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Abstract: We present a collection of recent results on the numerical approximation of Volterra integral
equations and integro-differential equations by means of collocation type methods, which are able
to provide better balances between accuracy and stability demanding. We consider both exact and
discretized one-step and multistep collocation methods, and illustrate main convergence results,
making some comparisons in terms of accuracy and efficiency. Some numerical experiments complete
the paper.
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1. Introduction

It is the purpose of this paper to illustrate recent results on collocation methods for Volterra
integral equations (VIEs) and Volterra integro-differential equations (VIDEs), mainly due to the authors.
Such equations model evolutionary problems with memory in many applications, such as dynamics
of viscoelastic materials with memory, electrodynamics with memory, heat conduction in materials
with memory [1–6]. The numerical solution of these equations has a high computational cost due both
to the nonlinearity of the advancing term and to the evaluation of the lag term, which contains the past
history of the solution. Therefore, a crucial point is finding accurate and efficient numerical methods.

Collocation methods have several desirable properties. They provide an approximation over
the entire integration interval to the solution of the equation, which reveals to be quite useful in
a variable-stepsize implementation: indeed, it is easy to recover the missing past values when
the stepsize is changed, by evaluating the collocation polynomial. Other good properties of collocation
methods are their high order of convergence, strong stability properties and flexibility. As a matter
of fact, if some information is known on the behavior of the exact solution, then it is possible to choose
the collocation functions in order to better follow such behavior, so giving rise to mixed collocation
methods, see for example [7] in the case of ordinary differential equations (ODEs), and [8] in the
case of VIEs. It is also worthwhile mentioning that collocation also has an important theoretical
relevance: in fact, many numerical methods are difficult to be analyzed as discrete schemes while,
re-casted as collocation-based methods, their analysis is reasonably simplified and can be carried out
in a very elegant way. There is, however, a remarkable drawback of one-step collocation methods:
they suffer from order reduction phenomenon when applied to stiff problems [9–11], since the order of
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convergence is not uniform (for instance, in the case of s-stage collocation based Runge-Kutta methods
on Gauss-Legendre collocation points, the order is p = 2s in the grid points, but it degenerates to p = s
for stiff problems, since the order is s in the internal stages). Such a drawback is successfully solved
by two-step collocation methods [12], having high uniform order on the overall integration interval.
On the side of computational cost, collocation methods are usually more expensive than other classes
of methods. In fact, a collocation method with m collocation parameters requires at each time-step
the solution of a nonlinear system of dimension m. To face this drawback, multistep collocation
methods can be adopted which increase the order of convergence at the same computational cost
of one-step ones. When a collocation method is applied to an integral equation, several integrals
must be computed, thus suitable quadrature rules are needed to complete the discretization, with the
introduction of an additional error. Lastly, a reliable error estimation for collocation methods for
integral equations is still missing: there have been some advances (compare [13] and references therein
contained), however considerable work needs to be done.

One-step collocation methods first appeared in the literature and main results are collected in the
monographs [2,3]. Recently, we have proposed multistep collocation methods [13–16] and two step
almost collocation methods [13,17,18], where the collocation polynomial depends on the approximate
solution in a fixed number of previous time steps, with the aim of increasing the order of convergence
of classical one–step collocation methods, without additional computational cost at each time step,
and at the same time obtaining highly stable methods. This idea has been already proposed for the
numerical solution of ODEs [19–21] (see also [11], Section V.3), and afterward modified in [12], by also
using the inherent quadratic technique [22–24]. We also underline that they have high uniform order,
thus they do not suffer from the order reduction phenomenon, well-known in the ODEs context [9].
Other approaches, based on multistep collocation, have been proposed in [25–32].

Here we briefly introduce one-step collocation methods and illustrate with more detail the
construction and analysis of multistep collocation methods for VIEs and VIDEs, with the aim of giving
a complete idea on the recent developments in this context. We give practical indications on how to
choose the quadrature formulas in the discretized methods for an efficient implementation. In this
review, we consider VIEs and VIDEs with smooth kernel and solution. We illustrate methods with
a uniform mesh, however they could easily be applied to a non-uniform mesh (compare [2] for one-step
collocation methods).

The paper is organized as follows. Sections 2 and 3 deal with one-step and multistep collocation
methods for VIEs, respectively. Section 4 illustrates two-step almost collocation methods for VIEs.
Sections 5 and 6 focus on one-step and multistep collocation methods for VIDEs, respectively.

2. One Step Collocation Methods for VIES

We consider VIEs of the form

y(t) = g(t) +
∫ t

0
k(t, τ, y(τ))dτ, t ∈ I = [0, T], (1)

where k ∈ C(D×R), with D := {(t, τ) : 0 ≤ τ ≤ t ≤ T}, and g ∈ C(I). In the literature, many authors
(see [2,3] and references therein contained) have analyzed one step collocation methods for VIEs. As it
is well known, a collocation method is based on the idea of approximating the exact solution of
a given integral equation with a suitable function belonging to a chosen finite dimensional space,
usually a piecewise algebraic polynomial which satisfies the integral equation exactly on a certain
subset of the integration interval (called the set of collocation points).

Let us discretize the interval I by introducing a uniform mesh

Ih = {tn := nh, n = 0, ..., N, h ≥ 0, Nh = T} .
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The Equation (1) can be rewritten, by relating it to this mesh, as

y(t) = Fn(t) + Φn(t) t ∈ [tn, tn+1],

where

Fn(t) := g(t) +
∫ tn

0
k(t, τ, y(τ))dτ

and

Φn(t) :=
∫ t

tn
k(t, τ, y(τ))dτ

represent respectively the lag term and the increment function.
Collocation methods provide an approximation P(t) to the solution y(t) of (1) on [0, T], such that

its restriction to each interval (tn, tn+1] is a polynomial:

P(t)|(tn ,tn+1]
= Pn(t).

