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Abstract: One-dimensional equations of telegrapher’s-type (TE) and Guyer–Krumhansl-type
(GK-type) with substantial derivative considered and operational solutions to them are given.
The role of the exponential differential operators is discussed. The examples of their action on
some initial functions are explored. Proper solutions are constructed in the integral form and
some examples are studied with solutions in elementary functions. A system of hyperbolic-type
inhomogeneous differential equations (DE), describing non-Fourier heat transfer with substantial
derivative thin films, is considered. Exact harmonic solutions to these equations are obtained for
the Cauchy and the Dirichlet conditions. The application to the ballistic heat transport in thin
films is studied; the ballistic properties are accounted for by the Knudsen number. Two-speed heat
propagation process is demonstrated—fast evolution of the ballistic quasi-temperature component in
low-dimensional systems is elucidated and compared with slow diffusive heat-exchange process.
The comparative analysis of the obtained solutions is performed.

Keywords: exponential operator; differential operator; Guyer–Krumhansl equation; moving media;
non–Fourier; heat conduction; Knudsen number

1. Introduction

Recent progress in technology and science has driven interest to studies of heat conduction beyond
common Fourier law [1]: ∂tT = k∂2

xT, where k is the thermal diffusivity, T is the temperature; Fourier law
describes heat conduction in homogeneous matter at normal conditions well. New heat sources, such as
lasers, microwaves etc, are employed in medicine, science and material processing for melting, welding,
cutting, drilling, etc. Often heat source and treated media are in motion. Some of modern materials and
media have one or two dimensions: ultra-thin films, layers and nano-wires. Highly inhomogeneous
porous and multilayered media are also common in industry. First major deviations from Fourier law
were found in liquid Helium and in some solid crystal dielectrics at low temperatures <25 ◦ K [2–5].
Proper phenomenon was called Second Sound [6]; its satisfactory qualitative mathematical description
was proposed by Cattaneo and Vernotte [7], who supposed phonon heat transport in addition to
Fourier heat diffusion. In terms of temperature it can be put as follows:

(τ∂2
t + ∂t)T = kF∇2T (1)

where kF is the Fourier thermal diffusivity, τ = kF/C2 is the relaxation time of the heat waves
propagation, which relates the moments of the temperature change and of the respective heat
flux change. Cattaneo-Vernotte constitution implies a phase lag between the heat flux vector and
the temperature gradient; in addition to heat diffusion the temperature perturbation propagates in
matter like damped sound-wave at finite speed C =

√
kF/τ. The relaxation time τ is associated with
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th phonon–phonon interaction time; at normal conditions it is very small: τ ≈ 10−13 s. The Cattaneo
Equation (1) is the particular case of the telegrapher’s equation (TE).(

∂2
t + ε∂t

)
F(x, t) =

(
α∂2

x + κ
)

F(x, t), ε, α, κ = const (2)

which takes its name because it describes the electric signal propagation in long electric lines
without radiation [8]. For heat conduction we have τ = 1/ε, kF = α/ε, µ = κ/ε and µ = 0 in
Equation (1); the source term, κ 6= 0, describes heat exchange with the environment of low excess
temperatures. However, precise quantitative description of the Second Sound with Equation (1) was
not successful. There are reports on non-Fourier heat transport in highly inhomogeneous matter
even at normal conditions [9–17], in fuel droplets [18], in biomaterials [19], in energy saving and
insulating materials [20], in graphene, nanofibers, carbon nanotubes, silicon wires, etc. [21–27].
Heat transport in these cases was found close to that described by Guyer and Krumhansl (GK)
in [28,29]. In the one-dimensional case in terms of temperature alone it has the following form:(

∂2
t + ε∂t − δ∂3

t,x,x

)
T(x, t) =

(
α∂2

x + κ
)

T(x, t), α, ε, δ, κ = const. (3)

In its pure form the Guyer–Krumhansl law has κ = 0. The following formulation:(
τ∂2

t + ∂t

)
T(x, t) =

(
Db∂3

t,x,x + kF∂2
x + µ

)
T(x, t), (4)

involves the parameters τ = 1/ε, µ = κ/ε, kF = α/ε, and Db = δ/ε, where the latter, kb, is the ballistic
type heat conductivity. The parameters in the above Equations (3) and (4) have the following
dimensions: [τ] = s, [kF] =

m2

s , [Db] = m2, [µ] = 1
s , [κ] = 1

s2 , [α] = m2

s2 , [δ] = m2

s , and [ε] = 1
s .

Despite GK equation is usually associated with ballistic properties, which manifest when
the characteristic system scale L is comparable or less than the mean free path l of the phonons L < l,
contradictory opinions on it exist [30–32]. In particular, the term “ballistic” is questioned in the context
of GK type heat conduction in macroscopic inhomogeneous materials at room temperature [10,11].
Moreover, more complicated system of equations was proposed for the ballistic heat transport in [30],
while heat propagation in highly inhomogeneous materials was reported to be close to GK law [9,11].

Solutions to Hyperbolic Heat Conduction Equation (HHCE) can be obtained both analytically and
numerically [33–40], although numerical methods seem to be more commonly used [41–44]. Analytical
study gives deeper insight in the problem; operational analytical approach and solutions to HHE were
developed in [45–50]. This method easily handles also other linear DE of high order and fractional
DE [51–58]. Use of the exponential differential operators, such as the heat operator S = e∂2

x [59] allows
operational solution of GK-type Equation (4) as demonstrated in [47–50].

