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Abstract: The aim of this paper is to establish the existence of some common fixed point results for
generalized Geraghty (α, ψ, φ)-quasi contraction self-mapping in partially ordered metric-like spaces.
We display an example and an application to show the superiority of our results. The obtained
results progress some well-known fixed (common fixed) point results in the literature. Our main
results cannot be specifically attained from the corresponding metric space versions. This paper is
scientifically novel because we take Geraghty contraction self-mapping in partially ordered metric-like
spaces via α−admissible mapping. This opens the door to other possible fixed (common fixed) point
results for non-self-mapping and in other generalizing metric spaces.

Keywords: common fixed point; metric-like space; α-Geraghty contraction; triangular α-admissible
mapping

1. Introduction

Fixed point theory occupies a central role in the study of solving nonlinear equations of kinds
Sx = x, where the function S is characterized on abstract space X. It is outstanding that the Banach
contraction principle is a standout amongst essential and principal results in the fixed point theorem.
It ensures the existence of fixed points for certain self-maps in a complete metric space and provides
a helpful technique to find those fixed points. Many authors studied and extended it in many
generalizations of metric spaces with new contractive mappings, for example, see References [1–3] and
the references therein.

Otherwise, Hitzler and Seda [4] introduce the notation of metric-like (dislocated) metric space
as a generalization of a metric space, they introduced variants of the Banach fixed point theorem
in such space. Metric like spaces were revealed by Amini-Harandi [5] who proved the existence
of fixed point results. This interesting subject has been mediated by certain authors, for example,
see References [6–8]. In partial metric spaces and partially ordered metric-like spaces, the usual
contractive condition is weakened and many researchers apply their results to problems of existence
and uniqueness of solutions for some boundary value problems of differential and Integral equations,
for example, see References [9–22] and the references therein.

Additionally, Geraghty [23] characterized a kind of the set of functions S to be classified as the
functions β:[0, ∞)→ [0, 1) such that if {tn} is a sequence in [0,+∞) with β(tn)→ 1, then tn → 0.

By using the function β ∈ S, Geraghty [23] presented the following exceptional theorem
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Theorem 1. Suppose (Y, d) is a complete metric space. Assume that T:Y → Y and β:[0, ∞) → [0, 1) are
functions such that for all u, v ∈ Y,

d(Tu, Tv) ≤ β(d(u, v))d(u, v), (1)

where β ∈ S , then T has a fixed point and has to be unique.

The main results of Geraghty have engaged many of authors, see References [24–26] and the
references therein.

Recently, Amini-Harandi and Emami [27] reconsidered Theorem 1 as the framework of partially
ordered metric spaces and they presented taking into account existence theorem.

Theorem 2. Let (Y, d) be a partially ordered complete metric space. Assume S:Y → Y is a mapping such that
there exists u0 ∈ Y with u0 � Su0 and α ∈ F such that

d(Su, Sv) ≤ α(d(u, v))d(u, v), f or any u, v ∈ Y with u � v. (2)

Hence, S has a fixed point supported that either S is continuous or Y is such that if an increasing
sequence {un} → u, then un ≤ u for all n.

In 2015, Karapinar [28] demonstrated the following specific results:

Theorem 3. [28] Let (Y, σ) be a complete metric-like space. Assume that S:Y → Y is a mapping. If there exists
β ∈ S such that

σ(Su, Sv) ≤ β(σ(u, v))σ(u, v) (3)

for all u, v ∈ Y, then S has a unique fixed point u∗ ∈ Y with σ(u∗, u∗) = 0.

The notion of quasi-contraction presented by Reference [29], is known as one of the foremost
common contractive self-mappings.

A mapping S:Y → Y is expressed to be a quasi contraction if there exists 0 ≤ λ < 1 such that

d(Su, Sv) ≤ λ max{d(u, v).d(u, f v), d(u, f v), d( f u, v), d(u, f v)}, (4)

for any u, v ∈ Y.
In this paper, we show the generalized Geraghty (α, ψ, φ)-quasi contraction type mapping in

partially ordered metric like space, then we present some fixed and common fixed point theorems for
such mappings in an ordered complete metric-like space. We investigate this new contractive mapping
as a generalized weakly contractive mapping in our main results, then we display an example and an
application to support our obtained results.

2. Preliminaries

In this section, we review a few valuable definitions and assistant results that will be required
within the following sections.

Definition 1. [5] Let Y be a nonempty set. A function σ:Y×Y → [0, ∞) is expressed to be a metric-like space
on X if for any u, v, z ∈ Y, the accompanying stipulations satisfied:

(σ1) σ(u, v) = 0⇒ u = v,
(σ2) σ(u, v) = σ(v, u),
(σ3) σ(u, z) ≤ σ(u, v) + σ(v, z).

The pair (Y, σ) is called a metric-like space.
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Obviously, we can consider that every metric space and partial metric space could be a metric-like
space. However, this assertion isn’t valid.

Example 1. [5] Let Y = {0, 1} and

σ(u, v) =


2, if u = v = 0;

1, otherwise.
(5)

We note that σ(0, 0) 6≤ σ(0, 1). So, (Y, σ) is a metric-like space and at the same time it is not a partial
metric space.