2.1. Exact One-Step Collocation Methods

Let us fix m collocation parameters 0 ≤ c1 < ... < cm ≤ 1 and denote by tnj = tn + cjh the
collocation points. The collocation polynomial, restricted to the interval [tn, tn+1], is of the form:

Pn(tn + sh) =
m

∑
j=1

Lj(s)Ynj s ∈ [0, 1] n = 0, ..., N − 1 (2)

where Lj(s) is the j-th Lagrange fundamental polynomial with respect to the collocation parameters and
Ynj := Pn(tnj). Exact collocation methods are obtained by imposing that the collocation polynomial (2)
exactly satisfies the VIE (1) in the collocation points tn,i and by computing yn+1 = Pn(tn+1):

Yni = Fni + Φni

yn+1 =
m
∑

j=1
Lj(1)Ynj

, (3)

where

Fni = g(tni) + h
n−1

∑
ν=0

∫ 1

0
k(tni, tν + sh, Pν(tν + sh))ds (4)

Φni = h
∫ ci

0
k(tni, tn + sh, Pn(tn + sh))ds, (5)

i = 1, ..., m. Note that the first equation in (3) represents a system of m nonlinear equations in the m
unknowns Yni. We recall that generally P(t) is not continuous in the mesh points, as

P(t) ∈ S(−1)
m−1(Ih), (6)

where

S(d)
µ (Ih) =

{
v ∈ Cd(I) : v|(tn ,tn+1]

∈ Πµ, n = 0, 1, . . . , N − 1
}

.

Here, Πµ denotes the space of (real) polynomials of degree not exceeding µ.
The classical collocation methods have uniform order O(hm) for any choice of the collocation

parameters, and can achieve local superconvergence in the mesh points by opportunely choosing the
collocation parameters, i.e., order 2m− 2 with m Lobatto points or m− 1 Gauss points with cm = 1
and order 2m− 1 with m Radau II points. The optimal superconvergence order O(h2m) in the mesh
points can be achieved with Gauss nodes in the iterated collocation methods [2,3].
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2.2. Discretized One-Step Collocation Methods

The collocation Equation (3) is not yet in a form amenable to numerical computation: another
discretization step, based on quadrature formulas F̃ni ' Fni and Φ̃ni ' Φni for the approximation
of (4) and (5) are needed in order to obtain the fully discretised collocation schemes, thus leading to
Discretized collocation methods.

The discretized collocation polynomial is of the form

P̃n(tn + sh) =
m

∑
j=1

Lj(s)Ỹnj s ∈ [0, 1] n = 0, ..., N − 1 (7)

where Ỹnj := P̃n(tnj). The m unknowns Ỹnj are determined by imposing that the collocation
polynomial (7) satisfies exactly the integral equation at the collocation points and by using quadrature
formulas of the form

Φ̃n(tni) = h
µ0

∑
l=0

wilk(tni, tn + dilh, P̃n(tn + dilh)) (8)

F̃n(tni) = g(tni) + h
n−1

∑
ν=0

µ1

∑
l=0

blk(tni, tν + ξlh, P̃ν(tν + ξlh)), (9)

i = 1, ..., m, for approximating the lag term (4) and the increment function (5). The Formulas (8) and (9)
are obtained by using quadrature formulas of the form

(ξl , bl)
µ1
l=1, (dil , wil)

µ0
l=1, i = 1, ..., m, (10)

where the quadrature nodes ξl and dil satisfy 0 ≤ ξ1 < ... < ξµ1 ≤ 1 and 0 ≤ di1 < ... < diµ0 ≤ 1,
µ0 and µ1 are positive integers and wil , bl are suitable weights.

The numerical method is then of the form:
Ỹni = F̃n(tni) + Φ̃n(tni)

ỹn+1 =
m
∑

j=1
Lj(1)Ỹnj

, (11)

where Φ̃n(tni) and F̃n(tni) are given by (8) and (9).
Note that the first equation in (9) represents a system of m nonlinear equations in the m

unknowns Ỹni.
Such methods preserve, under suitable hypothesis on the quadrature Formulas (8) and (9),

the same order of the exact collocation methods [3].
A collocation method for VIEs is equivalent to an implicit Runge-Kutta method for VIEs (VRK

method) if and only if cm = 1 (see Theorem 5.2.2 of [3]). As the lag–term computation is the most
expensive part in the numerical solution of VIEs, fast collocation and Runge–Kutta methods have been
constructed for convolution VIEs of Hammerstein type [33,34] in order to reduce the computational
effort in the lag–term computation. The stability analysis of collocation methods for VIEs can be found
in [3,35] and the related bibliography.

3. Multistep Collocation Methods for VIEs

Multistep collocation methods for VIEs have been introduced in [16] by adding interpolation
conditions in r previous step points, with the aim of increasing the uniform order of convergence
of one step collocation methods without increasing the computational cost. The multistep collocation
polynomial, restricted to the interval [tn, tn+1], is of the form

Pn(tn + sh) =
r−1

∑
k=0

ϕk(s)yn−k +
m

∑
j=1

ψj(s)Ynj s ∈ [0, 1], (12)
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n = r, ..., N − 1, where again
Ynj := Pn(tnj) (13)

and ϕk(s), ψj(s) are the following polynomials of degree m + r− 1

ϕk(s) =
m

∏
i=1

s− ci
−k− ci

·
r−1

∏
i=0
i 6=k

s + i
−k + i

, ψj(s) =
r−1

∏
i=0

s + i
cj + i

·
m

∏
i=1
i 6=j

s− ci
cj − ci

. (14)

The collocation parameters are assumed to satisfy ci 6= cj and c1 6= 0.