In what follows we will obtain some exact solutions to non-Fourier heat transfer in GK-type
equation with the substantial derivative, where the speed of the media is constant, and will obtain
some particular operational solutions to modified GK-type equation in this case. Moreover, we will
study the important case of periodic initial conditions, which occur, for example, in polymer electrolyte
fuel cells (PEFCs) [60–68], as well as in thin membranes and highly inhomogeneous porous periodic
structures, in printed wired heating boards [69] etc. We will analyze the solutions for the heat transport,
described by the system of inhomogeneous partial derivative equation, and use the Knudsen number
to account for the ballistic conditions in 1- and 2-dimensional structures [70].

2. Ballistic Heat Transport Equations with Substantial Derivative

For ultra-thin films and wires neither pure GK nor Cattaneo laws describe exactly heat transport
phenomena, but their combination with Fourier law; it forms the following inhomogeneous system
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of differential equations for the ballistic θb(x, t) and diffusive component θd(x, t) of the complete
dimensionless quasi-temperature θ = θd + θb (see [30]):{

∂2
t + 2∂t −

10Kn2
b

3
∂2

x − 3Kn2
b∂3

t,x,x + 1

}
θb(x, t) = 0, (5)

(
∂2

t +
Kn2

b
Kn2

d
∂t −

Kn4
b

3Kn2
d

∂2
x

)
θd(x, t) =

(
∂t +

Kn2
b

Kn2
d

)
θb(x, t), (6)

where indices b and d stand for “ballistic” and “diffusive”, respectively. The dimensionless
quasi-temperature θ can be described as the non-dimensional energy, associated with the internal
energy; the quantities θd and θb must therefore be understood to quasi-temperatures, defined as
a measure of corresponding internal energy components ud and ub, respectively to which they are
related by the simple relations θd = ud/c θb = ub/c (see [30] for details), where c is the heat capacity.

It should be understood though, that the ballistic heat transport is effectively described by both
contributions in θ = θd + θb, θd(x, t) and θb(x, t) are distinguished for convenience. It is easy to see that
the above Equations (5) and (6) are of GK-type (5) and of telegrapher’s type (6); the inhomogeneous
right hand side (r.h.s.) of Equation (6) is given by the solution of (5). In the above equations and in all
following equations the space- and time-coordinates are obviously dimensionless as well as the proper
coefficients in the equations are. The dimensionless form of equations for the temperature is useful at
least because of the space-time temperature distribution is expressed in our work explicitly in terms of x
and t. Proper renormalization in SI units or else how is elementary (see, for example, [30] for details)
and good, especially in view of heavy notations in the analytical solutions, which we will obtain in
what follows.

Low-dimensional system is characterized by the dimensionless Knudsen number Kn = l/L,
which for the phonon heat transport describes the ratio of the free mean path of the phonons l to
the characteristic scale of the system L. Knudsen number usually arises in problems, where the scale
of the system and the characteristic scale of the processes in it compare with each other, such as for
gas flow in ultra-narrow channels [71], etc. In distinct ballistic case in (5), Kn = 1, we have α = 3.333,
δ = 3, ε = 2, κ = −1 in (3) and kF = 5/3, Db = 3/2, τ = 1/2, µ = −1/2 in (4). We assume dimensionless
equations here and in what follows. In the weak ballistic case, Kn = 0.1, we get α = 0.03333, δ = 0.03, ε = 2,
κ = −1 in (3) and kF = 0.01666, kb = 0.015, τ = 1/2, µ = −1/2 in (4). In the distinct ballistic case, Kn = 1,
all heat transport terms in GK-type equation contribute more or less equally, in the weak ballistic case,
Kn = 0.1, the Cattaneo wave-term prevails. The inhomogeneous system of PDE (5) and (6) for ballistic
heat transport thin film was studied numerically in [30]; based on the periodic analytical solutions to
GK-type equation [72] some solutions to (5) and (6) were obtained in [73,74].

Above Equations (5) and (6), as well as Equations (2)–(4), describe non-Fourier heat transport in
stationary media. In the case when the observer moves relatively to the media with constant speed
→
v , the substantial derivative D/Dt = ∂/∂t +

→
v
→
∇ should be used instead of the time-derivative ∂/∂t

to describe the variation of quantity F along a path. Generally speaking, both the material equations
and the energy, mass and momentum conservation equations in case of moving observer should be
considered with account for the substantial derivative, resulting in a proper heat conduction equation
for the temperature alone. This is relatively simple in the case of Fourier heat diffusion and even for
relativistic heat equation [75,76], some more complicated for GK-type equation. While not intending
to rigorously derive a set of equations for the heat transport in case of moving observer, accounting
for the relativistic heat flux, the energy balance, etc., we will solve the extended form of the known
GK-type equation with the simple substantial derivative. Derivation of a physically comprehensive
one-dimensional analogue of GK-equation in case of moving observer remains beyond the scope
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of the present study. The following modified form of GK-type equation arises upon the use of the
substantial time derivative:(