Additonally, each metric-like σ on Y create a topology τσ on Y whose use as a basis of the group
of open σ-balls

Bσ(Y, ε) = {u ∈ Y :| σ(u, v)− σ(u, u) |< ε}, f or all u, v ∈ Y and ε > 0.

Let (Y, σ) be a metric-like space and f :Y → Y be a continuous mapping. Then

lim
n→∞

un = u ⇒ lim
n→∞

f un = f u.

A sequence {un} of elements of Y is considered σ-Cauchy if the limit limn,m→∞ σ(un, um) exists
as a finite number. The metric-like space (Y, σ) is considered complete if for each σ-Cauchy sequence
{un}, there is some u ∈ Y such that

lim
n→∞

σ(un, u) = σ(u, u) = lim
n,m→∞

σ(un, um).

Remark 1. [30] Let Y = {0, 1}, and σ(u, v) = 1 for each u, v ∈ Y and un = 1 for each n ∈ N. Then, it is
easy to see that un → 0 and un → 1 and so in metric-like spaces the limit of a convergent sequence is not
necessarily unique.

Lemma 1. [30] Let (Y, σ) be a metric-like space. Let {un} be a sequence in Y such that un → u where u ∈ Y
and σ(u, u) = 0. Then, for all u, v ∈ Y, we have limn→∞ σ(un, v) = σ(u, v).

Example 2. [5] Let Y = R and σ:Y×Y → [0,+∞) be defined by

σ(u, v) =

{
2n, if u = v = 0;
n, otherwise.

Then, we can consider (Y, σ) to be a metric-like space, but it does not satisfy the conditions of the partial
metric space, as σ(0, 0) 6≤ σ(0, 1).

Samet et al. [31] displayed the definition of α-admissible mapping as followings:

Definition 2. [31] Let S:X → X and α:X× X → [0, ∞) are two functions. Then, S is called α-admissible if
∀u, v ∈ X with α(u, v) ≥ 1 implies α( f u, f v) ≥ 1.

Definition 3. [32] Let S, T:X → X be two mappings and α:X× X → R be a function. We consider that the
pair (S, T) is α-admissible if

u, v ∈ X, α(u, v) ≥ 1⇒ α(Su, Tv) ≥ 1 and α(Tu, Sv) ≥ 1

Definition 4. [33] Let S:X→ X and α:X× X→ [0, ∞). Then, S is called a triangular α-admissible mapping if
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(1) S is α-admissible,
(2) α(u, z) ≥ 1 and α(z, v) ≥ 1 imply α(u, v) ≥ 1.

Definition 5. [32] Let S, T:X → X and α:X× X → [0, ∞). Then, (S, T) is called a triangular α-admissible
mapping if

(1) The pair (S, T) is α-admissible,
(2) α(u, z) ≥ 1 and α(z, v) ≥ 1 imply α(u, v) ≥ 1.

Let Ψ indicate the set of functions ψ:[0, ∞)→ [0, ∞) that approve the following stipulations:

(1) ψ is strictly continuous increasing,
(2) ψ(t) = 0⇔ t = 0.

and Φ indicates the set of all continuous functions φ:[0, ∞)→ [0, ∞) with φ(t) > ψ(t) for all t > 0 and
φ(0) = 0.

Definition 6. [12] Let (X, d,�) be a partially ordered metric space. Assume f , g:X → X are two
mappings. Then:

(1) For all x, y ∈ X are said to be comparable if x � y or y � x holds,
(2) f is said to be nondecreasing if x � y implies f x � f y,
(3) f , g are called weakly increasing if f x � g f x and gx � f gx for all x ∈ X,
(4) f is called weakly increasing if f and I are weakly increasing, where I is denoted to the identity mapping

on X.

3. Main Results

In this section, we present the notation of generalized Geraghty (α, ψ, φ)-quasi contraction
self-mappings in partially ordered metric-like space. Then, we present some fixed and common
fixed point theorems for such self-mappings. We investigate this new contractive self-mapping as a
generalized weakly contractive self-mapping which is a generalization of the results of Reference [34].
Results of this kind are amongst the most useful in fixed point theory and it’s applications.

Definition 7. Let (X, σ) be a partially ordered metric-like space and S, T:X → X be two mappings. Then,
we consider that the pair (S, T) is generalized Geraghty (α, ψ, φ)-quasi contraction self-mapping if there exist
α:X× X → [0, ∞), β ∈ S, ψ ∈ Ψ and φ:[0, ∞)→ [0, ∞) are continuous functions with φ(t) ≤ ψ(t) for all
t > 0 such that

α(x, y)ψ(σ(Sx, Ty)) ≤ λβ(ψ(Mx,y))φ(Mx,y), (6)

holds for all elements x, y ∈ X and 0 ≤ λ < 1, where

Mx,y = max{σ(x, y), σ(x, Sx), σ(y, Ty), σ(Sx, y), σ(x, Ty)}.

The following two lemmas will be utilized proficiently within the verification of our fundamental
result.

Lemma 2. If ψ ∈ Ψ and φ:[0, ∞)→ [0, ∞) are continuous function that satisfy the condition ψ(t) > φ(t) for
all t > 0, then φ(0) = 0.
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Proof. From the assumption φ(t) < ψ(t), since ψ and φ are continuous, we have

0 ≤ φ(0) = lim
t→0

φ(t) ≤ lim
t→0

ψ(t) = ψ(0) = 0.