3.1. Exact Multistep Collocation

The exact multistep collocation methods are obtained by imposing that the collocation
polynomial (12) exactly satisfies the VIE (1) at the collocation points tni, and by computing
yn+1 = Pn(tn+1): 

Yni = Fni + Φni,

yn+1 =
r−1
∑

k=0
ϕk(1)yn−k +

m
∑

j=1
ψj(1)Ynj,

(15)

where the lag–term Fni and increment–term Φni are given by (4) and (5) respectively. The r-step m-point
exact collocation method (12)–(15) has uniform convergence order of at least p = m + r, for any choice
of distinct collocation abscissas 0 < c1 < ... < cm ≤ 1, as stated in the following theorem proved
in [16].

Theorem 1. Let ε(t) = y(t)− P(t) be the error of the exact collocation method (12)–(15) and p = m + r.
Suppose that

i. the given functions describing the VIE (1) satisfy k ∈ C(p)(D×R), g ∈ C(p)(I).
ii. the starting error is ‖ε‖∞,[0,tr ]

= O(hp).
iii. ρ(A) < 1, where

A =

[
0r−1,1 Ir−1

ϕr−1(1) ϕr−2(1), ..., ϕ0(1)

]
(16)

and ρ denotes the spectral radius.

Then
‖ε‖∞ = O(hm+r).

Moreover, a suitable choice of collocation parameters can ensure superconvergence in the mesh
points, as pointed out in the following theorem [16].

Theorem 2. Let us suppose that

• the hypothesis of the Theorem 1 hold with p = 2m + r− 1.
• the collocation parameters c1, ..., cm are the solution of the system

cm = 1

1
i+1 −

r−1
∑

k=0
βk(−k)i −

m
∑

j=1
γj(cj)

i = 0, i = m + r, ..., 2m + r− 2
(17)

with

βk =
∫ 1

0
ϕk(s)ds, γj =

∫ 1

0
ψj(s)ds (18)
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then
max

n=0,...,N
|ε(tn)| = O(h2m+r−1).

3.2. Discretized Multistep Collocation

The discretized multistep collocation methods are obtained by using quadrature formulas of the
form (8) to (9) for approximating the lag term and the increment function. The discretized multistep
collocation polynomial, denoted by P̃n(t), is then of the form

P̃n(tn + sh) =
r−1

∑
k=0

ϕk(s)ỹn−k +
m

∑
j=1

ψj(s)Ỹnj, s ∈ [0, 1] (19)

n = 0, ..., N− 1,where the functions ϕk(s) and ψj(s) are given by (14), and Ỹnj := P̃n(tnj) are determined
by the solution of the following nonlinear system

Ỹni = F̃ni + Φ̃ni,

ỹn+1 =
r−1
∑

k=0
ϕk(1)ỹn−k +

m
∑

j=1
ψj(1)Ỹnj.

(20)

The following theorem [16] shows that, as in the exact case, the r-step m-point discretized
collocation method (19) and (20) has convergence order of at least p = m + r, for any choice of
distinct collocation abscissas 0 < c1 < ... < cm ≤ 1.

Theorem 3. Let ε̃(t) := y(t)− P̃(t) be the error of the discretized collocation method (19) and (20) and let
p = m + r. Suppose that

i. the given functions describing the VIE (1) satisfy k ∈ C(p)(D), g ∈ C(p)(I);
ii. the lag–term and increment–term quadrature Formulas (10) are of order respectively at least p + 1 and p;
iii. the starting error is ‖ε̃‖∞,[0,tr ]

= O(hp).
iv. ρ(A) < 1, where A is given by (16).

Then
‖ε̃‖∞ = O(hm+r).

An analogous result holds concerning the local superconvergence:

Theorem 4. Let us suppose that

• the hypothesis of the Theorem 3 hold with p = 2m + r− 1.
• the collocation parameters c1, ..., cm are the solution of the system (17).

Then
max

n=0,...,N
|ε̃(tn)| = O(h2m+r−1).

4. Two Step Almost Collocation Collocation Methods for VIEs

Within the class of multistep collocation methods, although methods with unbounded stability
regions exist, no A-stable methods have been found [16]. In order to determine A-stable methods,
two step almost collocation (TSAC) methods have been introduced in [18] and further analyzed
in [13,17].

The collocation polynomial Pn(t) for TSAC methods is computed by employing the information
about the equation on two consecutive steps:

Pn(tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn +
m

∑
j=1

χj(s)Y
[n]
j +

m

∑
j=1

ψj(s)(F[n]
j + Φ[n+1]

j ), (21)
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where Y[n]
j = P(tn−1,j). Then the method assumes the form:


Y[n+1]

i = ϕ0(ci)yn−1 + ϕ1(ci)yn +
m

∑
j=1

χj(ci)Y
[n]
j +

m

∑
j=1

ψj(ci)
(

F[n]
j + Φ[n+1]

j

)
,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +
m

∑
j=1

χj(1)Y
[n]
j +

m

∑
j=1

ψj(1)
(

F[n]
j + Φ[n+1]

j

)
,

(22)

where F[n]
j and Φ[n+1]

j are suitable sufficiently high order quadrature formulae for the discretization of

F[n](tnj) and Φ[n+1](tnj) respectively, assuming the form

F[n]
j = g(tnj) + h

n

∑
ν=1

m+1

∑
l=0

blk
(

tnj, tν−1,l , Y[ν]
l

)
, (23)

and

Φ[n+1]
j = h

m+1

∑
l=0

wjlk
(

tnj, tnl , Y[n+1]
l

)
. (24)

In the quadrature Formulas (23) and (24) we mean tν−1,0 = tν−1, tν−1,m+1 = tν, Y[ν]
0 = Pn(tν−1),

Y[ν]
m+1 = Pn(tν) and tn0 = tn. We observe as the method (22) requires, at each step, the solution of a

nonlinear system of (m + 1)d equations in the stage values Y[n+1]
i and yn+1.

