Next Article in Journal
What Do You Mean by “Nonlinear Eigenvalue Problems”?
Next Article in Special Issue
Some Exact Solutions to Non-Fourier Heat Equations with Substantial Derivative
Previous Article in Journal
Introduction to Special Issue: New Trends in Fuzzy Set Theory and Related Items
Previous Article in Special Issue
Pre-Metric Spaces Along with Different Types of Triangle Inequalities

Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

# Some Summation Theorems for Generalized Hypergeometric Functions

1
Department of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
2
Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, 11369 Tehran, Iran
*
Author to whom correspondence should be addressed.
Axioms 2018, 7(2), 38; https://doi.org/10.3390/axioms7020038
Received: 2 May 2018 / Revised: 4 June 2018 / Accepted: 6 June 2018 / Published: 8 June 2018

## Abstract

:
Essentially, whenever a generalized hypergeometric series can be summed in terms of gamma functions, the result will be important as only a few such summation theorems are available in the literature. In this paper, we apply two identities of generalized hypergeometric series in order to extend some classical summation theorems of hypergeometric functions such as Gauss, Kummer, Dixon, Watson, Whipple, Pfaff–Saalschütz and Dougall formulas and also obtain some new summation theorems in the sequel.
MSC:
33C20; 33C05; 65B10

## 1. Introduction

Let $R$ and $C$ denote the sets of real and complex numbers and z be a complex variable. For real or complex parameters a and b, the generalized binomial coefficient:
$a b = Γ ( a + 1 ) Γ ( b + 1 ) Γ ( a − b + 1 ) = a a − b ( a , b ∈ C ) ,$
in which:
$Γ ( z ) = ∫ 0 ∞ x z − 1 e − x d x ,$
denotes the well-known gamma function for $R e ( z ) > 0$, can be reduced to the particular case:
$a n = ( − 1 ) n ( − a ) n n ! ,$
where $( a ) b$ denotes the Pochhammer symbol  given by:
$( a ) b = Γ ( a + b ) Γ ( a ) = 1 ( b = 0 , a ∈ C \ { 0 } ) , a ( a + 1 ) … ( a + n − 1 ) ( b ∈ N , a ∈ C ) .$
Based on Pochhammer’s symbol (1), the generalized hypergeometric functions :
$p F q a 1 , … , a p b 1 , … , b q z = ∑ k = 0 ∞ ( a 1 ) k … ( a p ) k ( b 1 ) k … ( b q ) k z k k ! ,$
are indeed a Taylor series expansion for a function, say f, as $∑ k = 0 ∞ c k * z k$ with $c k * = f ( k ) ( 0 ) / k !$, for which the ratio of successive terms can be written as:
$c k + 1 * c k * = ( k + a 1 ) ( k + a 2 ) … ( k + a p ) ( k + b 1 ) ( k + b 2 ) … ( k + b q ) ( k + 1 ) .$
According to the ratio test [3,4], the series (2) is convergent for any $p ≤ q + 1$. In fact, it converges in $| z | < 1$ for $p = q + 1$, converges everywhere for $p < q + 1$ and converges nowhere $( z ≠ 0 )$ for $p > q + 1$. Moreover, for $p = q + 1$, it absolutely converges for $| z | = 1$ if the condition:
$A * = Re ∑ j = 1 q b j − ∑ j = 1 q + 1 a j > 0 ,$
holds and is conditionally convergent for $| z | = 1$ and $z ≠ 1$ if $− 1 < A * ≤ 0$ and is finally divergent for $| z | = 1$ and $z ≠ 1$ if $A * ≤ − 1$.
There are two important cases of the series (2) arising in many physics problems [5,6]. The first case (convergent in $| z | ≤ 1$) is the Gauss hypergeometric function:
$y = 2 F 1 a , b c z = ∑ k = 0 ∞ ( a ) k ( b ) k ( c ) k z k k ! ,$
with the integral representation:
$2 F 1 a , b c z = Γ ( c ) Γ ( b ) Γ ( c − b ) ∫ 0 1 t b − 1 ( 1 − t ) c − b − 1 ( 1 − t z ) − a d t , ( Re c > Re b > 0 ; arg ( 1 − z ) < π ) .$
Replacing $z = 1$ in (3) directly leads to the well-known Gauss identity :
$2 F 1 a , b c 1 = Γ ( c ) Γ ( c − a − b ) Γ ( c − a ) Γ ( c − b ) Re ( c − a − b ) > 0 .$
The second case, which converges everywhere, is the Kummer confluent hypergeometric function:
$y = 1 F 1 b c z = ∑ k = 0 ∞ ( b ) k ( c ) k z k k ! ,$
with the integral representation:
$1 F 1 b c z = Γ ( c ) Γ ( b ) Γ ( c − b ) ∫ 0 1 t b − 1 ( 1 − t ) c − b − 1 e z t d t , ( Re c > Re b > 0 ; arg ( 1 − z ) < π ) .$
Essentially, whenever a generalized hypergeometric series can be summed in terms of gamma functions, the result will be important as only a few such summation theorems are available in the literature; see, e.g., [7,8,9,10,11,12,13]. In this sense, the classical summation theorems such as Kummer and Gauss for $2 F 1$, Dixon, Watson, Whipple and Pfaff–Saalschütz for $3 F 2$, Whipple for $4 F 3$, Dougall for $5 F 4$ and Dougall for $7 F 6$ are well known [1,14]. In this paper, we apply two identities of generalized hypergeometric functions in order to obtain some new summation theorems and extend the above-mentioned classical theorems. For this purpose, we should first recall the classical theorems as follows.
*
Kummer’s theorem (, p. 108):
$2 F 1 a , b 1 + a − b − 1 = Γ ( 1 + a − b ) Γ ( 1 + ( a / 2 ) ) Γ ( 1 − b + ( a / 2 ) ) Γ ( 1 + a ) .$
*
Second Gauss theorem (, p. 108):
$2 F 1 a , b ( a + b + 1 ) / 2 1 2 = π Γ ( ( a + b + 1 ) / 2 ) Γ ( ( a + 1 ) / 2 ) Γ ( ( b + 1 ) / 2 ) .$
*
Bailey’s theorem (, p. 108):
$2 F 1 a , 1 − a b 1 2 = Γ ( b / 2 ) Γ ( ( b + 1 ) / 2 ) Γ ( ( a + b ) / 2 ) Γ ( ( b − a + 1 ) / 2 ) .$
*
Dixon’s theorem (, p. 108):
$3 F 2 a , b , c 1 + a − b , 1 + a − c 1 = Γ ( 1 + a / 2 ) Γ ( 1 + a − b ) Γ ( 1 + a − c ) Γ ( 1 − b − c + a / 2 ) Γ ( 1 + a ) Γ ( 1 − b + a / 2 ) Γ ( 1 − c + a / 2 ) Γ ( 1 + a − b − c ) .$
*
Watson’s theorem (, p. 108):
$3 F 2 a , b , c ( a + b + 1 ) / 2 , 2 c 1 = π Γ ( 1 + c / 2 ) Γ ( ( a + b + 1 ) / 2 ) Γ ( c − ( a + b − 1 ) / 2 ) Γ ( ( a + 1 ) / 2 ) Γ ( ( b + 1 ) / 2 ) Γ ( c − ( a − 1 ) / 2 ) Γ ( c − ( b − 1 ) / 2 ) .$
*
Whipple’s theorem (, p. 108):
$3 F 2 a , 1 − a , c c , 2 b − c + 1 1 = π 2 1 − 2 b Γ ( c ) Γ ( 2 b − c + 1 ) Γ ( ( a + c ) / 2 ) Γ ( b + ( a − c + 1 ) / 2 ) Γ ( ( 1 − a + c ) / 2 ) Γ ( b + 1 − ( a + c ) / 2 ) .$
*
Pfaff–Saalschütz theorem (, p. 108):
$3 F 2 a , b , − n c , 1 + a + b − c − n 1 = ( c − a ) n ( c − b ) n ( c ) n ( c − a − b ) n .$
*
Second Whipple theorem (, p. 108):
$4 F 3 a , 1 + a / 2 , b , c a / 2 , a − b + 1 , a − c + 1 − 1 = Γ ( a − b + 1 ) Γ ( a − c + 1 ) Γ ( a + 1 ) Γ ( a − b − c + 1 ) .$
*
Dougall’s theorem (, p. 108):
$5 F 4 a , 1 + a / 2 , c , d , e a / 2 , a − c + 1 , a − d + 1 , a − e + 1 1 = Γ ( a − c + 1 ) Γ ( a − d + 1 ) Γ ( a − e + 1 ) Γ ( a − c − d − e + 1 ) Γ ( a + 1 ) Γ ( a − d − e + 1 ) Γ ( a − c − e + 1 ) Γ ( a − c − d + 1 ) .$
*
Second Dougall theorem (, p. 108):
$7 F 6 a , 1 + a / 2 , b , c , d , 1 + 2 a − b − c + n , − n a / 2 , a − b + 1 , a − c + 1 , a − d + 1 , b + c + d − a − n , a + 1 + n 1 = ( a + 1 ) n ( a − b − c + 1 ) n ( a − b − d + 1 ) n ( a − c − d + 1 ) n ( a + 1 − b ) n ( a + 1 − c ) n ( a + 1 − d ) n ( a + 1 − b − c − d ) n .$
In order to derive the first identity and only for simplicity, we will use the following symbol for representing finite sums of hypergeometric series:
$p F ( m ) q a 1 , … , a p b 1 , … , b q z = ∑ k = 0 m ( a 1 ) k … ( a p ) k ( b 1 ) k … ( b q ) k z k k ! .$
For instance, we have:
$p F ( − 1 ) q z = 0 , p F ( 0 ) q z = 1 and p F ( 1 ) q z = 1 + a 1 … a p b 1 … b q z .$