∂2
t + ε∂t + 2v∂2

t,x − δ∂3
t,x,x

)
T(x, t) =

((
α− v2

)
∂2

x − εv∂x + δv∂3
x + κ

)
T(x, t). (7)

This simply presumes that the temperature as a function of time is recorded by a floating
instrument in a flow, such as a weather balloon in meteorology and oceanography, which implies
the substantial derivative along the pathline traveled. With this said, we notice that the above
Equation (7) differs from GK-type Equation (4) by some additional terms: the second mixed time-space
derivative in the left hand side (l.h.s.) and the third- and first-order space-derivatives in the r.h.s. We
need to emphasize that this equation is related to a rigid domain meanwhile the observer is moving
with speed

→
v . Moreover, the coefficient for the second-order space-derivative in the r.h.s. now contains

the speed v, which can compensate α, eliminating the second-order space-derivative, if v =
√

α,
or invert the sign of this term, if v >

√
α. Telegrapher’s equation accordingly modifies as follows:(

∂2
t + ε∂t + 2v∂2

t,x

)
T(x, t) =

((
α− v2

)
∂2

x − εv∂x + κ
)

T(x, t). (8)

Differently from GK-type equation with substantial derivative (7), TE (8) has only second-order
differential operators; both GK-type and TE can be solved by the operational method, employing
exponential differential operators eD̂ and involving the heat operator Ŝ = e∂2

x [59]. The operational
solution to the third-order PDE (7) apparently involves exponential differential operator of the third
order ea∂3

x . However, in what follows we will demonstrate as this solution effectively reduces to the shift
of the solution in a stationary media. Considering thin films, we have obvious relations between
the coefficients in (7) and (5): αb ↔ 10Kn2

b/3, εb ↔ 2 , δ↔ 3Kn2
b , κb ↔ −1 , while for Equation (6)

we see that αd ↔ Kn4
b/3Kn2

d , εd ↔ Kn2
b/Kn2

d . For heat transport in moving thin film, the system of
DE (5) and (6) for the complete quasi-temperature θ = θd + θb takes the following form:(

∂2
t + 2∂t + 2v∂2

t,x −
(

10
3

Kn2
b − v2

)
∂2

x − 3Kn2
b∂3

t,x,x + 2v∂x − 3vKn2
b∂3

x + 1
)

θb(x, t) = 0, (9)

(
∂2

t +
Kn2

b
Kn2

d
∂t + 2v∂2

t,x −
(

Kn4
b

3Kn2
d
− v2

)
∂2

x + v Kn2
b

Kn2
d
∂x

)
θd(x, t) =

(
∂t + v∂x +

Kn2
b

Kn2
d

)
θb(x, t). (10)

In what follows we will approach the GK-type equation with substantial derivative (7)
operationally, and will also provide exact analytical harmonic solution to the system of PDE (9)
and (10), describing ballistic heat transfer with substantial derivative.

3. Operational Approach to Transport Equations

The above Equations (7) and (8) are the particular cases of the following DE with
the coordinate-dependent operators ε̂(x) and D̂(x):(

∂2
t + ε̂(x)∂t

)
F(x, t) = D̂(x)F(x, t), (11)

which can be solved using the operational method. Equation (11) models a broad spectrum of physical
phenomena. It becomes telegrapher’s equation for D̂(x) = α∂2

x + κ and constant ε term and further
reduces to Cattaneo heat equation for D̂(x) = ∂2

x; GK-type equation appears when ε̂ = ε− δ∂2
x. Some of

these equations were studied in [45–50]. Other second-order PDE and fractional DE were explored
with the help of the operational approach in [51–58]. The formal converging particular operational
solution to (11) reads as follows:

F(x, t) = e−
tε̂(x)

2 e−
t
2

√
ε̂2(x)+4D̂(x)C(x), (12)
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where C(x) can be obtained from the initial condition F(x, 0) = f (x). The particular form of the initial
function will be chosen below. The other branch of the solution contains the positive argument in

the exponential, e
t
2

√
ε̂2(x)+4D̂(x). No Laplace transforms exist for it. However, symmetry with respect

to inversion, t→ −t, ε→ −ε, δ→ −δ, v→ −v , allows writing the other solution to Equation (7),
based on the one we obtain with the help of the Laplace transforms

e−t
√

V =
t

2
√

π

∞w

0

dξ

ξ
√

ξ
e−

t2
4ξ−ξV , t > 0. (13)

The solution has the following integral form, provided it converges:

F(x, t) = e−
t
2 ε̂(x) t

4
√

π

∞w

0

dξ

ξ
√

ξ
e−

t2
16ξ e−ξε̂2(x)e−4ξD̂(x) f (x). (14)

The ability to perform analytical integration in (14) depends on the explicit form of the operators
ε̂, D̂ and of the initial function f (x); the numerical calculation can be done though. Accounting for
the explicit form of the operators D̂ =

(
α− v2)∂2

x − εv∂x + δv∂3
x + κ and ε̂ = ε + 2v∂x − δ∂2

x in
Equation (7), we obtain from (14) the following integral:

F(x, t) = e−
t
2 (ε+2v∂x) t

4
√

π

∞w

0

dξ

ξ
√

ξ
e−

t2
16ξ−ξ(ε2+4κ)e(

t
2 δ+2ξ(εδ−2α))∂2

x e−ξδ2∂4
x f (x), (15)

which benefits from the use of the operational identity for p̂ =
√

aD̂, D̂ = ∂2 (see [59,77]):

e p̂2
=

1√
π

∞w

−∞

exp
(
−ξ2 + 2ξ p̂

)
dξ, (16)

and yields

eaD̂2
f (x) =

1√
π

∞w

−∞

exp(−ξ2 + 2ξ
√

aD̂) f (x)dξ. (17)

Applying formula (17) to the fourth-order exponential differential operator
e−ξδ2∂4

x f (x) =
r ∞
−∞ e−ζ2+2iζδ

√
ξ∂2

x f (x)dζ/
√

π, we get the heat operator [59] Ŝ = eν∂2
x ; collecting

the second-order derivative terms in the exponential, we get
r ∞
−∞ e−ζ2+((tδ/2)−4ξα+2ξεδ+2iζδ

√
ξ)∂2

x f (x)dζ.
This yields the following particular bounded solution to GK-type heat equation with substantial
derivative (7):

F(x, t) =
e−

t
2 εt

4π
Θ̂

∞w

0

dξ

ξ
√

ξ
e−

t2
16ξ−ξ(ε2+4κ)

∞w

−∞

e−ζ2
Ŝ f (x)dζ, (18)

which involves the shift operator Θ̂ = ey∂x , where y = −vt, and the heat operator Ŝ = eη∂2
x ,

where η = 2iζ
√

ξδ − ξ2(2α + εδ) + tδ/2. The shift operator produces the translation along
x ey(∂x+α) f (x) = eyα f (x + y) and the heat operator produces Gauss transforms (17) and operational
relations [59], so that the solution with account for the motion contains the translation x − vt of
the stationary solution.

Let us consider the initial polynomial function f (x) = ∑k xk. The particular solution (18) to
GK-type equation with substantial derivative (7) arises upon the application of the operational rule

Ŝeγxxk = eη∂2
x xkeγx = eγx+γ2νHk(x + 2γν, ν), k ∈ Integers, γ ∈ Reals, (19)
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which is easy to prove [57,58]. For γ = 0 we immediately obtain the following integral:

F(x, t)| f (x)=∑k xk = ∑k
te−

t
2 ε

4π

∞w

0

dξ

ξ
√

ξ
e−

t2
16ξ−ξ(ε2+4κ)

∞w

−∞

e−ζ2
Hk(x− vt, η)dζ, (20)

where
η = 2ξεδ− 4ξα + tδ/2 + iζ2

√
ξδ. (21)

The above integral can be taken in elementary functions if we account for the explicit form of
the Hermite polynomials:

Hk(x− vt, η) = k!
[k/2]

∑
r=0

(x− vt)k−2rηr

(k− 2r)!r!
= (−i)kη

k
2 Hk

(
i(x− vt)

2
√

η

)
. (22)

For example, for f (x) = x2 the solution reads as follows:

F(x, t)| f (x)=x2 = e−
t
2 (
√

V+ε)

(
(x− vt)2 + tδ +

t√
V
(δε− 2α)

)
, V = ε2 + 4κ2. (23)

More general case of the exponential-polynomial function f (x) = xkeγx is cumbersome and we
omit proper expressions for conciseness. However, we have performed the integration explicitly in
Wolfram Mathematica program and below we give the example of the solution for F(x, 0) = x2e−x:

F(x, t)| f (x)=x2e−x = e−x− t
2 (
√

r−2v−δ+ε)
(

x2 + t
r3/2 (a + bx) + t2

r3/2 c
)

,

r = 4α + δ2 − 2δε + ε2 + 4κ,

a =
√

rδ
(

4α + (ε− δ)2
)
+ δ2(−6α− δ2 − 3ε(ε− δ)

)
+

ε2(−2α + δε)− 4κ
(
2α +

√
rδ− 3δ2 + δε

)
,

b = 2r
(
2α + δ2 −

√
rv− δ

(√
r + ε

))
,

c = r3/2v2 − 2rvd + 2p + δ2∆
d = 2α + δ

(
−
√

r + δ− ε
)
,

p = 2α2(√r− 4δ
)
− 2αδ

(
3δ2 +

√
rε + ε2 − 2δ

(√
r + 2ε

)
+ 4κ

)
,

∆ =
√

r(ε− δ)2 + (ε− δ)3 + 2κ
(√

r + 2(ε− δ)
)
.

(24)

Evidently, all the values in the above expressions are dimensionless as well as the coordinate x
and the time t.

In the harmonic ansatz the evolution of the initial function f (x) = exp(inx) can be easily obtained
from (18) as follows:

F(x, t)| f (x)=einx = exp
(

in(x− vt)− t
2

(
ε +

√
ε2 + 4(κ2 − αn2)

))
, ε = ε + n2δ. (25)

Other solutions and their detailed study will be performed in forthcoming publications.
All the above solutions to equations with substantial derivative contain the shift, x− vt, respectively to
the solution in a stationary media, which depends on x. Further examples can be easily considered with
the help of the operational approach. In the following chapter we will explore in details the particular
case of the harmonic solution. Evidently, it can be easily generalized for any periodic solution,
expandable in Fourier series. Similarly, the Fourier integral transforms technique apply.