The basis functions ϕ0(s), ϕ1(s), χj(s) and ψj(s), j = 1, 2, . . . , m, are polynomials of degree p,
determined from the continuous order conditions, according to the following theorem [18]:

Theorem 5. Assume that the kernel k(t, η, y) and the function g(t) in (1) are sufficiently smooth. Then the
method (21) and (22) has uniform order p, i.e.,

η(tn + sh) = O(hp+1), h→ 0,

for s ∈ [0, 1], if the polynomials ϕ0(s), ϕ1(s), χj(s) and ψj(s), j = 1, 2, ..., m satisfy the system of equations
1− ϕ0(s)− ϕ1(s)−

m

∑
j=1

χj(s)−
m

∑
j=1

ψj(s) = 0,

sk − (−1)k ϕ0(s)−
m

∑
j=1

(cj − 1)kχj(s)−
m

∑
j=1

ck
j ψj(s) = 0,

(25)

s ∈ [0, 1], k = 1, 2, ..., p, where

η(tn + sh) = y(tn + sh)− ϕ0(s)y(tn − h)− ϕ1(s)y(tn)−
m

∑
j=1

(
χj(s)y(tn + (cj − 1)h) + ψj(s)y(tn + cjh)

)
. (26)

is the local truncation error.

As regards the global error, the method has uniform order of convergence p∗ = min{l + 1, q, p + 1},
where l and q are the order of the starting procedure (for the computation of the starting values y1 and
Y[1]

i , i = 1, 2, ..., m) and the order of the quadrature Formulas (23) and (24) respectively (see Theorem 2.5
in [18]). Then we use as starting procedure a one step collocation method having uniform order of
convergence l = p.

Two-step collocation methods are obtained by solving the system of order conditions up to the
maximum uniform attainable order p = 2m + 1, and, in this way, all the basis functions are determined
as the unique solution of such system. However, as observed in [18], it is not convenient to impose
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all the order conditions because it is not possible to achieve high stability properties (e.g., A-stability)
without getting rid of some of them. Therefore, almost collocation methods have been introduced by
relaxing a specified number r of order conditions, i.e., by a priori opportunely fixing r basis functions,
and determining the remaining ones as the unique solution of the system of order conditions up to
p = 2m + 1− r. Within the class of TSAC methods, A-stable methods have been constructed in [18] by
fixing one (case r = 1) or both (case r = 2) of the polynomials ϕ0(s) and ϕ1(s) as

ϕ0(s) =
m

∏
k=1

(s− ck)(q0 + q1s + . . . + qp−msp−m),

ϕ1(s) =
m

∏
k=1

(s− ck)(p0 + p1s + . . . + pp−msp−m),
(27)

where αj and β j, j = 0, 1, . . . , p− m, are free parameters, which have to be determined in order to
obtain desired stability properties.

A error estimation of the local discretization error for TSAC methods has been derived in [13].

Example 1. Let us consider the methods with two stages m = 2 and order p = 2m = 4. Classes of A-stable
methods were derived in [13,18] by considering

ϕ0(s) = s(s− c1)(s− c2)(q0 + q1s),

where c1, c2, q0, q1 are free parameters. The weights in (23) and (24) were computed in [18] as

b =



−1 + 2c1 + 2c2 − 6c1c2

12c1c2

1− 2c2

12c1(c1 − 1)(c1 − c2)

2c1 − 1
12c2(c2 − 1)(c2 − c1)

−3 + 4c1 + 4c2 − 6c1c2

12(c1 − 1)(c2 − 1)


, W =

 − c2
1−3c1c2

6c2

c1(2c1−3c2)
6(c1−c2)

c3
1

6c2(c1−c2)
0

− c2
2−3c1c2

6c1
− c3

1
6c1(c1−c2)

− c2(2c2−3c1)
6(c1−c2)

0

 .

An A-stable method is obtained by choosing for example q0 = 15/10, q1 = −1, c1 = 0.9, c2 = 0.95,
see [13].

4.1. Diagonally Implicit TSAC Methods for VIEs

The computational cost associated to the solution of the nonlinear system (22) can be reduced by
making the coefficient matrix have a structured shape, e.g., lower triangular or diagonal. This strategy,
in the field of Runge–Kutta methods for ODEs, leads to the raise of the famous classes of Diagonally
Implicit and Singly Diagonally Implicit Runge-Kutta methods (DIRK and SDIRK), see [10,11] and
bibliography therein contained. Moreover, in the field of collocation-based methods for ODEs,
an analogous strategy has been applied, obtaining TSAC methods having structured coefficient
matrix [12].