## 2. First Hypergeometric Identity

Let $m , n$ be two natural numbers so that $n ≤ m$. By referring to Relation (1), since:
$( n ) k ( m ) k = Γ ( k + n ) Γ ( m ) Γ ( k + m ) Γ ( n ) = Γ ( m ) Γ ( n ) 1 ( k + n ) ( k + n + 1 ) … ( k + m − 1 ) ,$
substituting (15) in a special case of (2) yields:
$p F q a 1 , … , a p − 1 , n b 1 , … , b q − 1 , m z = Γ ( m ) Γ ( n ) ∑ k = 0 ∞ ( a 1 ) k … ( a p − 1 ) k ( b 1 ) k … ( b q − 1 ) k ( k + 1 ) ( k + 2 ) … ( k + n − 1 ) z k ( k + m − 1 ) ! = Γ ( m ) Γ ( n ) ∑ j = m − 1 ∞ ( a 1 ) j − m + 1 … ( a p − 1 ) j − m + 1 ( b 1 ) j − m + 1 … ( b q − 1 ) j − m + 1 ( j + 2 − m ) ( j + 3 − m ) … ( j − m + n ) z j − m + 1 j ! .$
Relation (16) shows that we encounter a complicated computational problem that cannot be easily evaluated. However, some particular cases such as $n = 1$ and $n = 2$ can be directly computed. We leave other cases as open problems.
The case $n = 1$ leads to a known result in the literature , because:
$p F q a 1 , … , a p − 1 , 1 b 1 , … , b q − 1 , m z = Γ ( m ) ∑ j = m − 1 ∞ ( a 1 ) j − m + 1 … ( a p − 1 ) j − m + 1 ( b 1 ) j − m + 1 … ( b q − 1 ) j − m + 1 z j − m + 1 j ! = Γ ( m ) ∑ j = 0 ∞ ( a 1 ) j − m + 1 … ( a p − 1 ) j − m + 1 ( b 1 ) j − m + 1 … ( b q − 1 ) j − m + 1 z j − m + 1 j ! − ∑ j = 0 m − 2 ( a 1 ) j − m + 1 … ( a p − 1 ) j − m + 1 ( b 1 ) j − m + 1 … ( b q − 1 ) j − m + 1 z j − m + 1 j ! ,$
and since:
$( a ) j − m + 1 = Γ ( a − m + 1 ) Γ ( a ) ( a − m + 1 ) j ,$
Relation (17) is simplified as:
$p F q a 1 , … , a p − 1 , 1 b 1 , … , b q − 1 , m z = Γ ( b 1 ) … Γ ( b q − 1 ) Γ ( a 1 ) … Γ ( a p − 1 ) Γ ( a 1 − m + 1 ) … Γ ( a p − 1 − m + 1 ) Γ ( b 1 − m + 1 ) … Γ ( b q − 1 − m + 1 ) ( m − 1 ) ! z m − 1 × p − 1 F q − 1 a 1 − m + 1 , … , a p − 1 − m + 1 b 1 − m + 1 , … , b q − 1 − m + 1 z − p − 1 F q − 1 ( m − 2 ) a 1 − m + 1 , … , a p − 1 − m + 1 b 1 − m + 1 , … , b q − 1 − m + 1 z .$
However, the interesting point is that using Relation (18), we can obtain various special cases that extend all classical summation theorems as follows.
Special Case 1. When and $x = 1$, Relation (18) is simplified as:
$3 F 2 a , b , 1 c , m 1 = Γ ( m ) Γ ( c ) Γ ( a − m + 1 ) Γ ( b − m + 1 ) Γ ( a ) Γ ( b ) Γ ( c − m + 1 ) × Γ ( c − m + 1 ) Γ ( c − a − b + m − 1 ) Γ ( c − a ) Γ ( c − b ) − 2 F 1 ( m − 2 ) a − m + 1 , b − m + 1 c − m + 1 1 .$
For $m = 1$, Relation (19) exactly gives Formula (4), while for $m = 2 , 3$, we have:
$3 F 2 a , b , 1 c , 2 1 = c − 1 ( a − 1 ) ( b − 1 ) Γ ( c − 1 ) Γ ( c − a − b + 1 ) Γ ( c − a ) Γ ( c − b ) − 1 ,$
and:
$3 F 2 a , b , 1 c , 3 1 = 2 ( c − 2 ) 2 ( a − 2 ) 2 ( b − 2 ) 2 × Γ ( c − 2 ) Γ ( c − a − b + 2 ) Γ ( c − a ) Γ ( c − b ) − a b + c − 2 a − 2 b + 2 c − 2 .$
These two formulas are given in .
Special Case 2. When and $x = − 1$, by noting the Kummer theorem (5), Relation (18) is simplified as:
$3 F 2 a , b , 1 a − b + m , m − 1 = ( − 1 ) m − 1 Γ ( m ) Γ ( a − b + m ) Γ ( a − m + 1 ) Γ ( b − m + 1 ) Γ ( a ) Γ ( b ) Γ ( a − b + 1 ) × Γ ( a − b + 1 ) Γ ( 1 + ( a − m + 1 ) / 2 ) Γ ( 2 + a − m ) Γ ( m − b + ( a − m + 1 ) / 2 ) − 2 F 1 ( m − 2 ) a − m + 1 , b − m + 1 a − b + 1 − 1 .$
For $m = 1$, Relation (20) exactly gives the Kummer formula, while for , we have:
$3 F 2 a , b , 1 a − b + 2 , 2 − 1 = a − b + 1 ( a − 1 ) ( b − 1 ) 1 − Γ ( a − b + 1 ) Γ ( 1 + ( a − 1 ) / 2 ) Γ ( a ) Γ ( − b + 2 + ( a − 1 ) / 2 ) ,$
and:
$3 F 2 a , b , 1 a − b + 3 , 3 − 1 = 2 ( a − b + 1 ) 2 ( a − 2 ) 2 ( b − 2 ) 2 Γ ( a − b + 1 ) Γ ( a / 2 ) Γ ( a − 1 ) Γ ( − b + 2 + a / 2 ) − 3 a + b − a b − 3 a − b + 1 .$
Special Case 3. When and $x = 1 / 2$, by noting the second kind of Gauss Formula (6), Relation (18) is simplified as:
$3 F 2 a , b , 1 ( a + b + 1 ) / 2 , m 1 2 = ( 2 ) m − 1 × Γ ( m ) Γ ( ( a + b + 1 ) / 2 ) Γ ( a − m + 1 ) Γ ( b − m + 1 ) Γ ( a ) Γ ( b ) Γ ( − m + 1 + ( a + b + 1 ) / 2 ) × π Γ ( − m + 1 + ( a + b + 1 ) / 2 ) Γ ( 1 + ( a − m ) / 2 ) Γ ( 1 + ( b − m ) / 2 ) − 2 F 1 ( m − 2 ) a − m + 1 , b − m + 1 − m + 1 + ( a + b + 1 ) / 2 1 2 .$
For $m = 1$, Relation (21) exactly gives the second kind of Gauss formula, while for , we have:
$3 F 2 a , b , 1 ( a + b + 1 ) / 2 , 2 1 2 = a + b − 1 ( a − 1 ) ( b − 1 ) π Γ ( − 1 + ( a + b + 1 ) / 2 ) Γ ( a / 2 ) Γ ( b / 2 ) − 1 ,$
and:
$3 F 2 a , b , 1 ( a + b + 1 ) / 2 , 3 1 2 = 2 ( a + b − 1 ) ( a + b − 3 ) ( a − 2 ) 2 ( b − 2 ) 2 × π Γ ( ( a + b − 3 ) / 2 ) Γ ( ( a − 1 ) / 2 ) Γ ( ( b − 1 ) / 2 ) − a b − a − b + 1 a + b − 3 .$
Special Case 4. When and $x = 1 / 2$, by noting the Bailey theorem (7), Relation (18) is simplified as:
$3 F 2 a , 2 m − a − 1 , 1 b , m 1 2 = ( 2 ) m − 1 Γ ( m ) Γ ( b ) Γ ( a − m + 1 ) Γ ( m − a ) Γ ( a ) Γ ( 2 m − a − 1 ) Γ ( b − m + 1 ) × Γ ( ( b − m + 1 ) / 2 ) Γ ( ( b − m + 2 ) / 2 ) Γ ( − m + 1 + ( a + b ) / 2 ) Γ ( ( b − a + 1 ) / 2 ) − 2 F 1 ( m − 2 ) a − m + 1 , m − a b − m + 1 1 2 .$
For $m = 1$, Relation (22) exactly gives the Bailey formula, while for $m = 2 , 3$, we have:
$3 F 2 a , 3 − a , 1 b , 2 1 2 = 2 ( 1 − b ) ( 1 − a ) 2 Γ ( ( b − 1 ) / 2 ) Γ ( b / 2 ) Γ ( − 1 + ( a + b ) / 2 ) Γ ( ( b − a + 1 ) / 2 ) − 1 ,$
and:
$3 F 2 a , 5 − a , 1 b , 3 1 2 = 8 ( b − 2 ) 2 ( a − 4 ) 4 × Γ ( ( b − 1 ) / 2 ) Γ ( ( b − 2 ) / 2 ) Γ ( − 2 + ( a + b ) / 2 ) Γ ( ( b − a + 1 ) / 2 ) − 5 a − a 2 + 2 b − 10 2 ( b − 2 ) .$
Special Case 5. When and $x = 1$, by noting the Dixon theorem (8), Relation (18) is simplified as:
$4 F 3 a , b , c , 1 a − b + m , a − c + m , m 1 = Γ ( m ) Γ ( a − b + m ) Γ ( a − c + m ) Γ ( a + 1 − m ) Γ ( b + 1 − m ) Γ ( c + 1 − m ) Γ ( a ) Γ ( b ) Γ ( c ) Γ ( a − b + 1 ) Γ ( a − c + 1 ) × Γ ( ( a + 3 − m ) / 2 ) Γ ( a − b + 1 ) Γ ( a − c + 1 ) Γ ( − b − c + ( a + 3 m − 1 ) / 2 ) Γ ( a + 2 − m ) Γ ( − b + ( a + m + 1 ) / 2 ) Γ ( − c + ( a + m + 1 ) / 2 ) Γ ( a − b − c + m ) − 3 F 2 ( m − 2 ) a − m + 1 , b − m + 1 , c − m + 1 a − b + 1 , a − c + 1 1 .$
For $m = 1$, Relation (23) exactly gives the Dixon formula, while for , we have:
$4 F 3 a , b , c , 1 a − b + 2 , a − c + 2 , 2 1 = ( a − b + 1 ) ( a − c + 1 ) ( a − 1 ) ( b − 1 ) ( c − 1 ) × Γ ( ( a + 1 ) / 2 ) Γ ( a − b + 1 ) Γ ( a − c + 1 ) Γ ( − b − c + ( a + 5 ) / 2 ) Γ ( a ) Γ ( − b + ( a + 3 ) / 2 ) Γ ( − c + ( a + 3 ) / 2 ) Γ ( a − b − c + 2 ) − 1 ,$
and:
$4 F 3 a , b , c , 1 a − b + 3 , a − c + 3 , 3 1 = 2 ( a − b + 1 ) 2 ( a − c + 1 ) 2 ( a − 2 ) 2 ( b − 2 ) 2 ( c − 2 ) 2 × Γ ( a / 2 ) Γ ( a − b + 1 ) Γ ( a − c + 1 ) Γ ( ( a / 2 ) − b − c + 4 ) Γ ( a − 1 ) Γ ( ( a / 2 ) − b + 2 ) Γ ( ( a / 2 ) − c + 2 ) Γ ( a − b − c + 3 ) − ( a − 2 ) ( b − 2 ) ( c − 2 ) ( a − b + 1 ) ( a − c + 1 ) − 1 .$
Special Case 6. When and $x = 1$, by noting the Watson theorem (9), Relation (18) is simplified as:
$4 F 3 a , b , c , 1 ( a + b + 1 ) / 2 , 2 c + 1 − m , m 1 = Γ ( m ) Γ ( ( a + b + 1 ) / 2 ) Γ ( 2 c + 1 − m ) Γ ( a + 1 − m ) Γ ( b + 1 − m ) Γ ( c + 1 − m ) Γ ( a ) Γ ( b ) Γ ( c ) Γ ( − m + ( a + b + 3 ) / 2 ) Γ ( 2 c − 2 m + 2 ) × π Γ ( c − m + ( 3 / 2 ) ) Γ ( − m + ( a + b + 3 ) / 2 ) Γ ( c − ( a + b − 1 ) / 2 ) Γ ( 1 + ( a − m ) / 2 ) Γ ( 1 + ( b − m ) / 2 ) Γ ( c + 1 − ( a + m ) / 2 ) Γ ( c + 1 − ( b + m ) / 2 ) − 3 F 2 ( m − 2 ) a − m + 1 , b − m + 1 , c − m + 1 − m + 1 + ( a + b + 1 ) / 2 , 2 c − 2 m + 2 1 .$
For $m = 1$, Relation (24) exactly gives the Watson formula, while for , we have:
$4 F 3 a , b , c , 1 ( a + b + 1 ) / 2 , 2 c − 1 , 2 1 = a + b − 1 ( a − 1 ) ( b − 1 ) × π Γ ( c − ( 1 / 2 ) ) Γ ( ( a + b − 1 ) / 2 ) Γ ( c − ( a + b − 1 ) / 2 ) Γ ( a / 2 ) Γ ( b / 2 ) Γ ( c − ( a / 2 ) ) Γ ( c − ( b / 2 ) ) − 1 ,$
and:
$4 F 3 a , b , c , 1 ( a + b + 1 ) / 2 , 2 c − 2 , 3 1 = ( 2 c − 3 ) ( a + b − 1 ) ( a + b − 3 ) ( a − 2 ) 2 ( b − 2 ) 2 ( c − 1 ) × π Γ ( c − ( 3 / 2 ) ) Γ ( ( a + b − 3 ) / 2 ) Γ ( c − ( a + b − 1 ) / 2 ) Γ ( ( a − 1 ) / 2 ) Γ ( ( b − 1 ) / 2 ) Γ ( c − ( a + 1 ) / 2 ) Γ ( c − ( b + 1 ) / 2 ) − ( a − 2 ) ( b − 2 ) a + b − 3 − 1 .$
Special Case 7. When and $x = 1$, by noting the Whipple theorem (10), Relation (18) is simplified as:
$4 F 3 a , 2 m − 1 − a , b , 1 c , 2 b − c + 1 , m 1 = Γ ( m ) Γ ( c ) Γ ( 2 b − c + 1 ) Γ ( a + 1 − m ) Γ ( m − a ) Γ ( b + 1 − m ) Γ ( a ) Γ ( 2 m − 1 − a ) Γ ( b ) Γ ( c + 1 − m ) Γ ( 2 b − c − m + 2 ) × π 2 2 m − 2 b − 1 Γ ( c − m + 1 ) Γ ( 2 b − c + 2 − m ) Γ ( − m + 1 + ( a + c ) / 2 ) Γ ( − m + 1 + b + ( a − c + 1 ) / 2 ) Γ ( ( 1 − a + c ) / 2 ) Γ ( b + 1 − ( a + c ) / 2 ) − 3 F 2 ( m − 2 ) a − m + 1 , m − a , b − m + 1 c − m + 1 , 2 b − c − m + 2 1 .$
For $m = 1$, Relation (25) exactly gives the Whipple formula, while for $m = 2 , 3$, we have:
$4 F 3 a , 3 − a , b , 1 c , 2 b − c + 1 , 2 1 = ( c − 1 ) ( c − 2 b ) ( a − 2 ) 2 ( b − 1 ) × π 2 3 − 2 b Γ ( c − 1 ) Γ ( 2 b − c ) Γ ( − 1 + ( a + c ) / 2 ) Γ ( b + ( a − c − 1 ) / 2 ) Γ ( ( 1 − a + c ) / 2 ) Γ ( b + 1 − ( a + c ) / 2 ) − 1 ,$
and:
$4 F 3 a , 5 − a , b , 1 c , 2 b − c + 1 , 3 1 = 2 ( c − 2 ) 2 ( 2 b − c − 1 ) 2 ( a − 4 ) 4 ( b − 2 ) 2 × π 2 5 − 2 b Γ ( c − 2 ) Γ ( 2 b − c − 1 ) Γ ( − 2 + ( a + c ) / 2 ) Γ ( b + ( a − c − 3 ) / 2 ) Γ ( ( 1 − a + c ) / 2 ) Γ ( b + 1 − ( a + c ) / 2 ) − ( a − 2 ) ( 3 − a ) ( b − 2 ) ( c − 2 ) ( 2 b − c − 1 ) − 1 .$