Lemma 3. Let S, T:X → X be two mappings and α:X×X → [0, ∞) be a function such that S, T are triangular
α−admissible. Suppose that there exists x0 ∈ X such that α(x0, Sx0) ≥ 1. Define a sequence {xn} in X by
Sx2n = x2n+1 and Tx2n+1 = x2n+2. Then α(xn, xm) ≥ 1 for all m, n ∈ N with n < m.

Proof. Since α(x0, Sx0) ≥ 1 and S, T are α−admissible, we get

α(x0, x1) = α(x0, Sx0) ≥ 1.

By triangular α−admissibility, we get

α(Sx0, Tx1) = α(x1, x2) ≥ 1

and
α(TSx0, STx1) = α(x2, x3) ≥ 1.

Again, since α(x2, x3) ≥ 1, then

α(Sx2, Tx3) = α(x3, x4) ≥ 1

and
α(TSx2, STx3) = α(x4, Sx5) ≥ 1.

By proceeding the above process, we conclude that α(xn, xn+1) ≥ 1 for all n ∈ N∪ {0}.
Now, we prove that α(xn, xm) ≥ 1, for allm, n ∈ N with n < m. Since{

α(xn, xn+1) ≥ 1,

α(xn+1, xn+2) ≥ 1,

then, we have
α(xn, xn+2) ≥ 1.

Again, since {
α(xn, xn+2) ≥ 1

α(xn+2, xn+3) ≥ 1,

we deduce that
α(xn, xn+3) ≥ 1.

By continuing this process, we have

α(xn, xm) ≥ 1

for all n ∈ N with m > n.

Lemma 4. Let (X,�, σ) be a partially ordered metric-like space. Assume S, T are two self-mappings of X which
the pair (S, T) is generalized (α, ψ, φ)-quasi contraction self-mappings. Fix x1 ∈ X and define a sequence {xn}
by x2n+1 = Sx2n and x2n+2 = Tx2n+1 for all n ∈ N. If limn→∞ σ(xn, xn+1) = 0 and the sequence {xn} is
nondecreasing, then {xn} is a Cauchy sequence.
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Proof. Since S, T are a generalized (α, ψ, φ)-quasi contraction non-self mapping, then there exist
ψ ∈ Ψ, φ ∈ Φ such that

α(x, y)ψ(σ(Sx, Ty)) ≤ λβ(ψ(Mx,y))φ(Mx,y), (7)

holds for all elements x, y ∈ X and 0 ≤ λ < 1, where

Mx,y = max{σ(x, y), σ(x, Sx), σ(y, Ty), σ(Sx, y), σ(x, Ty)}.

Now, we show that the sequence {xn} is Cauchy sequence. Assume, for contradiction’s sake,
that {xn} isn’t Cauchy sequence. Therefore, there exist ε > 0 and two subsequences {nk} and {mk}
of the sequence {xn} such that σ(x2nk , x2mk ), σ(x2nk−1, x2mk ) and σ(x2nk , x2mk+1) converge to ε+ when
k→ ∞.

nk > mk > k, σ(x2nk , x2mk−2) < ε, σ(x2nk , x2mk ) ≥ ε. (8)

By the above inequalities and triangle inequality property, we imply that

ε ≤ σ(x2nk , x2mk ) ≤ σ(x2nk , x2mk−2) + σ(x2mk−2, x2mk−1) + σ(x2mk−1, x2mk )

< ε + σ(x2mk−2, x2mk−1) + σ(x2mk−1, x2mk ).

In view of limn→∞ σ(xn, xn+1) = 0 and letting k→ ∞ in the above inequalities, we obtain

lim
k→∞

σ(x2nk , x2mk ) = ε. (9)

By the triangle inequality, we have

σ(x2nk , x2mk ) ≤ σ(x2nk , x2nk+1) + σ(x2nk+1, x2mk )

≤ σ(x2nk , x2nk+1) + σ(x2nk+1, x2mk+1) + σ(x2mk+1, x2mk )

≤ σ(x2nk , x2nk+1) + σ(x2nk+1, x2nk+2) + σ(x2nk+2, x2mk ) + 2σ(x2mk , x2mk+1)

≤ 2σ(x2nk , x2nk+1) + 2σ(x2mk+2, x2mk+1) + σ(x2nk , x2mk ) + 2σ(x2mk , x2mk+1).

Taking the limit as k→ ∞ in the above inequalities and using Equation (9), we get

lim
k→∞

σ(x2nk , x2mk ) = lim
k→∞

σ(x2nk+1, x2mk ) = lim
k→∞

σ(x2nk+1, x2mk+1) = ε. (10)

Since xnk+1 � xmk and α(xnk+1, xmk ) ≥ 1 for all k ∈ N, so by substituting x with xnk+1 and y with
xmk in Equation (7), it follows that

ψ(σ(xnk+1, xmk )) ≤ α(xnk+1, xmk )ψ(σ(Sxnk , Txmk−1)) ≤ λβ(ψ(Mx,y))φ(Mx,y), (11)

holds for all elements x, y ∈ X and 0 ≤ λ < 1, where

Mxnk ,xmk−1 = max{σ(xnk , xmk−1), σ(xnk , Sxnk ), σ(xmk−1, Txmk−1),

σ(Sxnk , xmk−1), σ(xnk , Txmk−1)}
= max{σ(xnk , xmk−1), σ(xnk , xnk+1), σ(xmk−1, xmk ),

σ(xnk+1, xmk−1), σ(xnk , xmk )}.