In fact, a lower triangular matrix allows to solve the equations in m successive stages, with only
a d-dimensional system to be solved at each stage. Moreover, if all the elements on the diagonal
are equal, in solving the nonlinear systems by means of Newton-type iterations, one may hope to
use repeatedly the stored LU factorization of the Jacobian. If the structure is diagonal, the problem
reduces to the solution of m independent systems of dimension d, and can therefore be solved in a
parallel environment.
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Methods of this type have been derived in [17], where first of all it was assumed wj,m+1 = 0,
j = 1, . . . , m, in such a way that (22) becomes a nonlinear system of dimension md only depending on
the stage values Y[n+1]

i , i = 1, . . . , m, and assumes the following form Y[n+1]
i − h

m

∑
j=1

m

∑
l=1

ψj(ci)wjlk(tnj, tnl , Y[n+1]
l ) = B[n]

i ,

yn+1 = Pn(tn+1),
(28)

where

B[n]
i = ϕ0(ci)yn−1 + ϕ1(ci)yn +

m

∑
j=1

χj(ci)Y
[n]
j +

m

∑
j=1

ψj(ci)F[n]
j + h

m

∑
j=1

ψj(ci)wj0k(tnj, tn, yn). (29)

By defining

Y[n+1] =
[
Y[n+1]

1 , Y[n+1]
2 , . . . , Y[n+1]

m

]T
, B[n] =

[
B[n]

1 , B[n]
2 , . . . , B[n]

m

]T
, Ψ =

(
ψj(ci)

)m
i,j=1,

W =
(
wjl
)m

j,l=1, K(tnc, tnc, Y[n+1]) =

(
K(tni, tnj, Y[n+1]

j )

)m

i,j=1
,

the nonlinear system in (28) takes the form

Y[n+1] − h(Ψ⊗ I)
(
(W ⊗ I) · K(tnc, tnc, Y[n+1])

)
e = B[n], (30)

where · denotes the usual Hadamard product, I is the identity matrix of dimension d and e is
the unit vector of dimension md. The tensor form (30) clearly shows as the matrices which determine
the structure of the nonlinear system (28) are Ψ and W. In [17] a strategy was described to obtain
lower triangular or diagonal structures for the matrices Ψ and W: in particular a quadrature formula
of the form

cj∫
0

f (s)ds ≈ wj0 f (0) +
m

∑
l=1

w̃jl f (cl − 1) +
j

∑
l=1

wjl f (cl), (31)

was proposed for the increment

Φ[n+1](tnj, P(·)) = h

cj∫
0

k(tnj, tn + sh, Pn(tn + sh))ds, (32)

in addition to the quadrature formula

1∫
0

f (s)ds ≈ b0 f (0) +
m

∑
l=1

bl f (cl) + bm+1 f (1), (33)

for the approximation of the lag term

F[n](tnj, P(·)) = g(tnj) + h
n

∑
ν=1

1∫
0

k(tnj, tν−1 + sh, Pν−1(tν−1 + sh))ds. (34)

We observe that in Formula (31), in case of triangular structure, w̃jl = 0, l = 1, . . . , j while, in case
of diagonal structure, w̃j1 = 0 and wjl = 0, l = 1, . . . , j − 1. The determination of the weights in
Formulas (31) and (33) has been described in [17].
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Assuming that Ψ and W are lower triangular, we obtain the diagonally implicit TSAC
methods (DITSAC)

Y[n+1]
i − hψi(ci)wiik(tni, tni, Y[n+1]

i ) = B[n]
i + B̃[n]

i + h
i−1

∑
l=1

i

∑
j=l

ψj(ci)wjlk(tnj, tnl , Y[n+1]
l ),

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +
m

∑
j=1

χj(1)Y
[n]
j +

m

∑
j=1

ψj(1)
(

F[n]
j + Φ[n+1]

j

)
,

(35)

where B[n]
i is given by (29),

B̃[n]
i = h

i

∑
j=1

m

∑
l=1

ψj(ci)w̃jlk(tnj, tn−1,lY
[n]
l ), (36)

and F[n]
j , Φ[n+1]

j are approximations of (34) by means of the quadrature Formulas (31) and (33).

4.2. Numerical Results

We present some numerical results which confirm that, differently from one step collocation
methods, the TSAC methods do not suffer form the order reduction in the integration of stiff systems,
as we expect from the uniform order of convergence stated in Theorem 5. In order to illustrate this
phenomenon, we show the results obtained on both a non stiff and a stiff equation:

• the non stiff VIE

y(t) = 2− cos(t)−
∫ t

0
sin(ty(τ)− τ)dτ, t ∈ [0, 3], (37)

with exact solution y(t) ≡ 1;
• the stiff VIE

y(t) =
∫ t

0
(λ (y(τ)− sin(τ)) + cos(τ)) dτ, t ∈ [0,

3
4

π], (38)

with λ = −104 and exact solution y(t) = sin(t). This is a stiff problem because it is equivalent to
the Prothero-Robinson problem for ODEs.

We compare TSAC methods with superconvergent one step collocation methods of [2,3], where m
denotes the number of collocation points and p denotes the order of the method:

• G2: 1 point Gauss collocation, c2 = 1, m = 2, p = 2;
• R2: 2 points Radau collocation, m = 2, p = 3;
• TSAC2: 2 points TSAC method, m = 2, p = 4.

The method TSAC2 is the two-stage TSAC method described in Example 1. The accuracy is
defined by the number of correct significant digits cd at the end point (the maximal absolute end point
error is written as 10−cd). For each test we plot in Figure 1 the number of cd versus the number of mesh
points N. We observe as for non stiff Problem (37) the effective order of the all methods is coherent
with the theoretical order, while for stiff Problem (38) the one step methods show order reduction as
the effective order reduces to p = 2.
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Figure 1. Number of correct significant digits with respect to the number of mesh points.
(a) Problem (37); (b) Problem (38).