4. Exact Periodic Solutions to GK-Type Equation with Substantial Derivative

An exact harmonic solution ∝ einx for the inhomogeneous system of PDE (9) and (10) can
be obtained straight from the operational solution (18) (see (25)), or by separating the variables:
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T(x, t) = X(x)y(t). GK-type equation with substantial derivative (7) in the harmonic ansatz,
T(x, t) = einxy(t) ≡ F(x, t) reduces to the following ordinary differential equation for y(t):

y′′ (t) + εe f f y′(t) + λe f f y(t) = 0, (26)

where εe f f = ε + 2vin, ε = ε + n2δ, and λe f f =
(
α− v2)n2 + ivnε− κ. The function F(x, t) ≡ T(x, t) is

introduced here for clarity of notations. The exact solution to GK equation with substantial derivative
(7) then easily follows from the solution to (26):

F(x, t) = einxy(t), y(t) = e−
t
2 εe f f

(
C1e−

t
2

√
U + C2e

t
2

√
U
)

,

U = ε2
e f f − 4λe f f = ε2 + 4

(
κ − αn2

)
,

(27)

where the constants C1, C2 are determined either from the initial or boundary conditions. According to
the theory of separation of variables, the whole solution has to satisfy initial or boundary conditions.
Evidently, telegrapher’s equation with substantial derivative in the harmonic ansatz similarly reads

y′′ (t) + ε̃y′(t) + λ̃y(t) = 0, (28)

and differs from (26) by the substitutions εe f f → ε̃ = ε + 2vin , ε→ ε ,
λe f f → λ̃ =

(
α− v2)n2 + ivnε− κ . It’s solution y(t) is evidently (27), where δ = 0.

Consider, for example, the Cauchy initial conditions

F(x, 0) = Aeinx, ∂tF(x, 0) = Beinx. (29)

In the stationary case, v = 0, the Cauchy conditions (37), where initially ∂θ(x,t)
∂t = 0,

have the meaning of zero heat flux q if B = 0 for both ballistic and diffusive components of
quasi-temperature [30]. If v 6= 0, then the dimensionless equation θ′t + vθ′x + q = 0 describes the
one-dimensional energy balance. The initially zero heat flux q then corresponds to B = −invA.

Then, GK-type Equation (7) with substantial derivative in the harmonic ansatz has the solution
(27), satisfying ODE (26), where the coefficients C1, C2 are determined from the Cauchy conditions (29):
C1 + C2 = A and −C1

(
εe f f +

√
U
)
− C2

(
εe f f −

√
U
)
= 2B, and read as follows:

C1 =
A
2
−

B + Aεe f f /2
√

U
, C2 =

A
2
+

B + Aεe f f /2
√

U
. (30)

TE with substantial derivative (8) has the harmonic solution, whose time-dependent part y(t)
satisfies ODE (28):

F(x, t) = einxy(t), y(t) = e−
t
2 ε̃
(

B1e−
t
2
√

u + B2e
t
2
√

u
)

, u = ε̃2 − 4λ̃ = ε2 + 4
(

κ − αn2
)

, (31)

where the coefficients B1, B2 are obtained from the Cauchy initial conditions (29):

B1 =
A
2
− B + Aε̃/2√

u
, B2 =

A
2
+

B + Aε̃/2√
u

. (32)

Now, let us consider the Dirichlet boundary conditions in the moments of time t = 0 and t = T:

F(x, 0) = Aeinx, F(x, T) = Geinx. (33)
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The harmonic solutions (27) and (31) satisfy respectively GK Equation (7) and telegrapher’s
Equation (8) with substantial derivative with the coefficients, determined by Equation (33):

C1 = −e
T
2 εe f f

Ae−
T
2 (εe f f−

√
U) − G

e−
T
2

√
U − e

T
2

√
U

, C2 = A− C1, (34)

and

B1 = −e
T
2 ε̃ Ae−

T
2 (ε̃−

√
u) − G

e−
T
2
√

u − e
T
2
√

u
, B2 = A− B1. (35)

Similarly, we can consider evolution of any function, expandable in Fourier series.
Note, that for some values of the coefficients α and δ the quantities U and u can assume negative

values. Albeit it is not very obvious in the form of the harmonic solution (27) to GK-type equation with
substantial derivative (26) and the solution (31) to TE with substantial derivative (28), these solutions
remains real at any moment of time for a real initial function, because of the complex exponential is
compensated by proper complex parts in the coefficients C1,2 and B1,2.

