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Abstract: This work studies limited memory preconditioners for linear symmetric positive definite
systems of equations. Connections are established between a partial Cholesky factorization from the
literature and a variant of Quasi-Newton type preconditioners. Then, a strategy for enhancing the
Quasi-Newton preconditioner via available information is proposed. Numerical experiments show
the behaviour of the resulting preconditioner.
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1. Introduction

The numerical solution of linear algebraic systems with symmetric positive definite (SPD) matrix is
required in a broad range of applications, see e.g., [1–6]. We consider the case where the linear systems
are large and investigate their iterative solution by preconditioned Krylov subspace methods [4,7,8].
Our problem takes the form

Hx = b, (1)

where H ∈ Rm×m is SPD. As a particular case of interest we also consider the case where H = AΘAT ,
A ∈ Rm×n is a sparse full row-rank matrix and Θ ∈ Rn×n is SPD. Systems of this kind arise in many
contexts, such as the solution of linear and nonlinear least-squares problems and the solution of linear
programming problems, see e.g., [4,6,9]. The iterative solver employed is the Conjugate Gradient (CG)
method or its variants [4] and we propose its use in combination with limited memory preconditioners.

A preconditioner is denoted as limited memory if it can be stored compactly in a few vectors
of length m, and its product by a vector calls for scalar products and, possibly, sums of vectors [10].
The limited memory preconditioners studied in this work belong to both the class of Incomplete
Cholesky factorizations and to the class of Quasi-Newton preconditioners. Interestingly, they are
approximate inverse preconditioners, i.e., they are approximations for H−1. We point out that the
preconditioners proposed can also be used for solving symmetric saddle point linear systems iteratively.
In fact, the application of constraint or augmented preconditioners involves the factorization of SPD
matrices and a cheap approximation of such matrices or their inverses can be convenient [11,12].

Incomplete Cholesky factorizations use the entries of H and may fail for a general SPD matrix,
thus requiring strategies for recovering breakdowns. Further, memory requirements are difficult to
predict if a drop tolerance is used to reduce the fill-in. For this reason, some factorizations allow
a limited number of fill-ins to be created and the bound on the number of nonzero entries can be
prefixed column-wise, typically taking into account the number of nonzero entries of the original
matrix. Clearly, Incomplete Cholesky factorizations are not suitable when matrix H is dense, which may
be the case if H = AΘAT even though A is sparse, see e.g., [3]. A limited memory and breakdown-free
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“partial” Cholesky factorization was proposed in [13,14] and used in the solution of compressed
sensing, linear and quadratic programming, Lasso problems, maximum cut problems [3,14,15].
This preconditioner is built by computing a trapezoidal partial Cholesky factorization limited to
a prefixed and small number of columns and by approximating the resulting Schur complement via
its diagonal.

Limited memory Quasi-Newton preconditioners are a class of matrices built drawing inspiration
from Quasi-Newton schemes for convex quadratic programming [10]. Given a preconditioner
(first-level preconditioner), Quasi-Newton preconditioners provide its update (second-level
preconditioner) by exploiting a few vectors of dimension m, i.e., information belonging to
a low-dimensional subspace of Rm. Variants of the original Quasi-Newton scheme [10] have been
proposed in the literature. They differ in the choice of the low-dimensional subspace [10,16–19]
and several instances convey information from the iterative solver, possibly as approximate
invariant subspaces.

In this paper, we analyze the connection between the partial Cholesky factorization [13,14] and
a variant of the Quasi-Newton preconditioners. We show that the partial Cholesky factorization
coincides with a Quasi-Newton preconditioner where the first-level preconditioner is diagonal and the
low-dimensional subspace is constituted by a subset of columns of the identity matrix of dimension m.
This observation provides a way for building the partial Cholesky factorization which is alternative
to the procedures in [13,14] and can offer some advantages in terms of computational effort. Due to
the specific form of the low-dimensional subspace spanned by coordinate vectors in IRm, we denote
the resulting preconditioner as the Coordinate Limited Memory Preconditioner (Coordinate-LMP).
Successively, we propose a strategy for enriching the low-dimensional space that generates the partial
Cholesky factorization, and thus enhancing the performance of the preconditioner; such a strategy
is guided by the spectral analysis of H preconditioned by the partial Cholesky factorization and it is
analyzed from both the theoretical and practical point of view.

The paper is organized as follows. In Section 2 we introduce the partial Cholesky factorization.
In Section 3 we show how the partial Cholesky factorization can be formulated as a Quasi-Newton
type preconditioner and discuss the application of the two formulations in terms of computational
effort. In Section 4 we propose a strategy for enlarging the subspace in the Quasi-Newton formulation
and analyze the spectral properties of the preconditioned matrix; the numerical performance of the
resulting preconditioner are shown in Section 5.

In the following, for any square matrix B, diag(B) is the diagonal matrix with the same diagonal
entries as B. For a SPD matrix B ∈ IRm×m, an eigenvalue is denoted either as λ(B) or as λi(B),
1 ≤ i ≤ m; the minimum and maximum eigenvalues are denoted as λmin(B) and λmax(B). The identity
matrix of dimension q is denoted as Iq. For indicating submatrices we borrow the MATLAB notation.
Preconditioned CG method is denoted as PCG.