5. One-Step Collocation Methods for VIDEs

We concentrate on VIDEs of type:

y′(t) = g(t, y(t)) +
∫ t

0
k(t, τ, y(τ))dτ, t ∈ I = [0, T],

y(0) = y0,
(39)

where g(t, y) : I × IRd → IRd, k(t, s, y) : S × IRd → IRd, S = {(t, s)|0 ≤ s ≤ t ≤ T}. For sake of
completeness we report the theorem of existence and uniqueness of solution for (39) [3].

Theorem 6. Let g(t, y) and k(t, s, y) be continuous functions and satisfy a uniform Lipschitz condition with
respect to y. Then there exists a unique solution y ∈ C1([0, T]) of the problem (39).

Let Ih = {tn : 0 < t0 < t1 < · · · < tN = T} be a partition of the time interval [0, T] with
constant stepsize h = tn+1 − tn, n = 0, . . . , N − 1. The integro-differential Equation (39) can be written
as follows:

y′(t) = g(t, y(t)) + Fn(t, y(·)) + Φn(t, y(·)), t ∈ [tn, tn+1],

where

Fn(t, y(·)) =
∫ tn

0
k(t, τ, y(τ))dτ, Φn(t, y(·)) =

∫ t

tn
k(t, τ, y(τ))dτ,

represent respectively the lag term and the increment function.

5.1. Exact One-Step Collocation Methods

Here we briefly expose the classical one-step collocation methods for VIDEs and their main
properties [2,3].

A one-step collocation method approximates y(t) by a piecewise polynomial P(t), with P(t) = Pn(t),
t ∈ [tn, tn+1], n = 0, ..., N − 1, where

Pn(tn + sh) = yn + h
m

∑
j=1

β j(s)Unj, s ∈ [0, 1], (40)
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with yn = Pn(tn), Unj = P′n(tn + cjh), β j(s) =
∫ s

0
Lj(τ)ds, Lj(τ) being the j-th Lagrange fundamental

polynomial with respect to the collocation parameters.
The m unknowns Unj are found by imposing that Pn(t) satisfies (39) at the collocation points tnj :=

tn + cjh, j = 1, . . . , m, n = 0, . . . , N − 1, where 0 ≤ c1 < ... < cm ≤ 1 are the collocation parameters.
The numerical approximation at the point tn+1 is then given by yn+1 = Pn(tn+1). The final form

of an exact collocation method is Uni = g(tni, Pn(tni)) + Fn(tni, P(·)) + Φn(tni, P(·)), i = 1, . . . , m,

yn+1 = yn + h
m
∑

i=1
β j(1)Uni,

(41)

n = 0, . . . , N, where the lag term and the increment function can be written as

Fn(tni, P(·)) = h
n−1

∑
ν=0

∫ 1

0
k (tni, tν + τh, Pν(tn + τh)) dτ, (42)

Φn(tni, P(·)) = h
∫ ci

0
k (tni, tn + τh, Pn(tn + τh)) dτ. (43)

The first equation in (41) requires, at each time step, the solution of an m-dimensional nonlinear
system in the unknowns {Uni}m

i=1.
For every choice of the collocation parameters c1, . . . , cm, the collocation polynomial P(t) is

continuous on [0, T] and provides a uniform approximation of order O(hm). Moreover, if c1, . . . , cm

are suitably chosen, the order of convergence at the mesh points increases (local superconvergence):
is 2m− 2 for the Lobatto points, 2m− 1 for the Radau points and 2m for the Gauss ones [2,3].

5.2. Discretized One-Step Collocation Methods

In the general case, the integrals appearing in (42) and (43) cannot be exactly evaluated, so a
further approximation is needed in order to fully discretize the method. Let us suppose to approximate
these integrals by quadrature formulae of the type:

F̃n(tni, P(·)) = h
n−1

∑
ν=0

µ1

∑
l=1

wlk(tni, tν + dlh, Pν(tν + dlh)), (44)

Φ̃n(tni, P(·)) = h
µ0

∑
l=1

wilk(tni, tn + dilh, Pn(tn + dilh)). (45)

These formulae are then used to define the discretized collocation methods as
Ũni = g(tni, P̃n(tni)) + F̃n(tni, P̃(·)) + Φ̃n(tni, P̃(·))

ỹn+1 = ỹn + h
m
∑

i=1
β j(1)Ũni,

(46)

where the collocation polynomial is now of the form

P̃n(tn + sh) = yn + h
m

∑
j=1

β j(s)Ũnj, s ∈ [0, 1]. (47)

The discretized collocation methods are a special class of the Runge-Kutta extended methods
and preserve the order of convergence and superconvergence of exact collocation methods, if the
quadrature Formulae (44) and (45) are sufficiently accurate [3].