5. Exact Periodic Solutions to Ballistic Heat Transport in Thin Films

Ballistic heat transport in thin films is described by the system of PDE (9) and (10). In order to
obtain the exact solution to this problem we reduced GK-type Equation (9) in the harmonic ansatz to
(26) and solved it (see (27)); the result naturally involves the particular solution (25). This solution now
constitutes the r.h.s. of Equation (10) for θd. Consider the Cauchy initial problem for θb:

θb(x, 0) = Aeinx, ∂tθb(x, 0) = Beinx, (36)

and the Cauchy conditions for θd:

θd(x, 0) = Veinx, ∂tθd(x, 0) = Weinx, V, W = const. (37)

The quasi-temperature component θb(x, t) is in fact given by Equation (27):

θb(x, t) = einx
(

C1e−
t
2 E1 + C2e−

t
2 E2
)

, E1 =
(

εe f f +
√

U
)

, E2 =
(

εe f f −
√

U
)

, (38)

where εe f f = ε + 2ivn, U = ε2 + 4
(
κ − αbn2), ε = εb + n2δ, αb = 10Kn2

b/3, εb = 2, δ = 3Kn2
b, κb = −1,

v is the speed of the media; for the Cauchy initial conditions (36) (see (29) with F ≡ θb) the coefficients
C1,2 are given by Equation (30). The solution (38) for θb(x, t) contributes to the r.h.s. of the telegrapher’s
Equation (6) for the component θd(x, t). The exponential differential operators eD̂(x) do not bring
new harmonics to the initial content, θd(x, t) = Θd(t)einx, and Equation (6) reduces to the following
inhomogeneous ODE for Θd(t):(

d2

dt2 + ε̃d
d
dt

+ λ̃d

)
Θd(t) = +Pe−

t
2 E1 + Qe−

t
2 E2 , (39)

where

ε̃d = εd + i2vn, λ̃d =
(

αd − v2
)

n2 + ivnεd, εd =
Kn2

b
Kn2

d
, αd =

Kn4
b

3Kn2
d

,

P = C1

(
εd −

ε +
√

U
2

+ ivn

)
, Q = C2

(
εd −

ε−
√

U
2

+ ivn

)
,

(40)
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where C1,2 are given by Equation (30). The above Equation (39) for Θd(t) possesses analytical solution,
which, in turn, yields the evolving in time harmonic solution for the diffusive quasi-temperature
component θd(x, t) in the following form:

θd(x, t) = einx
(

4
(

P
S

e−
t
2 E1 +

Q
L

e−
t
2 E2

)
+ D1e−

t
2 (ε̃d+R) + D2e−

t
2 (ε̃d−R)

)
, (41)

R =
√

ε̃2
d − 4λ̃d =

√
ε2

d − 4n2αd,

S = E2
1 + 4λ̃d − 2E1 ε̃d =

(
ε− εd +

√
U
)2

+ 4αdn2 − ε2
d,

L = E2
2 + 4λ̃d − 2E2 ε̃d =

(
ε− εd −

√
U
)2

+ 4αdn2 − ε2
d,

(42)

where the constants D1,2 are determined from the Cauchy initial conditions (37) for θd(x, t):

D1 =
V
2

(
1− ε̃d

R

)
− 1

R

(
W +

2P
S

(
ε− εd +

√
U + R

)
+

2Q
L

(
ε− εd −

√
U + R

))
, (43)

D2 =
V
2

(
1 +

ε̃d
R

)
+

1
R

(
W +

2P
S

(
ε− εd +

√
U − R

)
+

2Q
L

(
ε− εd −

√
U − R

))
. (44)

The exact analytical harmonic solutions for the θb(x, t) is given by (38) and (30), and for θd(x, t),
it is given by (41)–(44); their sum represents the complete solution for the ballistic heat transfer in
thin films [30] with the Cauchy initial conditions (36), (37), valid for arbitrary values of the Knudsen
numbers Knd, Knb. Note, that a real initial distribution of quasi-temperature θ(x, 0) evolves in real
domain even for imaginary exponentials in the solutions due to complex coefficients C1, C2 and D1, D2.

Now let us consider the Dirichlet conditions at the boundaries

θb(x, 0) = Aeinx, θb(x, T) = Geinx, θd(x, 0) = Veinx, θd(x, T) = Weinx, (45)

where A, G, V, W = const (see also Equation (33)). The evolution of θb(x, t) is given by Equation (38),
where C1,2 are set by Equation (34). The evolution of the counterpart θd(x, t) is governed by Equations
(39) and (40). The r.h.s. of Equation (39) is set by Equation (38) for the ballistic component θb(x, t),
where C1,2 are given by (34). The explicit solution θd(x, t) to inhomogeneous DE (39) is possible,
although it is much more cumbersome than in the Cauchy case:

θd(x, t) = einx
(

b2

w1
e−E2t +

b1

w2
e−E1t +

q1

w1w2
e−

1
2 t(εd+R) − q2

w1w2
e−

1
2 t(εd−R)

)
, (46)

where

w1 = E2
2 − E2 ε̃d + λ̃d, w2 = E2

1 − E1 ε̃d + λ̃d,

q1 =
1

eRT − 1

(
e−E2Tw1b1d2 + e−E2Tb2d2w2 + d1w1w2

)
,

q2 =
1

eRT − 1

(
e−E2T

(
λ̃d − w2

)
(b2d6 − w1d4) + e−E1T

(
w1

(
λ̃dd3 − b1d5

)
+ λ̃db2d7

))
,

b1 = C1

(
ε̃d −

εe f f +
√

U
2

+ ivn

)
, b2 = C2

(
ε̃d −

εe f f −
√

U
2

+ ivn

)
, d1 = VeRT −We

T
2 (ε̃d+R),

d2 = e
T
2 (ε̃d+R) − eT(E1+R), d3 = VeE1T −We(2E1+ε̃d+R) T

2 , d4 = VeE2T −We(2E2+ε̃d+R) T
2 ,

d5 = eE1T − e(ε̃d+R) T
2 , d6 = eE2T − e(ε̃d+R) T

2 , d7 = −eE1T + e(ε̃d+R+2(E1−E2))
T
2 .