Special Case 8. When and $x = 1$, by noting the Pfaff–Saalschütz theorem (11), Relation (18) is simplified as:
$4 F 3 a , b , − n + m − 1 , 1 c , 1 + a + b − c − n , m 1 = ( m − 1 ) ! ( 1 − c ) m − 1 ( c − a − b + n ) m − 1 ( 1 − a ) m − 1 ( 1 − b ) m − 1 ( n + 2 − m ) m − 1 × ( c − a ) n ( c − b ) n ( c + 1 − m ) n ( c − a − b + m − 1 ) n − 3 F 2 ( m − 2 ) a − m + 1 , b − m + 1 , − n c − m + 1 , 2 + a + b − c − m − n 1 .$
For $m = 1$, Relation (26) exactly gives the Pfaff–Saalschütz formula, while for , we have:
$4 F 3 a , b , − n + 1 , 1 c , 1 + a + b − c − n , 2 1 = ( 1 − c ) ( c − a − b + n ) n ( 1 − a ) ( 1 − b ) × ( c − a ) n ( c − b ) n ( c − 1 ) n ( c − a − b + 1 ) n − 1 ,$
and:
$4 F 3 a , b , − n + 2 , 1 c , 1 + a + b − c − n , 3 1 = 2 ( 1 − c ) 2 ( c − a − b + n ) 2 n ( 1 − a ) 2 ( 1 − b ) 2 ( n − 1 ) 2 × ( c − a ) n ( c − b ) n ( c − 2 ) n ( c − a − b + 2 ) n + n ( a − 2 ) ( b − 2 ) ( c − 2 ) ( a + b − c − n − 1 ) − 1 .$
Special Case 9. When and $x = − 1$, by noting the second theorem of Whipple (12), Relation (18) is simplified as:
$5 F 4 a , ( a + m + 1 ) / 2 , b , c , 1 ( a + m − 1 ) / 2 , a − b + m , a − c + m , m − 1 = ( − 1 ) m − 1 × Γ ( m ) Γ ( ( a + m − 1 ) / 2 ) Γ ( a − b + m ) Γ ( a − c + m ) Γ ( a − m + 1 ) Γ ( ( a − m + 3 ) / 2 ) Γ ( b − m + 1 ) Γ ( c − m + 1 ) Γ ( a ) Γ ( ( a + m + 1 ) / 2 ) Γ ( b ) Γ ( c ) Γ ( ( a − m + 1 ) / 2 ) Γ ( a − b + 1 ) Γ ( a − c + 1 ) × Γ ( 1 + a − b ) Γ ( 1 + a − c ) Γ ( 2 − m + a ) Γ ( m + a − b − c ) − 4 F 3 ( m − 2 ) a − m + 1 , ( a − m + 3 ) / 2 , b − m + 1 , c − m + 1 ( a − m + 1 ) / 2 , a − b + 1 , a − c + 1 − 1 .$
For $m = 1$, Relation (27) exactly gives the Whipple formula, while for , we have:
$5 F 4 a , ( a + 3 ) / 2 , b , c , 1 ( a + 1 ) / 2 , a − b + 2 , a − c + 2 , 2 − 1 = 4 ( a − b + 1 ) ( a − c + 1 ) ( a 2 − 1 ) ( a − 1 ) ( b − 1 ) ( c − 1 ) 1 − Γ ( 1 + a − b ) Γ ( 1 + a − c ) Γ ( a ) Γ ( 2 + a − b − c ) ,$
and:
$5 F 4 a , ( a + 4 ) / 2 , b , c , 1 ( a + 2 ) / 2 , a − b + 3 , a − c + 3 , 3 − 1 = 2 ( a − b + 1 ) 2 ( a − c + 1 ) 2 ( a + 2 ) ( a − 1 ) ( b − 2 ) 2 ( c − 2 ) 2 × Γ ( 1 + a − b ) Γ ( 1 + a − c ) Γ ( a − 1 ) Γ ( 3 + a − b − c ) + a ( b − 2 ) ( c − 2 ) ( a − b + 1 ) ( a − c + 1 ) − 1 .$
Special Case 10. When and $x = 1$, by noting the Dougall theorem (13), Relation (18) is simplified as:
$6 F 5 a , ( a + m + 1 ) / 2 , c , d , e , 1 ( a + m − 1 ) / 2 , a − c + m , a − d + m , a − e + m , m 1 = Γ ( m ) Γ ( ( a + m − 1 ) / 2 ) Γ ( a − c + m ) × Γ ( a − d + m ) Γ ( a − e + m ) Γ ( a − m + 1 ) Γ ( ( a − m + 3 ) / 2 ) Γ ( c − m + 1 ) Γ ( d − m + 1 ) Γ ( e − m + 1 ) Γ ( a ) Γ ( ( a + m + 1 ) / 2 ) Γ ( c ) Γ ( d ) Γ ( e ) Γ ( ( a − m + 1 ) / 2 ) Γ ( a − c + 1 ) Γ ( a − d + 1 ) Γ ( a − e + 1 ) × Γ ( a − c + 1 ) Γ ( a − d + 1 ) Γ ( a − e + 1 ) Γ ( a − c − d − e + 2 m − 1 ) Γ ( a + 2 − m ) Γ ( a − d − e + m ) Γ ( a − c − e + m ) Γ ( a − c − d + m ) − 5 F 4 ( m − 2 ) a − m + 1 , ( a − m + 3 ) / 2 , c − m + 1 , d − m + 1 , e − m + 1 ( a − m + 1 ) / 2 , a − c + 1 , a − d + 1 , a − e + 1 1 .$
For $m = 1$, Relation (28) exactly gives the Dougall formula, while for , we have:
$6 F 5 a , ( a + 3 ) / 2 , c , d , e , 1 ( a + 1 ) / 2 , a − c + 2 , a − d + 2 , a − e + 2 , 2 1 = ( a − c + 1 ) ( a − d + 1 ) ( a − e + 1 ) ( c − 1 ) ( d − 1 ) ( e − 1 ) ( a + 1 ) × Γ ( a − c + 1 ) Γ ( a − d + 1 ) Γ ( a − e + 1 ) Γ ( a − c − d − e + 3 ) Γ ( a ) Γ ( a − d − e + 2 ) Γ ( a − c − e + 2 ) Γ ( a − c − d + 2 ) − 1 ,$
and:
$6 F 5 a , ( a + 4 ) / 2 , c , d , e , 1 ( a + 2 ) / 2 , a − c + 3 , a − d + 3 , a − e + 3 , 3 1 = 2 ( a − c + 1 ) 2 ( a − d + 1 ) 2 ( a − e + 1 ) 2 ( a − 1 ) ( a + 2 ) ( c − 2 ) 2 ( d − 2 ) 2 ( e − 2 ) 2 × Γ ( a − c + 1 ) Γ ( a − d + 1 ) Γ ( a − e + 1 ) Γ ( a − c − d − e + 5 ) Γ ( a − 1 ) Γ ( a − d − e + 3 ) Γ ( a − c − e + 3 ) Γ ( a − c − d + 3 ) − a ( c − 2 ) ( d − 2 ) ( e − 2 ) ( a − c + 1 ) ( a − d + 1 ) ( a − e + 1 ) − 1 .$
Special Case 11. When and $x = 1$, by noting the second theorem of Dougall (14), Relation (18) is simplified as:
$8 F 7 a , ( a + m + 1 ) / 2 , b , c , d , 2 a − b − c − d + 2 m − 1 + n , m − n − 1 , 1 ( a + m − 1 ) / 2 , a − b + m , a − c + m , a − d + m , b + c + d − a + 1 − m − n , a + n + 1 , m 1 = ( − 1 ) m − 1 ( m − 1 ) ! × ( ( 3 − a − m ) / 2 ) m − 1 ( 1 − a + b − m ) m − 1 ( 1 − a + c − m ) m − 1 ( 1 − a + d − m ) m − 1 ( m + n + a − b − c − d ) m − 1 ( − a − n ) m − 1 ( ( 1 − a − m ) / 2 ) m − 1 ( 1 − a ) m − 1 ( 1 − b ) m − 1 ( 1 − c ) m − 1 ( 1 − d ) m − 1 ( b + c + d − 2 a + 2 − 2 m − n ) m − 1 ( n + 2 − m ) m − 1 × ( a − m + 2 ) n ( a − b − c + m ) n ( a − b − d + m ) n ( a − c − d + m ) n ( a − b + 1 ) n ( a − c + 1 ) n ( a − d + 1 ) n ( a − b − c − d + 2 m − 1 ) n − 7 F 6 ( m − 2 ) a − m + 1 , ( a − m + 3 ) / 2 , b − m + 1 , c − m + 1 , d − m + 1 , 2 a − b − c − d + m + n , − n ( a − m + 1 ) / 2 , a − b + 1 , a − c + 1 , a − d + 1 , b + c + d − a + 2 − 2 m − n , a − m + n + 2 1 .$