2. A Limited Memory Partial Cholesky Preconditioner

The convergence behaviour of CG depends on the eigenvalue distribution of H and the condition
number of H determines the worst-case behaviour of CG [4,8,20,21]. Further characterizations,
possibly sharp, of the convergence behaviour can be gained from additional information on the
eigenvalues. More specifically, it is known that if A has t distinct eigenvalues, then the CG method will
converge in at most t iterations, while CG applied to a matrix with t tight eigenvalue clusters may not
behave similarly as though it were applied to a matrix with t distinct eigenvalues representing the
individual clusters ([21], [§5.6.5]).

A proposal for building a partial Cholesky factorization P of H was given by Gondzio in [14] and
Bellavia et al., in [13]. It aims at clustering the largest eigenvalues of H at one and reducing both the
value of λmax(P−1H) with respect to λmax(H) and the condition number of P−1H with respect to H.
The first step is based on the observation that the trace tr(H) of H is such that tr(H) = ∑m

i=1 λi(H)

and λmax(H) ≤ tr(H) since H is symmetric and positive definite. Then, it is possible to handle the
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largest eigenvalues of H by an heuristic technique where the largest k, k� m, diagonal elements of
H are identified and the rank-k partial Cholesky factorization of the corresponding columns of H is
performed. More specifically, suppose that H can be partitioned as

H =

[
H11 HT

21
H21 H22

]
,

where H11 ∈ Rk×k, H22 ∈ R(m−k)×(m−k) and H11 contains the k largest diagonal elements of H
(throughout the paper, the symmetric row and column permutations required to move the k largest
diagonal elements of H to the (1, 1) block are ignored to make the presentation simpler). To handle the

large eigenvalues of H, the Cholesky factorization limited to the first k columns

[
H11

H21

]
is computed.

We denote such factors as

[
L11

L21

]
∈ IRm×k, with L11 ∈ IRk×k unit lower triangular, L21 ∈ IR(m−k)×k,

and D1 ∈ IRk×k diagonal positive definite and observe that H can be factorized as

H = LDH LT def
=

[
L11

L21 Im−k

] [
D1

S

] [
LT

11 LT
21

Im−k

]
, (2)

being S the Schur complement of H11 in H

S = H22 − H21H−1
11 HT

21. (3)

Finally, the limited memory Partial Cholesky preconditioner P is obtained by approximating S
with its diagonal and setting

P = LDPLT def
=

[
L11

L21 Im−k

] [
D1

D2

] [
LT

11 LT
21

Im−k
,

]
D2 = diag(S). (4)

The construction of the preconditioner P is summarized in Algorithm 1 where we use the equalities

H11 = L11D1LT
11, (5)

HT
21 = L11D1LT

21 i.e., L21 = H21L−T
11 D−1

1 , (6)

derived from Equation (2).

Algorithm 1 Limited Memory Partial Cholesky Preconditioner.

Given the matrix-vector operators u→ Hu, k > 0.
1. Form the first k columns of H, i.e. H11, H21.
2. Compute the diagonal entries of H22.
3. Compute L11, D1, L21 as in Equations (5) and (6). Discard H11 and H21.
4. Set D2 = diag(H22)− diag(L21D1LT

21).
5. Let P take the form Equation (4).

This procedure is breakdown-free in exact arithmetic while Incomplete Cholesky factorizations
employing a drop tolerance to reduce fill-in may fail for a general SPD matrix. The maximum storage
requirement is known in advance and the upper bound on the number of nonzero entries in L is
m + k(m− k/2− 1/2).

Forming the preconditioner calls for the complete diagonal of H. If H has the special form
H = AΘAT , its main diagonal can be constructed by performing m matrix-vector products ri = ATei,
i = 1, . . . , m, and then computing (H)ii = rT

i Θri. The products ATei are cheap if A is sparse and
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involve no extra effort at all if A can be accessed row-wise and then retrieving the ith row comes at no
extra cost. Moreover, the k products AΘATei in Step 1 are expected to be cheaper than the products
AΘATv required by a CG-like method because the unit vectors ei are typically sparser than v.

The cost to perform the factorization Equation (5) is negligible because matrix H11 has small
dimension k, while, using the first equation in Equation (6), the computation of L21 in Step 4 requires
solving m− k triangular linear systems of dimension k. Finally, in Step 4 computing diag(L21D1LT

21)

amounts to scaling the rows of LT
21 by the entries of D1 and performing m− k scalar products between

vectors of dimension k.
The spectral properties of P−1H are analyzed in [13] and reported below for completeness.

Theorem 1. Let k be a positive integer and P be as in Equation (4). Then, k eigenvalues of P−1H are equal to 1
and the remaining are equal to the eigenvalues of D−1

2 S. Moreover, any eigenvalue λ(D−1
2 S) lies in the interval[

λmin(S)
λmax(D2)

, λmax(S)
λmin(D2)

]
⊆
[

λmin(H)
λmax(D2)

, λmax(H22)
λmin(D2)

]
.