Taking the limit as k→ ∞ of the above inequality and applying Equations (9), (10), we get

lim
k→∞

Mx2nk
,x2mk

= ε. (12)
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Letting k→ ∞ in Equation (11) and using φ ∈ Φ, β ∈ S and Equation (12), we deduce that

ψ(ε) ≤ λβ(ψ(ε))φ(ε)

< λφ(ε)

< λψ(ε).

This is possible only if ε = 0. Which contradicts the positivity of ε. Therefore, we get the desired
result.

Theorem 4. Let (X, σ) be a partially ordered metric like space. Assume that S, T:X → X are two self-mappings
fulfilling the following conditions:

(1) (S, T) is triangular α-admissible and there exists an x0 ∈ X such that α(x0, Sx0) ≥ 1,
(2) the pair (S, T) is weakly increasing,
(3) the pair (S, T) is a generalized Geraghty (α, ψ, φ)-quasi contraction non-self mapping,
(4) S and T are σ-continuous mappings.

Then, the pair (S, T) has a common fixed point z ∈ X with σ(z, z) = 0. Moreover, assume that if
x1, x2 ∈ X such σ(x1, x1) = σ(x2, x2) = 0 implies that x1 and x2 are comparable elements. Then the common
fixed point of the pair (S, T) is unique.

Proof. Let x0 ∈ X such that α(x0, Sx0) ≥ 1. Define the sequence {xn}in X as follows:

x2n+1 = Sx2n x2n+2 = Tx2n+1 f or all n ≥ 0. (13)

Suppose that x2n 6= x2n+1 for all n ∈ N0. Then, σ(x2n, x2n+1) > 0 for all n ∈ N0. Indeed, if
x2n 6= x2n+1, which is a contradiction. By using the assumption of Equations (1), (2), and Lemma 3, we
have

α(xn, xn+1) ≥ 1 (14)

for all n ∈ N∪ {0}.
Since the pair (S, T) is weakly increasing, we have

x1 = Sx0 � TSx0 = x2 = Sx1 =� ...x2n � TSx2n = x2n+2 � ....

Thus, xn � xn+1, for all n ∈ N. Since α(x2n, x2n+1) ≥ 1, by applying Equation (6), we obtain

ψ(σ(x2n+1, x2n+2)) = ψ(σ(Sx2n, Tx2n+1))

≤ α(x2n, x2n+1)ψ(σ(Sx2n, Tx2n+1))

≤ λβ(ψ(Mx2n ,x2n+1))φ(Mx2n ,x2n+1). (15)

Set σn = σ(x2n+1, x2n+2). We have

ψ(σn) = ψ(σ(x2n+1, x2n+2)) (16)

≤ λβ(ψ(Mx2n ,x2n+1))φ(Mx2n ,x2n+1). (17)

For the rest, for each n assume that (σn 6= 0).

Mx2n ,x2n+1 = max{σ(x2n, x2n+1), σ(x2n, Sx2n), σ(x2n+1, Tx2n+1), σ(Sx2n, x2n+1), σ(x2n, Tx2n+1)}
= max{σ(x2n, x2n+1), σ(x2n, x2n+1), σ(x2n+1, x2n+2), σ(x2n+1, x2n+1), σ(x2n, x2n+2)}
= max{σ(x2n, x2n+1), σ(x2n+1, x2n+2), σ(x2n, x2n+2)}
= max{σn−1, σn, σn−1 + σn}
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If for some n ∈ N, max{σn−1, σn, σn−1 + σn} = σn then from Equation (16), we find that ψ(σn) <

λψ(σn) which is a contradiction with respect to 0 ≤ λ < 1. We deduce max{σn−1, σn, σn−1 + σn} =
max{σn−1, σn−1 + σn}. Therefore Equation (16) becomes

ψ(σn) < λψ(max{σn−1, σn−1 + σn}).

Put

γ = max{λ,
λ

1− λ
}.

Thus,
ψ(σn) ≤ γβ(ψ(σn−1))φ(σn−1), f or all n ∈ N0. (18)

It is clear that γ < 1. Therefore, the sequence {σ(xn, xn+1)} is a decreasing sequence. Thus, there
exists r ≥ 0 such that

lim
n→∞

σ(xn, xn+1) = r.

Now, we show that r = 0. Presume to the contrary, that is r > 0. Since β ∈ S and by using the
condition of Theorem 4 and taking the limit as k→ ∞ in Equation (18), we conclude

ψ(r) ≤ λβ(ψ(r))φ(r) < λφ(r) < λψ(r),

which could be a contradiction. So r = 0. Then,

lim
n→∞

σ(xn, xn+1) = 0.

