riemannian metric on SN⊂RN+1. The map I is an isometry of S+m−1×fS1 onto (Sm∖Σ,gm) with the warping function


f∈C∞(S+m−1×S1),f(y,ζ)=ym.











Let us consider the map ψ˜=I−1∘ϕ. We need the following. □





Lemma 2.

Let S andS¯be Riemannian manifolds,π:S→S¯a local isometry, andf¯:M→S¯an exponentially harmonic map. Then every mapf:M→Ssuch thatπ∘f=f¯is exponentially harmonic.





Proof. 

Let h and h¯ be the Riemannian metrics on S and S¯. For every 1-parameter variation {fs}|s|<ϵ of f0=f we set f¯s=π∘fs so that {f¯s}|s|<ϵ is a 1-parameter variation of f¯0=f¯. A calculation relying on π∗h¯=h yields E(fs)=E(f¯s) for every |s|<ϵ. Q.e.d.



By Lemma 2 the map ψ˜=I−1∘ϕ is exponentially harmonic. Let us set


F=π1∘ψ˜,u˜=π2∘ψ˜,








where π1:S+m−1×S1→S+m−1 and π2:S+m−1×S1→S1 are projections. Next let us consider a point x0∈M and set ζ0=u˜(x0)∈S1. Also, considered the covering map p:R→S1, p(t)=exp(2πit), pick t0∈R such that p(t0)=ζ0. As ϕ is null homotopic, the map ψ˜ is null homotopic as well. Then


u˜∗π1(M,x0)=0








where π1(M,x0) is the first homotopy group of M. Consequently there is a unique smooth function u:M→R such that p∘u=u˜ and u(x0)=t0. The map


ψ=(F,u):M→S+m−1×wR








is exponentially harmonic [because ψ=π∘ψ˜ and


π=1S+m−1,p:S+m−1×wR→S+m−1×fS1








is a local isometry, where w∈C∞(S+m−1) is given by w(y)=ym]. We may then apply Lemma 1 to the map ψ with L=S+m−1 to conclude that


ψ(M)⊂S+m−1×tψ








for some tψ∈R. It follows that F=π1∘ψ:M→S+m−1 is exponentially harmonic. We shall close the proof of Theorem 1 by showing that exponentially harmonic mappings into S+m−1 are constant. □






4. Exponentially Harmonic Map System in Divergence Form


Let us consider the L2 inner products


(u,v)L2=∫Muvdvg,(X,Y)L2=∫Mg(X,Y)dvg.











Let us think of the gradient ∇ as a first order differential operator ∇:C1(M)→CT(M) and let ∇∗ be its formal adjoint, i.e.,


∇∗X,uL2=X,∇uL2








for any X∈C1T(M) and u∈C1(M). Ordinary integration by parts shows that ∇∗X=−div(X). Let ρ=expe(F)∈C∞(M). Starting from Δu=−div(∇u) one has


ρΔu,φL2=∇∗∇u,ρφL2=∇u,∇(ρφ)L2










=∇∗(ρ∇u),φL2+∫Mφg(∇u,∇ρ)dvg








for any φ∈C∞(M), that is


expe(F)Δu=∇∗expe(F)∇u



(9)






+expe(F)g∇u,∇e(F).











Lemma 3.

LetF:M→S+m−1be an exponentially harmonic map andF=j∘Fwherej:Sm−1↪Rmis the inclusion. IfF=F1,⋯,Fmthen


−∇∗expe(F)∇Fi+2e(F)expe(F)Fi=0



(10)




for any1≤i≤m.





Proof. 

Let y=y1,⋯,ym−1:S+m−1→Bm−1 be the projection, where Bm−1⊂Rm−1 is the open unit ball. With respect to this choice of local coordinates, the standard metric gm−1 and its Christoffel symbols are


hij=δij+yiyj1−|y|2,|y|2=∑i=1m−1yi2,



(11)






hij=δij−yiyj,



(12)






Γjki=yihjk.



(13)







Let us substitute from (13) into (1) [with ϕi=Fi] and take into account


e(F)=12gαβ∂Fj∂xα∂Fk∂xβhjk∘F.



(14)







The exponentially harmonic map system (1) becomes


−ΔFi+2e(F)Fi+g∇e(F),∇Fi=0,1≤i≤m−1.



(15)







Multiplication of (15) by expe(F) and subtraction from (9) [with u=Fi] yields (10) for any 1≤i≤m−1.



To see that (15) (and therefore (10)) holds for i=m as well, one first exploits the constraint (Fm)2=1−∑i=1m−1(Fi)2 together with (11) and (14) to show that


e(F)=12∑j=1m∥∇Fj∥2.











Finally, one contracts (15) by Fi and uses once again the constraint together with Δ(u2)=2uΔu−∥∇u∥2. Q.e.d.



We may now end the proof of Theorem 1 as follows. Let F:M→S+m−1 be an exponentially harmonic map. Let us integrate over M in (10) for j=m. Then (by Green’s lemma)


∫Me(F)expe(F)Fmdvg=0








and Fm>0 so that


0=e(F)=12∑j=1m∥∇Fj∥2








yielding Fj= constant. So ϕ is constant as well, a contradiction. □





As well known S+m−1×S1 and S1 are homotopically equivalent. Therefore a continuous map ϕ:M→S+m−1×S1 is null homotopic if and only if π2∘ϕ:M→S1 is null homotopic. The homotopy classes of continuous maps M→S1 form an abelian group π1(M) (the Bruschlinski group of M) naturally isomorphic to H1(M,Z). We may conclude that



Corollary 1.

Let M be a compact, orientable, connected Riemannian manifold withH1(M,Z)=0. Then every nonconstant exponentially harmonic mapϕ:M→Smmeets Σ.
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