Proof of Theorem 1. Theorem 2.1 in [13] proves that k eigenvalues of P−1H are equal to 1 and the
remaining are equal to the eigenvalues of D−1

2 S. As for the bounds on the eigenvalues λ(D−1
2 S),

let v ∈ Rm−k be an eigenvector of D−1
2 S. Then, by D−1

2 Sv = λv we get λ(D−1
2 S) =

vTSv
vT D2v

and

λ(D−1
2 S) ≥ λmin(S)

λmax(D2)
≥ λmin(H)

λmax(D2)
, (7)

λ(D−1
2 S) ≤ λmax(S)

λmin(D2)
≤ λmax(H22)

λmin(D2)
, (8)

where we used the bounds λmin(H) ≤ λ(S) ≤ λmax(H22), see [6].

We point out that the above preconditioner was used in [13] in conjunction with Deflated-CG [22]
in order to handle also the smallest eigenvalues of P−1H.

We conclude this section observing that the Partial Cholesky preconditioner can be formulated as
an Approximate Inverse preconditioner. In fact, from (4) matrix P−1 can be factorized as the product
of sparse matrices and takes the form

P−1 = L−T D−1
P L−1 =

[
L−T

11 −L−T
11 LT

21
Im−k

] [
D−1

1
D−1

2

] [
L−1

11
−L21L−1

11 Im−k

]
. (9)

3. Limited Memory Quasi-Newton Type Preconditioners

Limited memory Quasi-Newton type preconditioners for SPD matrices were proposed in several
works, see e.g., [10,17–19]. These preconditioners are generated using a small number k of linear
independent vectors in IRm.

Let us consider the formulation by Gratton et al. in [19]. Suppose that a first preconditioner M
(called first-level preconditioner) is available. To improve the efficiency of the first-level preconditioner,
a class of limited memory preconditioners (called second-level preconditioners) is defined on the
base of the explicit knowledge of an m by k, k � m, full rank matrix Z. The aim of the second-level
preconditioner is to capture directions lying in the range of HZ which have been left out by the
first-level preconditioner and are slowing down the convergence of the CG solver; e.g., this is the case
when the first-level preconditioner is able to cluster many eigenvalues at 1 with relatively few outliers.

Let M ∈ IRm×m be symmetric and positive definite, Z ∈ IRm×k, k � m, be a full column-rank
matrix. The symmetric second-level preconditioner, say Π, takes the form

Π = (I − TH)M(I − HT) + T, T = Z(ZT HZ)−1ZT . (10)
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The spectral properties of ΠH established in ([19], [Lemma 3.3, Theorem 3.4]) are summarized below.

Theorem 2. Let H and M be symmetric and positive definite matrices of order m, Z ∈ IRm×k, be a full
column-rank matrix and Π be given by Equation (10). Then the matrix Π is positive definite.

Let the positive eigenvalues λ1(MH), . . . λm(MH) of MH be sorted in nondecreasing order. Then the set
of eigenvalues λ1(ΠH), . . . λm(ΠH) of ΠH can be split in two subsets:

λi(MH) ≤ λi(ΠH) ≤ λi+k(MH) for i = 1, . . . , m− k, (11)

and
λi(ΠH) = 1 for i = m− k + 1, . . . , m.

Equation (10) provides a general formulation for designing second-level preconditioners and
was inspired by the BFGS inverse Hessian approximation in Quasi-Newton algorithms [9]. In fact,
if the BFGS method with exact linesearch is applied to a quadratic function, then the inverse Hessian
approximation generated has the form of Π in Equation (10); we refer to ([19], [§2]) for details on this
interpretation. In the general setting, any set of linearly independent vectors can provide candidates for
the columns of Z and gives rise to a preconditioner of form Equation (10); k eigenvalues of ΠH equal to
1 are obtained while the remaining eigenvalues satisfy the relevant interlacing property Equation (11).
On the other hand, specific choices for Z guided by information on the problem at hand are preferable.

The preconditioner Π has been specialized to the case of: spectral-LMP where the columns of Z
consist of eigenvectors of MH, Ritz-LMP where the columns of Z consist of Ritz vectors generated by
the iterative linear solver, Quasi-Newton-LMP where the columns of Z consist of descent directions
from optimization methods applied to continuous optimization problems, see e.g., [10,16–19]. All these
vectors are often available when systems with multiple right-hand sides of slowly varying sequence of
systems are considered.

In this work, we propose and analyze preconditioners of the form Equation (10) where the
first-level preconditioner is the diagonal matrix D−1

P given in Equation (4) and Z is chosen as a suitable
submatrix of the identity matrix Im, i.e., HZ consists of k properly chosen columns of H. Due to the
fact that Z consists of coordinate vectors in IRm we denote the resulting limited memory preconditioner
as Coordinate-LMP. We start analyzing the case where

M = D−1
P , and Z = Im(:, 1 : k). (12)

Forming the preconditioner Π with Equation (12) requires the steps listed in Algorithm 2.

Algorithm 2 Coordinate Limited Memory Preconditioner.
Given the matrix-vector operators u→ Hu, k > 0.