Lemma 4 implies that {xn} is a Cauchy sequence and from the completeness of (X, σ), then there
exists a x∗ ∈ X in order that

lim
n→∞

σ(xn, x∗) = σ(x∗, x∗) = lim
n,m→∞

σ(xn, xm). (19)

Whereas, S and T are continuous, we conclude

lim
n→∞

σ(xn+1, Tx∗) = lim
n→∞

σ(Sxn, Tx∗) = σ(Sx∗, Tx∗), (20)

lim
n→∞

σ(Sx∗, xn+1) = lim
n→∞

σ(Sx∗, Txn) = σ(Sx∗, Tx∗). (21)

By Lemma 1 and Equation (19), we obtain that

lim
n→∞

σ(xn+1, Tx∗) = σ(x∗, Tx∗) (22)

and
lim

n→∞
σ(Sx∗, xn+1) = σ(Sx∗, x∗). (23)

By merging Equations (20) and (22), we deduce that σ(x∗, Tx∗) = σ(Sx∗, x∗). In addition, by
Equations (21) and (23), we deduce that σ(Sx∗, x∗) = σ(Sx∗, Tx∗). So

σ(x∗, Tx∗) = σ(Sx∗, x∗) = σ(Sx∗, Tx∗). (24)

Presently, we display that σ(x∗, Tx∗) = 0. Assume the opposite, that is, σ(x∗, Tx∗) > 0, we get

ψ(σ(x∗, Tx∗)) = ψ(σ(Sx∗, Tx∗))
≤ λβ(ψ(Mx∗ ,x∗))φ(Mx∗ ,x∗),

(25)
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where

Mx∗ ,x∗ = max{σ(x∗, x∗), σ(x∗, Sx∗), σ(x∗, Tx∗), σ(Sx∗, x∗), σ(x∗, Tx∗), }
= max{σ(x∗, Tx∗), σ(x∗, Sx∗)}
= max{σ(x∗, Tx∗), σ(x∗, Tx∗)}.

Therefore, from Equation (25), we get

ψ(σ(x∗, Tx∗)) ≤ β(ψ(σ(x∗, Tx∗)))φ(σ(x∗, Tx∗))
< λφ(σ(x∗, Tx∗)
< λψ(σ(x∗, Tx∗))

(26)

Since ψ ∈ Ψ, we have σ(x∗, Tx∗) < λσ(x∗, Tx∗) which is a discrepancy. Thus, we have
σ(x∗, Tx∗) = 0. Hence, Tx∗ = x∗. From Equation (24), we deduce that σ(x∗, Sx∗) = 0. Therefore,
Sx∗ = x∗. Hence, x∗ is a common fixed point of S and T. To demonstrate the uniqueness of the
common fixed point, we suppose that x̄ is another fixed point of S and T. Directly, we prove that
σ(x̄, x̄) = 0. Assume the antithesis, that is, σ(x̄, x̄) > 0. Since x̄ � x̄, we get

ψ(σ(x̄, x̄)) = ψ(σ(Sx̄, Tx̄))

≤ λβ(ψ(σ(x̄, x̄)))φ(σ(x̄, x̄))

< λφ(σ(x̄, x̄))

< λψ(σ(x̄, x̄))

which is a discrepancy. Thus, σ(x̄, x̄) = 0. Therefore, by the further conditions on X, we deduce that
x∗ and x̄ are comparable. Presently, suppose that σ(x∗, x̄) 6= 0. Then

ψ(σ(x∗, x̄)) = ψ(σ(Sx∗, Tx̄))

≤ λ(ψ(σ(x∗, x̄)))φ(σ(x∗, x̄))

< λφ(σ(x∗, x̄))

which is a discrepancy with the condition of Theorem 4. Therefore, σ(x∗, x̄) = 0. Hence, x∗ = x̄. Thus,
S and T have a unique common fixed point.

It is additionally conceivable to expel the continuity of S and T by exchanging a weaker condition.
(C) If {xn} is a nondecreasing sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and
xn → u ∈ X as n→ ∞, then there exists a subsequence {xnl} of {xn} such that xnl � u for all l.

Theorem 5. Let (X, σ) be a partially ordered metric-like space. Assume that S, T:X → X are two self-mappings
fulfilling the following conditions:

(1) the pair (S, T) is triangular α-admissible,
(2) there exists an x0 ∈ X such that α(x0, Sx0) ≥ 1,
(3) the pair (S, T) is a generalized Geraghty (α, ψ, φ)-quasi contraction non-self mapping,
(4) the pair (S, T) is weakly increasing,
(5) (C) holds.

Then, the pair (S, T) has a common fixed point v ∈ X with σ(v, v) = 0. Moreover, suppose that if
x1, x2 ∈ X such σ(x1, x1) = σ(x2, x2) = 0 implies that x1 and x2 are comparable. Then, the common fixed
point of the pair (S, T) is unique.
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Proof. Here, we define {xn} as in the proof of Theorem 4. Clearly {xn} is a Cauchy sequence in X,
then there exists v ∈ X in order that

lim
n→∞

xn = v (27)

As a result of the condition of Equation (5), there exists a subsequence {xnl} of {xn} in order that
xnl � v for all l. Therefore, xnl and v are comparable. In addition, from Equation (13) on taking limit as
n→ ∞ and using Equation (27), we get

lim
n→→∞

xn = v.

lim
n→→∞

Sx2nl = lim
n→→∞

x2nl+1 = v, lim
n→→∞

Tx2nl+1 = lim
n→→∞

x2nl+2 = v. (28)