For $m = 1$, Relation (29) exactly gives the Dougall formula, while for , we have:
$8 F 7 a , ( a + 3 ) / 2 , b , c , d , 2 a − b − c − d + 3 + n , − n + 1 , 1 ( a + 1 ) / 2 , a − b + 2 , a − c + 2 , a − d + 2 , b + c + d − a − 1 − n , a + n + 1 , 2 1 = ( − a + b − 1 ) ( − a + c − 1 ) ( − a + d − 1 ) ( n + 2 + a − b − c − d ) ( a + n ) n ( 1 + a ) ( 1 − b ) ( 1 − c ) ( 1 − d ) ( b + c + d − 2 a − 2 − n ) × 1 − ( a ) n ( a − b − c + 2 ) n ( a − b − d + 2 ) n ( a − c − d + 2 ) n ( a − b + 1 ) n ( a − c + 1 ) n ( a − d + 1 ) n ( a − b − c − d + 3 ) n ,$
and:
$8 F 7 a , ( a + 4 ) / 2 , b , c , d , 2 a − b − c − d + 5 + n , − n + 2 , 1 ( a + 2 ) / 2 , a − b + 3 , a − c + 3 , a − d + 3 , b + c + d − a − 2 − n , a + n + 1 , 3 1 = ( a − 2 ) ( − a + b − 2 ) 2 ( − a + c − 2 ) 2 ( − a + d − 2 ) 2 ( 3 + n + a − b − c − d ) 2 ( − a − n ) 2 ( a + 2 ) ( 1 − a ) 2 ( 1 − b ) 2 ( 1 − c ) 2 ( 1 − d ) 2 ( b + c + d − 2 a − 4 − n ) 2 ( n − 1 ) 2 × ( a − 1 ) n ( a − b − c + 3 ) n ( a − b − d + 3 ) n ( a − c − d + 3 ) n ( a − b + 1 ) n ( a − c + 1 ) n ( a − d + 1 ) n ( a − b − c − d + 5 ) n + n a ( b − 2 ) ( c − 2 ) ( d − 2 ) ( 2 a − b − c − d + 3 + n ) ( a − b + 1 ) ( a − c + 1 ) ( a − d + 1 ) ( b + c + d − a − n − 4 ) ( n + a − 1 ) − 1 .$
Remark 1.
There are two further special cases, which however do not belong to classical summation theorems. When $p = q = 1$, Relation (18) is simplified as:
$1 F 1 1 m z = ( m − 1 ) ! z m − 1 e z − ∑ j = 0 m − 2 z j j ! ,$
and when $p = q + 1 = 2$, it yields:
$2 F 1 a , 1 m z = ( m − 1 ) ! z m − 1 Γ ( a − m + 1 ) Γ ( a ) ( 1 − z ) m − a − 1 − ∑ j = 0 m − 2 ( a − m + 1 ) j z j j ! .$
Similarly, for the case $n = 2$, Relation (16) changes to:
$p F q a 1 , … a p − 1 , 2 b 1 , … b q − 1 , m z = Γ ( m ) z m − 1 ∑ j = m − 1 ∞ ( a 1 ) j − m + 1 … ( a p − 1 ) j − m + 1 ( b 1 ) j − m + 1 … ( b q − 1 ) j − m + 1 ( j + 2 − m ) z j j ! = Γ ( m ) z m − 1 z ∑ r = m − 2 ∞ ( a 1 ) j − m + 2 … ( a p − 1 ) j − m + 2 ( b 1 ) j − m + 2 … ( b q − 1 ) j − m + 2 z r r ! + ( 2 − m ) ∑ j = m − 1 ∞ ( a 1 ) j − m + 1 … ( a p − 1 ) j − m + 1 ( b 1 ) j − m + 1 … ( b q − 1 ) j − m + 1 z j j ! = ( m − 1 ) ! z m − 2 Γ ( b 1 ) … Γ ( b q − 1 ) Γ ( a 1 ) … Γ ( a p − 1 ) Γ ( a 1 − m + 2 ) … Γ ( a p − 1 − m + 2 ) Γ ( b 1 − m + 2 ) … Γ ( b q − 1 − m + 2 ) × p − 1 F q − 1 a 1 − m + 2 , … , a p − 1 − m + 2 b 1 − m + 2 , … , b q − 1 − m + 2 z − p − 1 F q − 1 ( m − 3 ) a 1 − m + 2 , … , a p − 1 − m + 2 b 1 − m + 2 , … , b q − 1 − m + 2 z + ( 2 − m ) ( m − 1 ) ! z m − 1 Γ ( b 1 ) … Γ ( b q − 1 ) Γ ( a 1 ) … Γ ( a p − 1 ) Γ ( a 1 − m + 1 ) … Γ ( a p − 1 − m + 1 ) Γ ( b 1 − m + 1 ) … Γ ( b q − 1 − m + 1 ) × p − 1 F q − 1 a 1 − m + 1 , … , a p − 1 − m + 1 b 1 − m + 1 , … , b q − 1 − m + 1 z − p − 1 F q − 1 ( m − 2 ) a 1 − m + 1 , … , a p − 1 − m + 1 b 1 − m + 1 , … , b q − 1 − m + 1 z .$
Therefore:
$p F q a 1 , … a p − 1 , 2 b 1 , … b q − 1 , m z = ( m − 1 ) ! z m − 1 Γ ( b 1 ) … Γ ( b q − 1 ) Γ ( a 1 ) … Γ ( a p − 1 ) Γ ( a 1 − m + 1 ) … Γ ( a p − 1 − m + 1 ) Γ ( b 1 − m + 1 ) … Γ ( b q − 1 − m + 1 ) × ( a 1 − m + 1 ) … ( a p − 1 − m + 1 ) ( b 1 − m + 1 ) … ( b q − 1 − m + 1 ) z × p − 1 F q − 1 a 1 − m + 2 , … , a p − 1 − m + 2 b 1 − m + 2 , … , b q − 1 − m + 2 z − p − 1 F q − 1 ( m − 3 ) a 1 − m + 2 , … , a p − 1 − m + 2 b 1 − m + 2 , … , b q − 1 − m + 2 z − ( m − 2 ) p − 1 F q − 1 a 1 − m + 1 , … , a p − 1 − m + 1 b 1 − m + 1 , … , b q − 1 − m + 1 z − p − 1 F q − 1 ( m − 2 ) a 1 − m + 1 , … , a p − 1 − m + 1 b 1 − m + 1 , … , b q − 1 − m + 1 z .$
For instance, if $m = 3$, Relation (30) reads as:
$p F q a 1 , … , a p − 1 , 2 b 1 , … , b q − 1 , 3 z = 2 z 2 Γ ( b 1 ) … Γ ( b q − 1 ) Γ ( a 1 ) … Γ ( a p − 1 ) Γ ( a 1 − 2 ) … Γ ( a p − 1 − 2 ) Γ ( b 1 − 2 ) … Γ ( b q − 1 − 2 ) × ( a 1 − 2 ) … ( a p − 1 − 2 ) ( b 1 − 2 ) … ( b q − 1 − 2 ) z p − 1 F q − 1 a 1 − 1 , … , a p − 1 − 1 b 1 − 1 , … , b q − 1 − 1 z − p − 1 F q − 1 a 1 − 2 , … , a p − 1 − 2 b 1 − 2 , … , b q − 1 − 2 z + 1 .$
Hence, for $p = q + 1 = 3$ and $z = 1$, we have:
$3 F 2 a , b , 2 c , 3 1 = 2 ( a − 2 ) 2 ( b − 2 ) 2 × ( c − 2 ) 2 + Γ ( c ) Γ ( c − a − b + 1 ) Γ ( c − a ) Γ ( c − b ) ( a b − a − b − c + 3 ) .$