1. Form the first k columns of H, i.e. H11, H21.
2. Compute the diagonal entries of H22.
3. Compute L11, D1 as in Equation (5).
4. Set D2 = diag(H22)− diag(H21H−1

11 HT
21), DP as in Equation (4).

5. Set M and Z as in Equation (12).
6. Let Π take the form Equation (10).

In this specific variant, Π coincides with the inverse of the Partial Cholesky preconditioner P.
We show this fact in the following theorem.
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Theorem 3. Let k be a positive integer and P be as in Equation (4). If matrix Π has the form Equation (10)
with M and Z as in Equation (12), then Π = P−1. Moreover,

P−1H = ΠH =

[
I H−1

11 HT
21(I − D−1

2 S)
0 D−1

2 S

]
. (13)

Proof of Theorem 3. By Equation (9) it follows

P−1 =

[
L−T

11 D−1
1 L−1

11 + L−T
11 LT

21D−1
2 L21L−1

11 −L−T
11 LT

21D−1
2

−D−1
2 L21L−1

11 D−1
2

]
.

Using Equations (5) and (6) we obtain L21L−1
11 = H21L−T

11 D−1
1 L−1

11 = H21H−1
11 and we conclude

P−1 =

[
H−1

11 + H−1
11 HT

21D−1
2 H21H−1

11 −H−1
11 HT

21D−1
2

−D−1
2 H21H−1

11 D−1
2

]
.

Now consider Π and first observe that the matrices appearing in Equation (10) have the form:

HZ =

[
H11

H21

]
, ZT HZ = H11, T =

[
H−1

11
0

]
, (14)

(I − TH) =

[
0 −H−1

11 HT
21

0 Im−k

]
, (I − HT) =

[
0 0

−H21H−1
11 Im−k

]
. (15)

Then,

Π =

[
0 −H−1

11 HT
21

Im−k

] [
D−1

1
D−1

2

] [
0

−H21H−1
11 Im−k

]
+

[
H−1

11
0

]

=

[
H−1

11 + H−1
11 HT

21D−1
2 H21H−1

11 −H−1
11 HT

21D−1
2

−D−1
2 H21H−1

11 D−1
2

]
,

i.e., P−1 = Π. Finally, it is trivial to verify that P−1H takes the upper block triangular form Equation (13)
which also provides the spectrum of P−1H stated in Theorem 1.

3.1. Application of the Preconditioners

In the previous section, we have shown that P−1 and Π can reduce to the same preconditioner.
Clearly, their application as a preconditioner calls for matrix-vector products and this computational
cost may depend on the formulation used i.e., either Equation (9) or Equations (10) and (12). Let us
analyze the cost for performing matrix-vector products of both P−1 and Π times a vector. As stated
in Section 2, the symmetric row and column permutations required to move the k largest diagonal
elements of H to the (1, 1) block are ignored to make the presentation simpler.

If the triangular factors in Equation (9) have been formed, the application of the Partial Cholesky
preconditioner P−1 to a vector amounts to: two products of L−1

11 by a vector IRk, one matrix-vector
product with D−1

P , m − k scalar products in IRk, k scalar products in IRm−k. It is worthy pointing
out that the partial Cholesky factorization may be dense. In fact, for sparse Cholesky factorizations,
permutation matrices are normally chosen to enhance the sparsity of the triangular factor, see e.g., [4],
while here we choose the k columns in advance from the largest diagonals of H.
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The application of the Coordinate limited memory preconditioner Π to a vector also calls for
matrix-vector and scalar products. The computation of a product, say Πv, can be implemented
efficiently using Equations (10) and (14) and performing the following steps

a = H−1
11 (ZTv),

b = D−1
P

(
v−

[
H11

H21

]
a

)
,

Πv = b− Z
(

H−1
11

[
H11 HT

21

]
b
)
+ Za.

These steps call for two products of H−1
11 by a vector in IRk, one matrix-vector product with D−1

P ,
m scalar products in IRk, k scalar products in IRm. The cost for the product of Z by a vector is negligible
due to the form of Z.

The computational cost for applying both P−1 and Π to a vector is expected to be comparable if
the scalar products performed have similar computational effort; this is the case when the density of
the first k columns of L−1 is similar to the density of the first k columns of H. On the other hand, if the
density of the first k columns of L−1 is considerably larger than the density of the first k columns of
H, the application of P−1 is less convenient than the application of Π. This issue is shown in Table 1
where we report on the numerical solution of four linear systems with matrices of the form H = AAT

and matrix A from the LPnetlib group in the University of Florida Sparse Matrix Collection [23].
Preconditioned Conjugate Gradient [4] is applied with both the Partial Cholesky preconditioner and
the Coordinate-LMP , setting k = 50. We display the dimension m, n of A, the number of PCG
iterations (Itns), the execution time in seconds (Time), the density of first k columns of L−1 (densL,k),
the density of the first k columns of H (densH,k); the density is computed as the ratio between the
number of nonzero entries and the overall number of entries of the mentioned submatrices.

Table 1. Solution of systems with H = AAT , A ∈ IRm×n, using Partial Cholesky preconditioner and
Coordinate-LMP with k = 50. Number of PCG iterations (Itns), execution time in seconds (Time),
density of first k columns of L−1 (densL,k), density of the first k columns of H (densH,k).