From the definition of α yields that α(xnl , v) ≥ 1 for all l. Now by applying Equation (6), we have

ψ(σ(x2nl+1, Tv))
= ψ(σ(Sx2n, Tv))
≤ λβ(ψ(Mx2nl

,v)φ(Mx2nl
,v)

< λφ(Mx2nl
,v)

< λψ(Mx2nl
,v)

(29)

where

Mx2nl
,v = max{σ(x2n, v), σ(x2n, Sx2n), σ(v, Tv), σ(Sx2n, v), σ(x2n, Tv)}

Letting l → +∞ and using Equations (27) and (28), we have

lim
l→∞

Mx2nl
,v = max{σ(v, Sv), σ(v, Tv)} (30)

Case I: Assume that liml→∞ Mx2nl
,v = σ(v, Tv).

From Equation (30) and letting l → ∞ in Equation (29). Then, we have

ψ(σ(v, Tv)) < λψ(σ(v, Tv)).

Regarding the concept of ψ, we deduce that σ(v, Tv) < λσ(v, Tv) which is a discrepancy. Hence,
we get that σ(v, Tv) = 0. As a result of (σ1), we have v = Tv.

Case II: Assume that liml→∞ Mx2nl
,v = σ(v, Sv). Then, arguing like above, we get v = Sv.

Thus, v = Sv = Tv. Uniqueness of the fixed point is follows from the Theorem 4. This completes
the proof.

If we set S = T and M(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty), σ(Tx, y), σ(x, Ty)} in Theorems 4
and 5, then we obtain the following corollaries.

Corollary 1. Let (X, σ) be a partially ordered metric-like space and α:X × X → [0, ∞) a function. Assume
that S:X → X holds the following:

(1) there exists ψ ∈ Ψ, β ∈ S and a continuous function φ : [0, ∞)→ [0, ∞) are continuous functions with
φ(t) < ψ(t) for all t > 0 such that

α(x, y)ψ(σ(Sx, Sy)) ≤ λβ(ψ(Mx,y))φ(Mx,y), (31)

holds for all comparable elements x, y ∈ X and 0 ≤ λ < 1,
(2) S is triangular α-admissible and there exists an x0 ∈ X such that α(x0, Sx0) ≥ 1,
(3) Sx � S(Sx) for all x, y ∈ X,
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(4) T is σ-continuous mappings.

Then, S has an unique fixed point v ∈ X with σ(v, v) = 0.

Corollary 2. Let (X, σ) be a partially ordered metric-like space and α:X × X → [0, ∞) a function. Assume
that S:X → X holds the following:

(1) there exists ψ ∈ Ψ, β ∈ S and a continuous function φ : [0, ∞)→ [0, ∞) are continuous functions with
φ(t) < ψ(t) for all t > 0 such that

α(x, y)ψ(σ(Sx, Sy)) ≤ λβ(ψ(Mx,y))φ(Mx,y), (32)

holds for all comparable elements x, y ∈ X and 0 ≤ λ < 1,
(2) S is triangular α-admissible and there exists an x0 ∈ X such that α(x0, Sx0) ≥ 1,
(3) Sx � S(Sx) for all x, y ∈ X,
(4) (C) holds.

Then, S has an unique fixed point v ∈ X with σ(v, v) = 0.

If we take α(x, y) = 1 in Theorems 4 and 5, we have the following corollaries.

Corollary 3. Let (X, σ) be a partially ordered metric-like space. Assume S, T:X → X are two mappings
holding the following:

(1) there exists ψ ∈ Ψ, β ∈ S and a continuous function φ : [0, ∞)→ [0, ∞) are continuous functions with
φ(t) < ψ(t) for all t > 0 such that

ψ(σ(Sx, Ty)) ≤ λβ(ψ(Mx,y))φ(Mx,y), (33)

holds for all comparable elements x, y ∈ X and 0 ≤ λ < 1, where

Mx,y = max{σ(x, y), σ(x, Sx), σ(y, Ty), σ(Sx, y), σ(x, Ty)}.

(2) the pair (S, T) is weakly increasing,
(3) S and T are σ-continuous mappings.

Then, the pair S, T has an unique common fixed point v ∈ X with σ(v, v) = 0.

Corollary 4. Let (X, σ) be a partially ordered metric-like space, Assume S, T:X → X are two mappings holding
the following:

(1) there exists ψ ∈ Ψ, β ∈ S and a continuous function φ : [0, ∞)→ [0, ∞) are continuous functions with
φ(t) < ψ(t) for all t > 0 such that

ψ(σ(Tx, Ty)) ≤ λβ(ψ(Mx,y))φ(Mx,y), (34)

holds for all comparable elements x, y ∈ X and 0 ≤ λ < 1, where

Mx,y = max{σ(x, y), σ(x, Sx), σ(y, Ty), σ(Sx, y), σ(x, Ty)},

(2) the pair (S, T) is weakly increasing,
(3) the pair (S, T) is a generalized (α, ψ, φ)-quasi contraction non-self,
(4) (C) holds.

Then, the pair S, T has an unique common fixed point v ∈ X with σ(v, v) = 0.
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4. Consequences

If we put Mx,y = σ(x, y), then, by Theorems 4 and 5, we get the following corollaries as an
expansion of results from the literature.