## 3. Second Hypergeometric Identity

By noting Relation (1), first it is not difficult to verify that:
$( a + m ) k = ( a ) k + m ( a ) m .$
Now, if the identity (31) is applied in a special case of (2), we obtain:
$p F q a 1 + m , … a p − 1 + m , 1 b 1 + m , … , b q + m z = ∑ k = 0 ∞ ( a 1 + m ) k … ( a p − 1 + m ) k ( b 1 + m ) k … ( b q + m ) k z k = ( b 1 ) m … ( b q ) m ( a 1 ) m … ( a p − 1 ) m ∑ k = 0 ∞ ( a 1 ) k + m … ( a p − 1 ) k + m ( b 1 ) k + m … ( b q − 1 ) k + m z k = ( b 1 ) m … ( b q ) m ( a 1 ) m … ( a p − 1 ) m ∑ j = m ∞ ( a 1 ) j … ( a p − 1 ) j ( b 1 ) j … ( b q − 1 ) j z j − m = ( b 1 ) m … ( b q ) m ( a 1 ) m … ( a p − 1 ) m z − m ∑ j = 0 ∞ ( a 1 ) j … ( a p − 1 ) j ( b 1 ) j … ( b q − 1 ) j z j − ∑ j = 0 m − 1 ( a 1 ) j … ( a p − 1 ) j ( b 1 ) j … ( b q − 1 ) j z j ,$
$p F q a 1 + m , … a p − 1 + m , 1 b 1 + m , … , b q + m z = ( b 1 ) m … ( b q ) m ( a 1 ) m … ( a p − 1 ) m z − m × p F q a 1 , … a p − 1 , 1 b 1 , … , b q z − p F q ( m − 1 ) a 1 , … a p − 1 , 1 b 1 , … , b q z ,$
which is equivalent to:
$p F q a 1 , … a p − 1 , 1 b 1 , … , b q z = ( b 1 − m ) m … ( b q − m ) m ( a 1 − m ) m … ( a p − 1 − m ) m z − m × p F q a 1 − m , … a p − 1 − m , 1 b 1 − m , … , b q − m z − p F q ( m − 1 ) a 1 − m , … a p − 1 − m , 1 b 1 − m , … , b q − m z .$
Once again, the interesting point is that by using Relation (32) or (33), various special cases can be considered as follows.
Special Case 12. When and $x = − 1$, by noting the Kummer formula and Relation (32), we get:
$2 F 1 b + m , 1 2 − b + m − 1 = ( − 1 ) m ( 2 − b ) m ( b ) m π 2 Γ ( 2 − b ) Γ ( − b + ( 3 / 2 ) ) − 2 F 1 ( m − 1 ) b , 1 2 − b − 1 .$
For instance, if , Relation (34) is simplified as:
$2 F 1 b + 1 , 1 3 − b − 1 = − π 2 Γ ( 3 − b ) Γ ( ( 3 / 2 ) − b ) + 2 b − 1 ,$
and:
$2 F 1 b + 2 , 1 4 − b − 1 = π 2 b ( b + 1 ) Γ ( 4 − b ) Γ ( ( 3 / 2 ) − b ) − 2 ( b − 1 ) ( b − 3 ) b ( b + 1 ) .$
Special Case 13. When and $x = 1 / 2$, by noting the second kind of Gauss formula and Relation (32), we get:
$2 F 1 a + m , 1 ( a / 2 ) + m + 1 1 2 = ( 1 + ( a / 2 ) ) m ( a ) m 2 m π Γ ( 1 + ( a / 2 ) ) Γ ( ( a + 1 ) / 2 ) − 2 F 1 ( m − 1 ) a , 1 ( a / 2 ) + 1 1 2 .$
For instance, if , Relation (35) is simplified as:
$2 F 1 a + 1 , 1 ( a / 2 ) + 2 1 2 = a + 2 a π Γ ( 1 + ( a / 2 ) ) Γ ( ( a + 1 ) / 2 ) − 1 ,$
and:
$2 F 1 a + 2 , 1 ( a / 2 ) + 3 1 2 = π ( a + 2 ) ( a + 4 ) a ( a + 1 ) Γ ( 1 + ( a / 2 ) ) Γ ( ( a + 1 ) / 2 ) − 2 ( 1 + 4 a ) .$
Special Case 14. When and $x = 1$, by noting the Dixon formula and Relation (32), we get:
$3 F 2 b + m , c + m , 1 2 − b + m , 2 − c + m 1 = ( 2 − b ) m ( 2 − c ) m ( b ) m ( c ) m × π 2 Γ ( 2 − b ) Γ ( 2 − c ) Γ ( − b − c + ( 3 / 2 ) ) Γ ( − b + ( 3 / 2 ) ) Γ ( − c + ( 3 / 2 ) ) Γ ( 2 − b − c ) − 3 F 2 ( m − 1 ) b , c , 1 2 − b , 2 − c 1 .$
For instance, if $m = 1 , 2$, Relation (36) is simplified as:
$3 F 2 b + 1 , c + 1 , 1 3 − b , 3 − c 1 = π 2 b c Γ ( 3 − b ) Γ ( 3 − c ) Γ ( ( 3 / 2 ) − b − c ) Γ ( ( 3 / 2 ) − b ) Γ ( ( 3 / 2 ) − c ) Γ ( 2 − b − c ) − ( b − 2 ) ( c − 2 ) b c ,$
and:
$3 F 2 b + 2 , c + 2 , 1 4 − b , 4 − c 1 = π 2 ( b ) 2 ( c ) 2 Γ ( 4 − b ) Γ ( 4 − c ) Γ ( ( 3 / 2 ) − b − c ) Γ ( ( 3 / 2 ) − b ) Γ ( ( 3 / 2 ) − c ) Γ ( 2 − b − c ) − 2 ( b c − b − c − 2 ) ( b − 3 ) ( c − 3 ) ( b ) 2 ( c ) 2 .$
Special Case 15. When and $x = 1$, by noting the Watson formula and Relation (32), we get:
$3 F 2 b + m , c + m , 1 ( b / 2 ) + m + 1 , 2 c + m 1 = ( 1 + ( b / 2 ) ) m ( 2 c ) m ( b ) m ( c ) m × π Γ ( 1 + ( c / 2 ) ) Γ ( 1 + ( b / 2 ) ) Γ ( c − ( b / 2 ) ) Γ ( ( b + 1 ) / 2 ) Γ ( c ) Γ ( c − ( b − 1 ) / 2 ) − 3 F 2 ( m − 1 ) b , c , 1 ( b / 2 ) + 1 , 2 c 1 .$
For instance, if $m = 1 , 2$, Relation (37) is simplified as:
$3 F 2 b + 1 , c + 1 , 1 ( b / 2 ) + 2 , 2 c + 1 1 = ( 1 + 2 b ) ( π Γ ( 1 + ( c / 2 ) ) Γ ( 1 + ( b / 2 ) ) Γ ( c − ( b / 2 ) ) Γ ( ( b + 1 ) / 2 ) Γ ( c ) Γ ( c − ( b − 1 ) / 2 ) − 1 ) ,$
and:
$3 F 2 b + 2 , c + 2 , 1 ( b / 2 ) + 3 , 2 c + 2 1 = 2 π c ( 2 c + 1 ) b ( b + 1 ) Γ ( ( c / 2 ) + 1 ) Γ ( ( b / 2 ) + 3 ) Γ ( c − ( b / 2 ) ) Γ ( ( b + 1 ) / 2 ) Γ ( c + 2 ) Γ ( c − ( b − 1 ) / 2 ) − ( b + 4 ) ( 2 c + 1 ) b ( c + 1 ) .$
Special Case 16. When and $x = 1$, by noting the Whipple formula and Relation (32), we get:
$3 F 2 a + m , 1 − a + m , 1 c + m , 3 − c + m 1 = ( c ) m ( 3 − c ) m ( a ) m ( 1 − a ) m × π Γ ( c ) Γ ( 3 − c ) 2 Γ ( ( a + c ) / 2 ) Γ ( ( a − c + 3 ) / 2 ) Γ ( ( 1 − a + c ) / 2 ) Γ ( 2 − ( a + c ) / 2 ) − 3 F 2 ( m − 1 ) a , 1 − a , 1 c , 3 − c 1 .$
For instance, if $m = 1 , 2$, Relation (38) is simplified as:
$3 F 2 a + 1 , 2 − a , 1 c + 1 , 4 − c 1 = π 2 a ( 1 − a ) Γ ( c + 1 ) Γ ( 4 − c ) Γ ( ( a + c ) / 2 ) Γ ( ( a − c + 3 ) / 2 ) Γ ( ( 1 − a + c ) / 2 ) Γ ( 2 − ( a + c ) / 2 ) − c ( c − 3 ) a ( a − 1 ) ,$
and:
$3 F 2 a + 2 , 3 − a , 1 c + 2 , 5 − c 1 = π 2 ( a − 2 ) 4 Γ ( c + 2 ) Γ ( 5 − c ) Γ ( ( a + c ) / 2 ) Γ ( ( a − c + 3 ) / 2 ) Γ ( ( 1 − a + c ) / 2 ) Γ ( 2 − ( a + c ) / 2 ) − ( c + 1 ) ( 4 − c ) ( c ( 3 − c ) + a ( 1 − a ) ) ( a − 2 ) 4 .$
Special Case 17. When and $x = 1$, by noting the Pfaff–Saalschutz formula and Relation (32), we get:
$3 F 2 b + m , − n + m , 1 c + m , 2 + b − c − n + m 1 = ( c ) m ( 2 + b − c − n ) m ( b ) m ( − n ) m ( c − 1 ) ( c − 1 − b + n ) ( c − 1 − b ) ( c − 1 + n ) − 3 F 2 ( m − 1 ) b , − n , 1 c , 2 + b − c − n 1 .$
For instance, if $m = 1 , 2$, Relation (39) is simplified as:
$3 F 2 b + 1 , − n + 1 , 1 c + 1 , 3 + b − c − n 1 = c ( c − 2 − b + n ) n b ( c − 1 ) ( c − 1 − b + n ) ( c − 1 − b ) ( c − 1 + n ) − 1 ,$
and:
$3 F 2 b + 2 , − n + 2 , 1 c + 2 , 4 + b − c − n 1 = ( c − 1 ) c ( c + 1 ) ( c − 1 − b + n ) ( c − 2 − b + n ) ( c − 3 − b + n ) n ( n − 1 ) b ( b + 1 ) ( c − 1 − b ) ( c − 1 + n ) − ( c + 1 ) ( c − 3 − b + n ) ( n b + c ( c − 2 − b + n ) ) n ( n − 1 ) b ( b + 1 ) .$
Special Case 18. When and $x = − 1$, by noting the Whipple formula and Relation (32), we get:
$4 F 3 m + ( 3 / 2 ) , b + m , c + m , 1 m + ( 1 / 2 ) , 2 − b + m , 2 − c + m − 1 = ( − 1 ) m 2 m + 1 ( 2 − b ) m ( 2 − c ) m ( b ) m ( c ) m × Γ ( 2 − b ) Γ ( 2 − c ) Γ ( 2 − b − c ) − 4 F 3 ( m − 1 ) 3 / 2 , b , c , 1 1 / 2 , 2 − b , 2 − c − 1 .$
For instance, if $m = 1 , 2$, Relation (40) is simplified as:
$4 F 3 5 / 2 , b + 1 , c + 1 , 1 3 / 2 , 3 − b , 3 − c − 1 = 1 3 b c ( ( b − 2 ) ( c − 2 ) − Γ ( 3 − b ) Γ ( 3 − c ) Γ ( 2 − b − c ) ) ,$
and:
$4 F 3 7 / 2 , b + 2 , c + 2 , 1 5 / 2 , 4 − b , 4 − c − 1 = ( 2 − b ) 2 ( 2 − c ) 2 5 ( b ) 2 ( c ) 2 × Γ ( 2 − b ) Γ ( 2 − c ) Γ ( 2 − b − c ) + 2 b c + b + c − 2 ( b − 2 ) ( c − 2 ) .$
Special Case 19. When and $x = 1$, by noting the Dougall formula and Relation (32), we get:
$5 F 4 m + ( 3 / 2 ) , c + m , d + m , e + m , 1 m + ( 1 / 2 ) , 2 − c + m , 2 − d + m , 2 − e + m 1 = 1 2 m + 1 ( 2 − c ) m ( 2 − d ) m ( 2 − e ) m ( c ) m ( d ) m ( e ) m × Γ ( 2 − c ) Γ ( 2 − d ) Γ ( 2 − e ) Γ ( 2 − c − d − e ) Γ ( 2 − d − e ) Γ ( 2 − c − e ) Γ ( 2 − c − d ) − 5 F 4 ( m − 1 ) 3 / 2 , c , d , e , 1 1 / 2 , 2 − c , 2 − d , 2 − e 1 .$
For instance, if $m = 1 , 2$, Relation (41) is simplified as:
$5 F 4 5 / 2 , c + 1 , d + 1 , e + 1 , 1 3 / 2 , 3 − c , 3 − d , 3 − e 1 = ( 2 − c ) ( 2 − d ) ( 2 − e ) 3 c d e × Γ ( 2 − c ) Γ ( 2 − d ) Γ ( 2 − e ) Γ ( 2 − c − d − e ) Γ ( 2 − d − e ) Γ ( 2 − c − e ) Γ ( 2 − c − d ) − 1 ,$
and:
$5 F 4 7 / 2 , c + 2 , d + 2 , e + 2 , 1 5 / 2 , 4 − c , 4 − d , 4 − e 1 = ( 2 − c ) 2 ( 2 − d ) 2 ( 2 − e ) 2 5 ( c ) 2 ( d ) 2 ( e ) 2 × Γ ( 2 − c ) Γ ( 2 − d ) Γ ( 2 − e ) Γ ( 2 − c − d − e ) Γ ( 2 − d − e ) Γ ( 2 − c − e ) Γ ( 2 − c − d ) − 3 c d e ( 2 − c ) ( 2 − d ) ( 2 − e ) − 1 .$
Special Case 20. When and $x = 1$, by noting the Dougall formula and Relation (32), we get:
$7 F 6 m + ( 3 / 2 ) , b + m , c + m , d + m , 3 − b − c + n + m , m − n , 1 m + ( 1 / 2 ) , 2 − b + m , 2 − c + m , 2 − d + m , b + c + d − n − 1 + m , n + 2 + m 1 = 1 2 m + 1 ( 2 − b ) m ( 2 − c ) m ( 2 − d ) m ( b + c + d − n − 1 ) m ( n + 2 ) m ( b ) m ( c ) m ( d ) m ( 3 − b − c + n ) m ( − n ) m × ( 2 ) n ( 2 − b − c ) n ( 2 − b − d ) n ( 2 − c − d ) n ( 2 − b ) n ( 2 − c ) n ( 2 − d ) n ( 2 − b − c − d ) n − 7 F 6 ( m − 1 ) 3 / 2 , b , c , d , 3 − b − c + n , − n , 1 1 / 2 , 2 − b , 2 − c , 2 − d , b + c + d − n − 1 , n + 2 1 .$
For instance, if $m = 1 , 2$, Relation (42) is simplified as:
$7 F 6 5 / 2 , b + 1 , c + 1 , d + 1 , 3 − b − c + n + 1 , 1 − n , 1 3 / 2 , 3 − b , 3 − c , 3 − d , b + c + d − n , n + 3 1 = ( 2 − b ) ( 2 − c ) ( 2 − d ) ( b + c + d − n − 1 ) ( n + 2 ) 3 n b c d ( 3 − b − c + n ) × 1 − ( 2 ) n ( 2 − b − c ) n ( 2 − b − d ) n ( 2 − c − d ) n ( 2 − b ) n ( 2 − c ) n ( 2 − d ) n ( 2 − b − c − d ) n ,$
and:
$7 F 6 7 / 2 , b + 2 , c + 2 , d + 2 , 5 − b − c + n , 2 − n , 1 5 / 2 , 4 − b , 4 − c , 4 − d , b + c + d − n + 1 , n + 4 1 = ( 2 − b ) 2 ( 2 − c ) 2 ( 2 − d ) 2 ( b + c + d − n − 1 ) 2 ( n + 2 ) 2 5 ( b ) 2 ( c ) 2 ( d ) 2 ( 3 − b − c + n ) 2 ( − n ) 2 × ( 2 ) n ( 2 − b − c ) n ( 2 − b − d ) n ( 2 − c − d ) n ( 2 − b ) n ( 2 − c ) n ( 2 − d ) n ( 2 − b − c − d ) n + 3 b c d n ( 3 − b − c + n ) ( 2 − b ) ( 2 − c ) ( 2 − d ) ( b + c + d − n − 1 ) ( n + 2 ) − 1 .$