P−1 Π

Test name m n Itns Time densL,k Itns Time densH,k

lp_dfl001 6071 12,230 736 3.87 6.0 × 10−1 736 1.65 2.8 × 10−2

lpi_ceria3d 3576 4400 79 0.42 8.4 × 10−1 80 0.27 3.9 × 10−1

lp_ken_13 28,632 42,659 186 1.82 1.1 × 10−2 186 1.70 1.1 × 10−2

lp_osa_60 10,280 243,246 35 2.92 9.5 × 10−1 39 3.09 8.0 × 10−1

We observe that densL,k is larger than densH,k in the first two tests and runs with P−1 are slower
than with Π, while the two densities are similar in the last two runs as well as the timings obtained
using P−1 and Π.

4. Enlarging the Subspace in the Coordinate-LMP Preconditioner

The Partial Cholesky preconditioner P and the Coordinate-LMP Π with first level preconditioner
and subspace as in Equation (12) aim at clustering the largest eigenvalues of H. In this section we
investigate how to enlarge the subspace Z by means of information available from Algorithm 2 and
the potential impact on the resulting preconditioner.

We consider the Coordinate-LMP Equation (10), suppose to use again M = D−1
P as first level

preconditioner, and to select a larger number of columns of Im for the subspace defined by Z. We let

M = D−1
P , Z = Im(:, 1 : q), q = k + `, (16)
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with ` being a positive integer, i.e., besides the first k columns of Im used in Equation (12) we employ `

more columns (for simplicity suppose the first ` subsequent columns). The effect of this choice can
be analyzed by considering the block partition of H where the leading block H̃11 has dimension q by
q, i.e.,

H =

[
H̃11 H̃T

21
H̃21 H̃22

]
, (17)

with H̃11 ∈ Rq×q, H̃22 ∈ R(m−q)×(m−q). Analogously, let us consider the block partition of DP in
Equation (4) where the leading block D̃P,1 has dimension q by q, i.e.,

DP =

[
D̃P,1

D̃P,2

]
def
=

[
DP(1 : q, 1 : q)

D̃P(q + 1 : m, q + 1 : m)

]
, (18)

with D̃P,1 ∈ Rq×q, D̃P,2 ∈ Rm−q×m−q.
The spectral properties of the resulting Coordinate-LMP preconditioner are given in the

following theorem.

Theorem 4. Let q be a positive integer, H and DP be symmetric positive definite matrices partitioned as in
Equations (17) and (18). If matrix Π has the form Equation (10) with M and Z as in Equation (16), then ΠH
has q eigenvalues equal to 1 and the remaining are equal to the eigenvalues of D̃−1

P,2S̃ where

S̃ = H̃22 − H̃21H̃−1
11 H̃T

21. (19)

Moreover any eigenvalue λ(D̃−1
P,2S̃) lies in the interval

[
λmin(S̃)

λmax(D̃P,2)
, λmax(S̃)

λmin(D̃P,2)

]
⊆[

λmin(H)

λmax(D̃P,2)
, λmax(H̃22)

λmin(D̃P,2)

]
.

Proof of Theorem 4. Similarly to the proof of Theorem 3 we have

HZ =

[
H̃11

H̃21

]
, ZT HZ = H̃11, T =

[
H̃−1

11
0

]
, (20)

(I − TH) =

[
0 −H̃−1

11 H̃T
21

0 Im−q

]
, (I − HT) =

[
0 0

−H̃21H̃−1
11 Im−q

]
. (21)

Then, by Equation (10) we get

Π =

[
0 −H̃−1

11 H̃T
21

Im−q

] [
D̃−1

P,1
D̃−1

P,2

] [
0

−H̃21H̃−1
11 Im−q

]
+

[
H̃−1

11
0

]

=

[
H̃−1

11 + H̃−1
11 H̃T

21D̃−1
P,2H̃21H̃−1

11 −H̃−1
11 H̃T

21D̃−1
P,2

−D̃−1
P,2H̃21H̃−1

11 D̃−1
P,2

]
,

and consequently

ΠH =

[
Iq (H̃11)

−1H̃T
21(I − D̃−1

P,2S̃)
0 D̃−1

P,2S̃

]
.
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Bounds on the eigenvalues λ(D̃−1
P,2S̃) can be derived by fixing an eigenvector v ∈ Rm−k of D̃−1

P,2S̃.

Then, by D̃−1
P,2S̃v = λv we get λ(D̃−1

P,2S̃) =
vT S̃v

vT D̃P,2v
. Thus, similarly to the proof of Theorem 1 it follows

λ(D̃−1
P,2S̃) ≥ λmin(S̃)

λmax(D̃P,2)
≥ λmin(H)

λmax(D̃P,2)
, (22)

λ(D̃−1
P,2S̃) ≤ λmax(S̃)

λmin(D̃P,2)
≤ λmax(H̃22)

λmin(D̃P,2)
, (23)

since λmin(S̃) ≥ λmin(H) and λmax(S̃) ≤ λmax(H̃22) [6].

Remark 1. Let I1 =
[

λmin(H)
λmax(D2)

, λmax(H22)
λmin(D2)

]
be the interval in the statement of Theorem 1 and I2 =[

λmin(H)

λmax(D̃P,2)
, λmax(H̃22)

λmin(D̃P,2)

]
be the interval in the statement of Theorem 4. It holds λmax(H̃22) ≤ λmax(H22)

by the Cauchy Interlace Theorem [24] [p. 396]. Moreover, for any choice of D̃P,2 trivially it holds

λmin(D̃P,2) ≥ λmin(D2), λmax(D̃P,2) ≤ λmax(D2).