Corollary 5. Let (X, σ) be a partially ordered metric like space and α:X× X → [0, ∞) be a function. Suppose
that S, T:X → X are two self-mappings holding the following:

(1) (S, T) is triangular α-admissible and there exists an x0 ∈ X such that α(x0, Sx0) ≥ 1,
(2) there exists ψ ∈ Ψ, β ∈ S and a continuous function φ : [0, ∞)→ [0, ∞) are continuous functions with

φ(t) < ψ(t) for all t > 0 in order that

ψ(σ(Sx, Ty)) ≤ λβ(ψ(σ(x, y))φ(σ(x, y)), (35)

satisfies for x, y ∈ X and 0 ≤ λ < 1,
(3) the pair (S, T) is weakly increasing,
(4) the pair (S, T) is σ-continuous mappings.

Then, the pair (S, T) has an unique common fixed point v ∈ X with σ(v, v) = 0.

Corollary 6. Let (X, σ) be a partially ordered metric-like space. Assume S, T:X → X are two mappings
holding the following:

(1) (S, T) is triangular α-admissible and there exists an x0 ∈ X such that α(x0, Sx0) ≥ 1,
(2) there exists ψ ∈ Ψ, β ∈ S and a continuous function φ : [0, ∞)→ [0, ∞) are continuous functions with

φ(t) ≤ ψ(t) for all t > 0 in order that

ψ(σ(Sx, Ty)) ≤ λβ(ψ(σ(x, y))φ(σ(x, y)), (36)

satisfies for x, y ∈ X and 0 ≤ λ ≤ 1,
(3) the pair (S, T) is weakly increasing,
(4) (C) holds.

Then, the pair (S, T) has an unique common fixed point v ∈ X with σ(v, v) = 0.

Corollary 7. Let (X, σ) be a partially ordered metric-like space. Assume α:X× X → [0, ∞) is a function and
S:X → X is a mapping holding the following:

(1) S is triangular α-admissible and there exists an x0 ∈ X such that α(x0, Sx0) ≥ 1.
(2) there exists ψ ∈ Ψ, β ∈ S and a continuous function φ : [0, ∞)→ [0, ∞) are continuous functions with

φ(t) < ψ(t) for all t > 0 in order that

α(x, y)ψ(σ(Sx, Sy)) ≤ λβ(ψ(σ(x, y))φ(σ(x, y)), (37)

holds for all comparable elements x, y ∈ X and 0 ≤ λ < 1,
(3) S � S(Sx),
(4) the pair (S, T) is σ-continuous mappings.

Then, S has an unique fixed point v ∈ X with σ(v, v) = 0.

Corollary 8. Let (X, σ) be a partially ordered metric-like space. Assume α:X× X → [0, ∞) is a function and
S:X → X is a mapping holding the following:

(1) S is triangular α-admissible and there exists an x0 ∈ X such that α(x0, Sx0) ≥ 1,
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(2) there exists ψ ∈ Ψ, β ∈ S and a continuous function φ : [0, ∞)→ [0, ∞) are continuous functions with
φ(t) < ψ(t) for all t > 0 in order that

α(x, y)ψ(σ(Sx, Sy)) ≤ λβ(ψ(σ(x, y))φ(σ(x, y)), (38)

satisfies for x, y ∈ X and 0 ≤ λ < 1,
(3) S � S(Sx),
(4) (C) holds.

Then S has an unique fixed point v ∈ X with σ(v, v) = 0.

Example 3. Let X = {0, 1, 2} and specify the partial order � on X in order that

�:= {(0, 0), (1, 1), (2, 2), (0, 2), (2, 1), (0, 1)}.

Take into consideration that the function S : X → X specified as

S =

(
0 1 2
1 1 0

)
, (39)

which increasing with respect to � . Let x0 = 0. Hence, S(x0) = 1 and S(S(X0)) = S(1) = 1. Characterize
to begin with the metric like space σ on X by σ(0, 1) = 1, σ(0, 2) = 5

2 , σ(1, 2) = 3
2 and σ(x, x) = 0. Then,

(X, σ) is a complete metric-like space. Let β ∈ S is given by β(t) = et

2 , ψ(t) = t, λ = 1
2 and φ(t) = 2

3 t.
Define a function α:X× X → [0, ∞) in order that

α(x, y) =

{
1 if x ∈ {0, 1, 2}
0 if otherwise.

Note that S ∈ X and is continuous. S is α-admissible mapping. Indeed, α(Sx, Sy) = 1.
If (x, y) = (0, 1), then α(0, 1) = 1 and

M0,1 = max{σ(0, 1), σ(0, S0), σ(1, S1), σ(S0, 1), σ(0, S1)}
= max{σ(0, 1), σ(0, 1), σ(1, 1), σ(1, 1), σ(0, 1)}
= max{1, 1, 0, 1, 0} = 1.

σ(S0, S1) = σ(1, 1) = 0. Now

0 = α(0, 1)ψ(σ(σ(S0, S1))) ≤ β(ψ(M0,1))φ(M0,1) =
1
2

β(1) ' φ(1) =
1
2
× e

2
× 2

3
=

e
6

holds.
If (x, y) = (0, 2), then α(0, 2) = 1 and

M0,2 = max{σ(0, 2), σ(0, S0), σ(2, S2), σ(S0, 2), σ(0, S2)}
= max{σ(0, 2), σ(0, 1), σ(2, 0), σ(1, 2), σ(0, 0)}

= max{5
2

, 1,
5
2

,
3
2

, 0} = 5
2

.