(47)

The solution for θd(x, t) in the form (46), (47) explicitly involves the Dirichlet conditions and
together with the solution for θb(x, t), given in the Dirichlet case by (38) and (34), they describe
the evolution of the complete harmonic quasi-temperature θ = θd + θb.
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Let us now consider some examples of the harmonic solutions to GK-type heat equation
with substantial derivative. Consider, for example, the Cauchy problem with initial conditions
θb(x, 0 ) = θd(x, 0 ) = eix, ∂tθb(x, 0 ) = ∂tθd(x, 0 ) = 0. Let’s first consider Knb = Knd = 1.
Proper solutions for θb(x, t ), θd(x, t ) and θ(x, t ) in the stationary media are presented in Figure 1.

It can be seen in the top left plot in Figure 1 as the ballistic component θb(x, t) rapidly relaxes to
the stationary state. The diffusive component θd(x, t) behaves similarly, but the relaxation process takes
much more time. The behavior of ballistic and diffusive components in the domain is more distinct for
Kn < 1. The complete quasi-temperature θ(x, t) (see bottom plot in Figure 1) follows the behavior of
both the ballistic θb(x, t) and diffusive θd(x, t) constituents. However, the latter, being the solution of
Equation (39), is strongly influenced by the solution (38) for the ballistic component θb(x, t), which sets
the inhomogeneous part in Equation (39). Thus, the evolution of the quasi-temperature θ(x, t) in thin
films has two speeds: the ballistic constituent θb(x, t) develops rapidly and sets the r.h.s. in Equation
(39) for the diffusive constituent θd(x, t). The evolution of θd(x, t) is much slower: after the first
instances it proceeds under the influence of already relaxed true ballistic constituent θb(x, t).
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Figure 1. Evolution of quasi-temperature components in a thin stationary film with Knb = Knd = 1 for v = 0:
θb(x, t)—top left plot, θd(x, t)—top right plot and θ(x, t) = θb(x, t) + θd(x, t)—bottom plot. The Cauchy
conditions for PDEs (9) and (10) system are θb(x, 0) = θd(x, 0) = einx, ∂tθb(x, 0) = ∂tθd(x, 0 ) = 0.

In the case when the rate of change of temperature for a given position in a field depends both on
the instantaneous rate of change of temperature at that location (∂/∂t) as well as on the rate at which
the temperature is convected to that location by the fluid motion, the behaviors of the solutions change
significantly. The solutions for Knd = Knb = 1 and v = 10, are presented in Figure 2, for v =−10 in Figure 3.
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Figure 2. Evolution of quasi-temperature components in a thin film with Knb = Knd = 1 for v = +10:
θb(x, t)—top left plot, θd(x, t)—top right plot and θ(x, t) = θb(x, t) + θd(x, t)—bottom plot. The Cauchy
conditions for PDEs (9) and (10) system are θb(x, 0) = θd(x, 0) = einx, ∂tθb(x, 0) = ∂tθd(x, 0) = 0.

The ballistic constituent θb rapidly vanishes with time; the direction of the colorful waves in
the plot depends on the sign of the speed v (see top left plots in Figures 2 and 3). Diffusive counterpart
of the complete quasi-temperature θd has waves of increasing amplitude as seen in top right plots
in Figures 2 and 3. The complete quasi-temperature θ = θd + θb has obvious non-Fourier behavior,
which largely follows that of θd.

For smaller values of Knudsen number, Kn = 0.1, the behavior of the harmonic solutions to
ballistic heat propagation in thin films, obeying the Eqs. system (9) and (10) with Cauchy conditions
(36) (37), has less distinctive wave interference with slower fade of the solution for θb and weaker
amplitude increase speed for θd; proper solutions for v = +10 are presented in Figure 4.

It is important to note, that the whole system is symmetric under the speed inversion, which becomes
obvious with account for formulae (38)–(44).
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Figure 3. Evolution of quasi-temperature components in a thin film with Knb = Knd = 1 for v = −10:
θb(x, t)—top left plot, θd(x, t)—top right plot and θ(x, t) = θb(x, t) + θd(x, t)—bottom plot. The Cauchy
conditions for PDEs (9) and (10) system are θb(x, 0) = θd(x, 0) = einx, ∂tθb(x, 0) = ∂tθd(x, 0) = 0.

Note, that for Knb = Knd = 0.1 θb(x, t) and θd(x, t) constituents behave differently (see Figure 4).
The diffusive constituent slowly grows as the ballistic constituent shows gradual amplitude decrease,
as shown in Figure 5. Moreover, for v = 10 the complete quasi-temperature θ(x, t) = θb(x, t) + θd(x, t)
monotonously increases, following the behavior of the diffusive constituent as shown in Figure 5.
The maximum principle, established though for parabolic equations, is violated for the diffusive
component and complete quasi-temperature with Cauchy conditions for non-Fourier ballistic heat
transport in thin films. In all of the cases, the evolution of θb(x, t) occurs faster than that of θd(x, t);
the two-speed heat propagation process can be seen in every set of plots in Figures 1–5.
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Figure 4. Evolution of quasi-temperature components in a thin film with Knb = Knd = 0.1 for v = +10:
θb(x, t)—top left plot, θd(x, t)—top right plot and θ(x, t) = θb(x, t) + θd(x, t)—bottom plot. The Cauchy
conditions for PDEs (9) and (10) system are θb(x, 0) = θd(x, 0) = einx, ∂tθb(x, 0) = ∂tθd(x, 0) = 0.
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Figure 5. Evolution of quasi-temperature components in a stationary thin film with Knb = Knd = 0.1 for
v = 0: θb(x, t)—left plot, θd(x, t)—right plot. The Cauchy conditions for PDEs (9) and (10) system are
θb(x, 0) = θd(x, 0) = einx, ∂tθb(x, 0) = ∂tθd(x, 0) = 0.