Then, I2 ⊆ I1.

A comparison between bounds Equations (7) and (8) and Equations (22) and (23) suggests that the
choice of the extremal diagonal elements of S can be beneficial for improving, at a low computational
cost, the clustering of the eigenvalues. In fact, choosing the extremal diagonal elements of S promotes
a reduction of the width of the interval containing the eigenvalues of ΠH and this issue can favorably
affect the performance of the iterative solver and the condition number of ΠH.

Accordingly to Remark 1, let I1 and I2 be the intervals containing the eigenvalues of ΠH with
Π generated by Equation (12) and by Equation (16) respectively. If the ` largest diagonal entries of
diag(S) are contained in matrix D̃P,1 in Equation (18) and are separated from the remaining, then we
obtain an increase of the lower bound of I2 with respect to lower bound of I1; clearly, the better the
` largest diagonal entries of S are separated from the remaining elements of diag(S) the larger such
increase is. Handling small eigenvalues of ΠH seems to be convenient when enlarging the subspace
Z for Π as the Partial Cholesky factorization is intended to take care of the largest eigenvalues of H.
Alternatively, if the ` smallest diagonal entries of S are contained in matrix D̃P,1 in Equation (18) and
are separated from the remaining, the upper bound of I2 is expected to be smaller than the upper
bound of I1.

As mentioned in Section 2, in [13] the partial Cholesky preconditioner was used in conjunction
with Deflated-CG [22] in order to handle the small eigenvalues of P−1H. A rough approximation
of the five smallest eigenvalues of P−1H was injected into the Krylov subspace and yielded
an improvement in some tests where Deflated-CG performed consistently fewer iterations than
the usual CG. Although the deflation strategy brought undeniable benefits in terms of reducing the
number of CG iterations, it involved an extra storage requirement and an extra cost which ultimately
increased the overall solution time. In fact, the application of such a strategy was convenient when
the eigenvalue information was used for a sequence of related linear systems, such as slowly varying
systems or systems with multiple right-hand-side vectors. The strategy, presented in this section and
based on selecting a prefixed number of the largest diagonal entries of S, can be viewed as a cheap
alternative procedure for handling the smallest eigenvalues of P−1H.

5. Numerical Results

In this section we present a preliminary numerical validation of the performance of the
Coordinate-LMP discussed in Sections 3 and 4. All numerical experiments reported were performed
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on a Dell Latitude E4200 with a Intel(R) Cote(TM)2 Duo CPU U9600, @1.60 GHz, RAM 3.00 GB,
using MATLAB and machine precision 2.2× 10−16.

We report results on a set of 18 linear systems where the coefficient matrix has the form H = AΘAT

and the right-hand side is chosen as a normally distributed vector. In Table 2 we list the name of
matrices A ∈ IRm×n used along with their dimensions and the density of both A and H computed as
the ratio between the number of nonzero entries and the number of rows.

Table 2. Test problems with H = AΘAT : source and name of A ∈ IRm×n, dimension of A, density of A
( dens(A)) and density of H (dens(H)).

Group/Test Name m n dens(A) dens(H)

LPnetlib/lp_bnl2 2424 4486 6.5 12.6
LPnetlib/lp_d2q06c 2171 5831 15.2 25.9
LPnetlib/lp_dfl001# 6071 12,230 5.9 13.5
LPnetlib/lp_degen3# 1503 2604 16.9 67.7
LPnetlib/lp_ganges 1309 1706 5.3 12.7
LPnetlib/lp_ken_13 28,632 42,659 3.4 5.7
LPnetlib/lp_ken_18 105,127 154,699 3.4 5.8
LPnetlib/lp_osa_30 4350 104,374 139.0 100.4
LPnetlib/lp_osa_60 10,280 243,246 137.0 98.9
LPnetlib/lp_pds_10# 16,558 49,932 6.5 9.0
LPnetlib/lp_pilot 1441 4680 30.8 86.3
LPnetlib/lp_pilot87 2030 6680 36.9 117.5
LPnetlib/ lp_sierra# 1227 2735 6.5 4.7
Meszaros/cq9 9278 21,534 10.4 23.9
Meszaros/nl 7039 15,325 6.7 14.9
M5_3000_maxcut 3000 9,000,000 1 3000
M2_K4_5000_maxcut 5000 25,000,000 1 5000
M3_K4_5000_maxcut 5000 25,000,000 1 5000

The first 15 matrices A are taken from the groups LPnetlib and Meszaros in the University of
Florida Sparse Matrix Collection [23] and are constraint matrices of linear programming problems;
in the associated linear systems we set Θ = In. The symbol “#” indicates when matrix A was
regularized by a shift 10−2 in order to get a numerically nonsingular matrix H. We observe that both
A and H are sparse and H can be preconditioned by either Incomplete Cholesky factorizations or by
our preconditioner. The last three systems were generated by the dual logarithmic barrier method [3]
applied to semidefinite programming relaxations of maximum cut problems. In these problems each
row of A is the unrolled representation of a rank-one m×m matrix and has one nonzero entry while Θ
is a full matrix of dimension m2×m2 defined as the Kronecker product of matrices of dimension m×m;
consequently H is full. Iterative methods are an option for solving these systems when H cannot be
allocated due to memory limitations [3]. Incomplete Cholesky factorizations are not applicable while
our preconditioner is viable.