Some relevant stability results for one-step collocation methods are derived in [36,37].
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6. Multistep Collocation for VIDEs

6.1. Exact Multistep Collocation

Recently, in order to obtain an higher order of convergence at the same computational effort,
multistep collocation methods have been introduced: the solution y(t) is approximated by a piecewise
algebraic polynomial P(t):

P(tn + sh) =
r−1

∑
k=0

ϕk(s)yn−k + h
m

∑
j=1

ψj(s)Unj, s ∈ [0, 1], (48)

where again
Unj := P′(tnj), j = 1, . . . , m, (49)

and the functions ϕk(s), ψj(s) are polynomials of degree m + r− 1 which are determined by imposing
that the polynomial (48) satisfies (49) and the interpolation conditions:

P(tn−k) = yn−k, k = 0, ..., r− 1. (50)

For any fixed set of collocation parameters c1, . . . , cm, conditions (49) and (50) lead to the following
non linear system of (r + m)2 equations, where the (r + m)2 unknowns are the coefficients of the
polynomials ϕk(s) and ψj(s):

ϕl(−k) = δlk, ϕ′l(cj) = 0,
ψ′i(cj) = δij, ψi(−k) = 0,

(51)

l, k = 0, ..., r− 1, i, j = 1, ..., m.
Exact multistep collocation methods are obtained by imposing that the collocation polynomial (48)

satisfies the VIDE at the collocation points tni, and by computing yn+1 = Pn(tn+1):
Uni = g(tni, P(tni)) + Fn(tni, P(·)) + Φn(tni, P(·)), i = 1, . . . , m

yn+1 =
r−1
∑

k=0
ϕk(1)yn−k + h

m
∑

i=1
ψj(1)Uni.

(52)

n = r− 1, . . . , N, where now the lag term and the increment function can be written as

Fn(tni, P(·)) = h
n−1

∑
ν=0

∫ 1

0
k

(
tni, tν + τh,

r−1

∑
k=0

ϕk(τ)yν−k + h
m

∑
j=1

ψj(τ)Uνj

)
dτ, (53)

Φn(tni, P(·)) = h
∫ ci

0
k

(
tni, tn + τh,

r−1

∑
k=0

ϕk(τ)yn−k + h
m

∑
j=1

ψj(τ)Unj

)
dτ. (54)

We note that at each time step, the approximations yn−k, k = 0, ..., r− 1 are already known, so only
the unknowns {Uni}m

i=1 need to be computed, by solving the nonlinear system given by the first
equation of (52).

Observe that we are able to give an approximate value P(t) of the solution y(t) at each point t of
the integration interval, therefore we have a uniform approximation of the solution on [0, T].

The classical one-step collocation methods described in the previous section can be seen as a
particular case of multistep methods with r = 1 and

ϕ0(s) ≡ 1, ψj(s) =
∫ s

0
Lj(τ)dτ,

where Lj(τ) is the j-th Lagrange fundamental polynomial with respect to the collocation parameters.
We observe that, at each time step, both one-step and multistep collocation methods require the
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solution of a non linear system of dimension m for the stages Uni, i = 1, . . . , m. The multistep methods
only need in addition the computation of the starting values y1, . . . , yr−1.

6.2. Discretized Multistep Collocation

As in the case of one-step collocation methods, it is evident that the exact multistep collocation
methods (52) are not directly applicable for the implementation, since approximations of the integrals
Fn(tni, P(·)) and Φn(tni, P(·)) are needed. With the aim of fully discretizing the multistep collocation
methods we consider the following quadrature formulas

∫ ci

0
α(x)dx ≈ Qi(α(·)) :=

µ0

∑
l=1

wilα(dil),
∫ 1

0
α(x)dx ≈ Q(α(·)) :=

µ1

∑
l=1

wlα(dl), (55)

where the weights and nodes are suitably chosen, as it will be illustrated later.
The discretized multistep collocation method for the problem (39) approximates the solution y(t)

with a piecewise polynomial P̃(t), with

P̃(tn + sh) =
r−1

∑
k=0

ϕk(s)ỹn−k + h
m

∑
j=1

ψj(s)Ũnj, s ∈ [0, 1], (56)

where the polynomials {ϕk(s)}r−1
k=0, {ψj(s)}m

j=1 are the same as in the exact collocation, and can be
computed by solving the system (51).

We impose that at the collocation points P̃(t) satisfies the VIDE (39), where the integrals appearing
in both the lag term (53) and the increment function (54) are approximated by the quadrature formulae
defined in (55), and we set ỹn+1 = P̃(tn + h). Thus the discretized multistep method is

Ũni = g(tni, P̃(tni)) + F̃n(tni, P̃(·)) + Φ̃n(tni, P̃(·)), i = 1, . . . , m

ỹn+1 =
r−1

∑
k=0

ϕk(1)ỹn−k + h
m

∑
i=1

ψi(1)Ũni.
(57)

where F̃n(tni, P̃(·)) and Φ̃n(tni, P̃(·)) are of the form

F̃n(tni, P̃(·)) = h
n−1

∑
ν=0

µ1

∑
l=1

wlk

(
tni, tν + dlh,

r−1

∑
k=0

ϕk(dl)ỹν−k + h
m

∑
j=1

ψj(dl)Ũνj

)

Φ̃n(tni, P̃(·)) = h
µ0

∑
l=1

wilk

(
tni, tn + dilh,

r−1

∑
k=0

ϕk(dil)ỹn−k + h
m

∑
j=1

ψj(dil)Ũnj

)
.

i.e., they are obtained by applying the quadrature Formula (55) to the integrals appearing in (53)
and (54).

6.3. Convergence Analysis

The multivalue nature of the multistep methods imposes to analyze first the zero-stability of the
methods. When h→ 0, second equation of (52) reduces to

yn+1 =
r−1

∑
k=0

ϕk(1)yn−k.

Therefore, the method (48) and (52) is said to be zero-stable, if all of the roots of the polynomial

p(λ) = λr −
r−1

∑
k=0

ϕk(1)λ
r−k−1 (58)
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have modulus less than or equal to unity, and those of modulus unity are simple.
On this basis, the following theorem studies the convergence of the method.