σ(S0, S2) = σ(1, 0) = 5
2 . Now

5
2
= α(0, 2)ψ(σ(σ(S0, S2))) ≤ β(ψ(M0,2))φ(M0,2) =

1
2

β(
e

5
2

2
)× 2

3
× 5

2
=

5e
5
2

12
holds. Similarly, for the case (x = 1, y = 2), it is simple to examine that the contractive condition in Corollary 1
is satisfied.
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All conditions (1)–(4) of Corollary 1 are satisfied. Hence S has a unique fixed point x = 1.

5. Application

The aim of this section is to give the existence of fixed points of an integral equation, where we
can apply the obtained result of Corollary 1 to get a common solution.

We consider X with the partial order � presented by:

x � y⇔ x(t) � y(t) f or all t ∈ [0, 1].

Let X = C(I,R) be the set of continuous functions specified on I = [0, 1]. The metric-like space
σ : X× X → [0, ∞) presented by

σ(x, y) = sup
t∈[0,1]

| x(t)− y(t) |,

for all x, y ∈ X. Since (X, σ) is a complete metric-like space. We consider the integral equation

x(t) = g(t) +
∫ 1

0
P(t, r) f (r, x(r))dr; t ∈ [0, 1] (40)

for all x ∈ X.

We suppose that f :[0, 1]×R→ R and g:[0, 1]→ R are two continuous functions. Suppose that
P:[0, 1]× [0, 1]→ [0, ∞) in order that

Sx(t) = g(t) +
∫ 1

0
P(t, r) f (r, x(r))dr; t ∈ [0, 1] (41)

for all x ∈ X. Then, a solution of Equation (40) is a fixed point of S.
Now, We will prove the following Theorem with our obtained results.

Theorem 6. Assume that the following conditions are satisfied:

(i) There exists ζ :X× X → [0, 1) such that for all r ∈ [0, 1] and for all x, y ∈ X

0 ≤| f (r, x(r))− f (r, y(r)) |≤ ζ(x, y) | x(r)− y(r) |,

(ii) there exists β:[0, ∞)→ [0, 1) such that

lim
n→∞

β(tn) = 1 ⇒ lim
n→∞

tn = 0,

and

‖
∫ 1

0
P(t, r)ζ(x, y)dr ‖∞≤ (

1
4

β(‖ x− y ‖∞)).

Then the integral Equation (41) has a unique solution in X.



Axioms 2018, 7, 74 15 of 17

Proof. By conditions (i) and (ii), we get

| S(x)(t)− S(y)(t) | =

∣∣∣∣∫ 1

0
P(t, r)[ f (r, x(r))− f (r, x(r))]dr

∣∣∣∣
≤

∫ 1

0
P(t, r) | f (r, x(r))− f (r, y(r)) | dr

≤
∫ 1

0
P(t, r)ζ(x, y) | f (r, x(r))− f (r, y(r)) | dr

≤
∫ 1

0
P(t, r)ζ(x, y) ‖ x− y ‖∞ dr

≤ σ(x, y)
∫ 1

0
P(t, r)ζ(x, y)dr

≤ 1
4

β(σ(x, y))σ(x, y)

=
1
2

β(σ(x, y))
1
2

σ(x, y)

=
1
2

β(σ(x, y))φ(σ(x, y)).

At that point, we have

‖ S(x)(t)− S(y)(t) ‖∞≤
1
2

β(σ(x, y))φ(σ(x, y)).

for all x, y ∈ X.
Thus, we obtain

σ(Sx, Sy) ≤ 1
2

β(σ(x, y))φ(σ(x, y)), f orallx, y ∈ X.

Lastly, we specify β:X× X → [0, ∞) such that

α(x, y) =

{
1 if x, y ∈ X,

0 if otherwise.

Then, we have

α(x, y)σ(Sx, Sy) ≤ 1
2

β(σ(x, y))σ(x, y).

Obviously, α(x, y) = 1 and α(Sx, Sy) = 1 for all x, y, z ∈ X. Therefore, S is triangular α−admissible
mapping.

Hence, the hypotheses of Corollary 1 hold with ψ(t) = t, λ = 1
2 and φ(t) = t

2 . Thus, S has a
unique fixed point, that is, the integral Equation (40) has a unique solution in X.

6. Conclusions

We have introduced some common fixed point results for generalized (α, ψ, φ)-quasi contraction
self-mapping in partially ordered metric-like spaces. We have generalized weakly contractive mapping
as we used quasi contraction self-mapping, α-admissible mapping, triangular α-admissible mapping
and ψ, φ as strictly increasing and continuous functions. We have provided an example and application
to show the superiority of our results over corresponding (common) fixed point results. Alternatively,
we suggest finding new results by replacing the single-valued mapping with multi-valued mapping.
Furthermore, we suggest generalizing more results in other spaces like b-metric space, metric-like
space, and others. Otherwise, we suggest using our main results for non-self-mapping to establish the
existence of an optimal approximate solution.
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