The linear systems have been solved by Preconditioned Conjugate Gradient (PCG) method
starting from the null initial guess and using the stopping criterion:

‖Hx− b‖ ≤ 10−6‖b‖. (24)

A failure is declared after 1000 iterations. The preconditioner Π was applied as described in
Section 3.1.

The preconditioners used in our tests are: the Incomplete Cholesky factorization with zero-fill
(IC(0)) computed by the built-in MATLAB function ichol, the Coordinate-LMP Equation (12) with
k = 50, and the Coordinate-LMP Equation (16) with (k, `) = (50, 25). Concerning the preconditioner
with enlarged subspace Equation (16), we consider the two strategies for enlarging Z discussed at
the end of Section 4. The first strategy consists in selecting the columns of Im associated to the `
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largest diagonal entries of D2 = diag(S) and in the following is denoted as D2_LARGE. The second
strategy consists in selecting the columns of Im associated to the ` smallest diagonal entries of D2

and is denoted as D2_SMALL. In the following tables, the symbol “*” indicates a failure of CG solver
while the symbol “†” indicates a failure in computing the Incomplete Cholesky factorization due to
encountering a nonpositive pivot. The timing in seconds “Time” includes the construction of the
preconditioner and the total execution time for PCG.

Our focus is on the reliability of the preconditioners tested and the computational gain provided.
Regarding the latter issue, clearly it depends on both the number of PCG iterations and the cost of
PCG per iteration.

Table 3 displays the results obtained solving the linear systems with: unpreconditioned CG,
CG coupled with IC(0), CG coupled with the Coordinate-LMP Equation (12), CG coupled with the
Coordinate-LMP Equation (16) and implemented using the D2_LARGE strategy. We report the number
of PCG iterations (Itns) and the timing (Time). We observe that IC(0) factorization cannot be applied
to the linear systems deriving from maximum cut problems since the resulting matrices H are full,
see Table 2.

We start observing that CG preconditioned by the Coordinate-LMP preconditioners Equation (16)
and the D2_LARGE strategy solved all the systems, whereas a breakdown of IC(0) occurred five
times out of fifteen as a nonpositive pivot was encountered. In eight systems out of ten, PCG with
IC(0) required several iterations considerably smaller than the number of iterations performed with
the limited memory preconditioners; correspondingly the execution time was favorable to IC(0)
preconditioner. On the other hand, IC(0) preconditioner was less effective than the limited memory
preconditioner on problems lp_osa_30 and lp_osa_60; this occurrence is motivated by several linear
iterations comparable to that of limited preconditioners and the density of the Cholesky factor, cf.
Table 2. Finally, we point out that breakdowns of IC(0) can be recovered using Incomplete Cholesky
factorization with very small threshold dropping and, consequently, high fill-in in the Incomplete
Cholesky factor and computational overhead.

Comparing the limited memory preconditioners in terms of CG iterations, we observe that
enlarging the subspace provides a reduction in such a number. The gain in CG iterations using the
enlarged subspace is very limited for Problems lp_ganges, lp_dfl001 and lp_pds_10, while it varies
between 3% and 52% for the remaining problems. Savings in time depend on both the reduction in
the number of CG iterations performed and the cost of matrix-vector products. Namely, when the
application of H is cheap, savings in PCG iterations between 11% and 31% do not yield a significant
gain in time, see lp_degen3, lp_ken_13, lp_pilot; on the other hand when matrix-vector products
are expensive, saving in time can occur even in the presence of a mild reduction in the number of
CG iterations, see lp_pds_10, M2_K4_5000_maxcut, M3_K4_5000_maxcut. Interestingly the cost for
forming and applying the preconditioners does not offset the convergence gain in PCG; this feature is
evident from the value Time in runs where the reduction in PCG iterations is small, see lp_ganges and
M5_3000_maxcut. In fact, we can expect that for matrices having the same eigenvalue distribution as
our test matrices, and a substantial number of nonzero elements, significant reductions in computing
time can be achieved with the Quasi-Newton preconditioner and enlarged subspace.

The effect of enlarging the subspace in the Coordinate-LMP preconditioner is further analyzed in
Table 4 where we report the minimum λmin and maximum λmax eigenvalues of the original matrix H
and of the preconditioned matrices ΠH in four problems. We observe that the maximum eigenvalue
of the preconditioned matrix is consistently smaller than the eigenvalue of H and this shows the
effectiveness of handling the largest eigenvalues by using the trace of H. On the other hand, the smallest
eigenvalue of the matrix preconditioned by the Partial Cholesky factorization (Π with k = 50) is moved
towards the origin. As shown in the table, an increase in the value of the smallest eigenvalue can
be obtained with the D2_LARGE implementation for Π while the effect on the largest eigenvalue is
marginal, as expected.
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Table 3. Solution of systems with H = AΘAT : unpreconditioned CG, CG coupled with IC(0),
CG coupled with Coordinate-LMP Equation (12) k = 50, CG coupled with Coordinate-LMP
Equation (16) (k, `) = (50, 25) and D2_LARGE implementation. Number of PCG iterations (Itns),
execution time in seconds (Time) for building the preconditioner and for PCG.