Theorem 7. Consider the problem (39) with d = 1. Let p = m + r− 1 and assume that:

1. k ∈ Cp(S× IR) and g ∈ Cp([0, T]× IR) and have bounded derivatives with respect to y;
2. the method (48) and (52) is zero-stable;
3. the starting error satisfies |e(t)| = O(hp), for any t ∈ [t0, tr−1].

Then, the global error e(t) = y(t)− P(t) of the exact MCM (48) and (52) satisfies

max
[0,T]
|e(t)| ≤ Chm+r−1. (59)

By a suitable choice of the collocation parameters, it is possible to increase the order of convergence
at the mesh points (local superconvergence), following the lines of multistep methods for ODEs
(compare [21], Section 3).

Theorem 8. Assume that hypotheses of Theorem 7 hold with p = 2m+ r− 1 and that the collocation parameters
satisfy these conditions

r−1

∑
k=−1

1
ci + k

+ 2
m

∑
j=1
j 6=i

1
ci − cj

= 0, i = 1, . . . , m. (60)

Then the order of the exact MCM (48) and (52) at the mesh points is p, i.e.,:

max
1≤n≤N

|e(tn)| = O(h2m+r−1).

Similar convergence and superconvergence results hold also for the discretized MCM (56) and (57).
We can summarize them in the following theorem.

Theorem 9. Assume that hypotheses of Theorem 7 hold. If quadrature formulae Q and Qi defined in (55) have
order m + r and m + r− 1 respectively, then the uniform order of the discretized method (56) and (57) is equal
to m + r− 1.

Moreover, if hypotheses of Theorem 8 are fulfilled, Q and Qi defined in (55) have order 2m + r and
2m + r− 1 respectively, then the order of the discretized method (56) and (57), at the mesh points, is 2m + r− 1.

We observe that, at the same cost of one-step collocation methods with m collocation parameters,
multistep collocation methods have an higher computational cost. A further improvement of the
efficiency could be obtained by exploiting parallel techniques, as done for example in [38–40].

An extensive analysis of the stability properties on basic test equations is contained in [14].
A possible future development may regard new multistep methods with some relaxing order
conditions, which leave some parameters free to perform a numerical search for the methods with
optimal stability properties, as done in [22,23,41–43] in the context of ODEs.

6.4. Numerical Results

Now we give a short numerical illustration of discretized MCMs (56) and (57), on the linear
test equation

y′(t) = g(t, y)−
∫ t

0
t2 exp(−st)y(s)ds, t ∈ [0, 1],

y(0) = 1,
(61)
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with g(t, y) such that y(t) = exp(−t); and on the nonlinear problem

y′(t) = g(t, y)−
∫ t

0
2t sin(s) exp(−y(s))ds, t ∈ [0, 1],

y(0) = 1,
(62)

with g(t, y) such that y(t) = cos(t).
We consider three methods

• TS3: superconvergent discretized two-step collocation method, with r = 2 and m = 1, with order
p = 3;

• TS3b: two-step discretized collocation method, with r = 2 and m = 2, c1 = 0.9, c2 = 1, with
uniform order 3;

• TS5: superconvergent discretized two-step collocation method, with r = 2 and m = 2, with order
p = 5.

Method TS3b has an unbounded stability region, while TS3 and TS5 have a bounded stability
region. The exact expression of the methods and their stability region can be found in [14]. To confirm
the theoretical order of convergence, in Figure 2 the error (in logarithmic scale) produced by methods
TS3, TS3b and TS5 when applied to problems (61) and (62), and the slopes corresponding to order 3
and 5. We see that the effective order is equal to the theoretical one.
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Figure 2. Error of two-step methods TS3 ( � ), TS3b ( M ) and TS5 ( ◦ ), and slopes of order 3 (dashed
line) and of order 5 (dash-dot line), applied to problem (61) (left) and on problem (62) (right).

7. Conclusions

We have illustrated multistep collocation methods for VIEs and VIDEs and gave an overview
of their convergence and superconvergence properties. This idea may be exploited to obtain
high order methods for solving other types of equations as well. For example, recently two-step
collocation methods have been proposed for fractional differential equations [44], and further
developments may be achieved for other fractional models, as time fractional differential equations [45].
Further issues of this research will focus on oscillatory problems [46,47] and in particular on the
application of multistep collocation methods to periodic integral equations [48,49]. Moreover, it seems
reasonable to consider the possibility of employing collocation spaces based on functions other than
polynomials, as in [50–52] and similarly as in the case of oscillatory problems [53], and merge into
the numerical scheme as many known qualitative properties of the continuous problem as possible,
in a structure-preserving perspective [54].

The literature on the numerical treatment of VIEs is quite rich and goes beyond the results
considered in this review. Here we would like to mention some other results, at least. In [55] the
modified Newton–Kantorovich method combined with collocation were applied non linear and
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nonlinear VIE with piecewise smooth kernels. Such VIE were introduced in [56] and asymptotic
approximations to parametric families of solutions were constructed and the existence of continuous
solutions was proved. The review of the numerical methods of optimal accuracy (spline-collocation
technique) for multidimensional weakly singular VIEs is given in [57]. Some other interesting papers
regard the distance between the approximate and exact solutions of various generalizations of the
Volterra equations [58–63]. Lastly, we underline that in the practical applications of VIE based models
it is extremely important to have the numerical method to be stable with respect to the measurement
errors both in the source function and in the kernel. It is well known that the 1st kind of VIEs enjoy
self-regularization property when the mesh step serves as the regularisation parameter. In addition,
the Lavrentiev type regularisation is a good option [64,65]. These issues have been discussed in [66].
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