The exploration of the solutions for Dirichlet conditions will be done elsewhere.
It should be noted that the one-dimensional energy balance equation yields zero value for

the initial heat flux, if B = −invA. Above we have obtained the solutions, which allow nonzero initial
conditions on the first time derivative; we have investigated some examples while writing this paper.
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For example, for the case of Knb = Knd = 1, v = 10 the maximum principle is violated for both zero
and nonzero initial conditions imposed on the first time-derivative of the ballistic component; however,
there was no significant qualitative difference in the behaviors of the diffusive component in this case.

Explicit study for the solution in thin films with zero initial heat flux and non-zero velocity v will
be done in forthcoming publications.

6. Conclusions

In the present work we have studied and analytically solved one-dimensional heat
transport equations of Cattaneo- and Guyer–Krumhansl-type with substantial derivative.
Exponential differential operators and the operational method were used to obtain integral forms
of exact particular solutions to heat transport equations. The media speed is accounted for by
the exponential differential operator e−vt∂x , which produces a shift x − vt. Together with the heat
operator Ŝ they transform the initial temperature profile and determine its evolution. Their action
on the initial polynomial ∑n xn yields sums of the Hermite polynomials Hn(x, y); the action on
the monomial-exponential function yields more complicated sums of Hermite polynomials. Proper
exact operational solutions were obtained in the sums of converging integrals of elementary functions.
Several examples were considered, the solutions for F(x, 0) = x2, F(x, 0) = x2e−x and F(x, 0) = einx

were given. The solutions exactly satisfy the heat transport equations, which has been proven by
direct substitution.

The equations with substantial derivative of Guyer-Krumhansl-type and of telegrapher’s-type are
demonstrated to have similar structure in the harmonic ansatz. Their exact harmonic solutions have
been obtained by both operational method and the separation of variables. The latter reduces these
PDEs to ODEs. We have shown that the harmonic solutions may have local and global extremums in
the domain due to the interference of the Cattaneo heat waves; proper second-order time-derivative
term also insures finite speed of the temperature perturbation propagation. We have shown that in
a GK-type equation with dominant ballistic term δ, the Cattaneo heat waves are damped.

We have obtained the exact analytical solution to the ballistic heat transport in thin films by solving
the system of inhomogeneous PDEs [30] in the harmonic ansatz; both Cauchy and Dirichlet conditions
were explored. We found that true ballistic constituent of quasi-temperature, θb, evolves much faster
than the diffusive counterpart of quasi-temperature, θd. We have studied the evolution of the complete
quasi-temperature θ(x, t) = θb(x, t) + θd(x, t) under the ballistic conditions; the latter apply when
the phonon mean free path l is comparable with the system scale L. The quasi-temperature θ first
senses fast evolving true ballistic part θb. The contribution of θb sets the r.h.s. in the inhomogeneous
DE for the component θd. After relatively fast relaxation of θb, further evolution of the complete
quasi-temperature θ follows the diffusive constituent θd. Thus the initial fast-developing true ballistic
component θb determines the evolution of the complete quasi-temperature of the system θ by imposing
distribution for the diffusive quasi-temperature θd at the beginning of the process.

The obtained harmonic solutions for the Cauchy problem (9), (10), (36), (37) were applied for
the study of the temperature patterns in thin films for the Knudsen number values Kn = 0.1 and
Kn = 1. In the stationary case v = 0, the true ballistic component θb monotonously relaxes (see Figures 1
and 5); its diffusive counterpart θd behavior shows noticeable dependence on the value of the Knudsen
numbers: for Kn = 1 it slowly relaxes (see Figure 5) and for Kn = 0.1 it droningly grows (see Figure 1).
The effect of the speed of the observer on the perceived heat transport in thin films is distinguished
for the pure ballistic and diffusive quasi-temperature constituents. In the presence of the motion,
the extremum of the ballistic component θb occurs inside the domain after the initial moment t = 0
(see Figures 2–4). The diffusive quasi-temperature component monotonously grows in the domain
both in the weak ballistic (see Figure 4) and strong ballistic cases (see Figures 2 and 3). This behavior
contrasts common Fourier heat diffusion, for which the maximum principle holds. It is also noticeable
that the system shows symmetric behavior while the value of the speed is reversed, which does
not contradict the Second law. The Knudsen number variation from 0.1 to 1 in the presence of the
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speed v = 10, are practically not sensed by the system. Thus the speed of the observer v influences
the registered temperature rather than the ballistic heat transport contribution.
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