CG PCG with IC(0) PCG with Π PCG with Π (k, `) = (50, 25)
k = 50 D2_LARGE Implementation

Test Name Itns Time Itns Time Itns Time Itns Time

lp_bnl2 * 51 0.1 353 0.4 295 0.3
lp_d2q06c * † * 844 1.2
lp_dfl001 * 320 0.7 736 1.7 720 1.7
lp_degen3 * 284 0.4 599 0.7 530 0.7
lp_ganges 215 0.1 35 0.1 126 0.1 124 0.1
lp_ken_13 510 3.3 87 0.7 186 1.6 165 1.6
lp_ken_18 * 167 10.5 499 20.7 485 20.2
lp_osa_30 126 3.4 47 2.4 38 1.5 18 0.9
lp_osa_60 127 7.7 26 7.4 39 3.6 26 2.8
lp_pds_10 * 431 5.2 897 8.1 892 7.6
lp_pilot * † 369 0.6 252 0.4
lp_pilot87 * † 559 1.7 505 1.6
lp_sierra * 241 0.1 * 590 0.3
cq9 * † 554 2.9 472 2.5
nl * † 944 2.6 621 1.7
M5_3000_maxcut 60 2.5 55 2.5 51 2.4
M2_K4_5000_maxcut 497 52.2 427 46.6 413 44.9
M3_K4_5000_maxcut 641 65.8 585 62.5 542 58.5

Table 4. Minimum eigenvalue λmin and maximum eigenvalue λmax of: matrix H, matrix ΠH with
Coordinate-LMP Equation (12) k = 50, matrix ΠH with Coordinate-LMP Equation (16) (k, `) = (50, 25).

H ΠH with k = 50 ΠH with (k, `) = (50, 25)
D2_LARGE Implementation

Test Name λmin λmax λmin λmax λmin λmax

lp_d2q06c 6.3 × 10−4 1.2 × 106 3.3 × 10−5 6.4 × 100 4.8 × 10−5 5.7 × 100

lp_osa_30 1.0 × 100 1.8 × 106 2.4 × 10−5 2.8 × 100 5.9 × 10−4 2.2 × 100

lp_pilot 1.0 × 10−2 1.0 × 106 2.5 × 10−4 1.2 × 101 1.4 × 10−3 1.2 × 101

nl 7.0 × 10−3 8.2 × 104 1.6 × 10−4 7.3 × 100 5.7 × 10−4 6.7 × 100

We conclude our presentation reporting the performance of the D2_SMALL implementation in
Table 5; the number of PCG iterations is displayed and part of the results in Table 3 are repeated
for clarity. We recall that the number of unit eigenvalues is q = k + ` for both the D2_LARGE

and D2_SMALL implementations, but the former strategy is more effective than the latter. In fact,
the behaviour of the Partial Cholesky factorization and of the D2_SMALL implementation of the
Coordinate-LMP preconditioner are similar in terms of PCG iterations, apart for problems lp_ganges,
lp_sierra, cq9 where the latter approach is convenient. This confirms that the largest eigenvalues
are handled by the Partial Cholesky factorization and a further reduction of the upper bound on the
eigenvalues is not useful.
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Table 5. Solution of systems with H = AΘAT , A ∈ IRm×n: CG coupled with Coordinate-LMP
Equation (12) k = 50, CG coupled with Coordinate-LMP Equation (16) (k, `) = (50, 25) and D2_LARGE

implementation, CG coupled with Coordinate-LMP Equation (16) (k, `) = (50, 25) and D2_SMALL

implementation. Number of PCG iterations (Itns).

PCG with Π k = 50 PCG with Π (k, `) = (50, 25) PCG with Π (k, `) = (50, 25)
D2_LARGE Implementation D2_SMALL Implementation

Test Name Itns Itns Itns

lp_bnl2 353 295 353
lp_d2q06c * 844 *
lp_dfl001 736 720 733
lp_degen3 599 530 595
lp_ganges 126 124 78
lp_ken_13 186 165 186
lp_ken_18 499 485 520
lp_osa_30 38 18 37
lp_osa_60 39 26 39
lp_pds_10 897 892 900
lp_pilot 369 252 361
lp_pilot87 559 505 565
lp_sierra * 590 706
cq9 554 472 528
nl 944 621 946
M5_3000_maxcut 55 51 56
M2_K4_5000_maxcut 427 413 428
M3_K4_5000_maxcut 585 542 596

Summarizing, the results presented in this section seem to indicate that: enlarging the subspace
with columns associated to the largest diagonal entries of the Schur complement S in Equation (3)
reduces the number of PCG iterations; the cost for forming and applying the preconditioner with
enlarged subspace does not offset the gain from reducing PCG iterations; saving in times are obtained
accordingly to the cost of matrix-vector products in PCG. Moreover, the Quasi-Newton preconditioner
proposed is suitable for application to dense matrices H of the form H = AΘAT , A sparse,
where computing the Incomplete Cholesky factor is too expensive in terms of computational cost
and/or storage requirement.
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