## 4. Conclusions

In this paper, we applied two identities for generalized hypergeometric series in order to extend some classical summation theorems of hypergeometric functions such as Gauss, Kummer, Dixon, Watson, Whipple, Pfaff–Saalschütz and Dougall formulas and then obtained some new summation theorems using the second introduced hypergeometric identity.

## Author Contributions

Both authors have the same contribution in all sections.

## Acknowledgments

This research was funded by the Alexander von Humboldt Foundation under Grant Number Ref 3.4-IRN-1128637-GF-E.

## Conflicts of Interest

The authors declare no conflict of interest.

## References

1. Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities, 2nd ed.; Springer: London, UK, 2014. [Google Scholar]
2. Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
3. Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
4. Arfken, G. Mathematical Methods for Physicists; Academic Press: New York, NY, USA, 1985. [Google Scholar]
5. Mathai, A.M.; Saxena, R.K. Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1973; Volume 348. [Google Scholar]
6. Nikiforov, A.F.; Uvarov, V.B. Special Functions of Mathematical Physics. A Unified Introduction with Applications; Birkhauser: Basel, Switzerland, 1988. [Google Scholar]
7. Bailey, W.N. Products of generalized hypergeometric series. Proc. Lond. Math. Soc. 1928, 2, 242–254. [Google Scholar] [CrossRef]
8. Karlsson, P.W. Hypergeometric functions with integral parameter differences. J. Math. Phys. 1971, 12, 270–271. [Google Scholar] [CrossRef][Green Version]
9. Miller, A.R. Certain summation and transformation formulas for generalized hypergeometric series. J. Comput. Appl. Math. 2009, 231, 964–972. [Google Scholar] [CrossRef]
10. Miller, A.R.; Srivastava, H.M. Karlsson-Minton summation theorems for the generalized hypergeometric series of unit argument. Integral Transform. Spec. Funct. 2010, 21, 603–612. [Google Scholar] [CrossRef]
11. Minton, B.M. Generalized hypergeometric function of unit argument. J. Math. Phys. 1970, 11, 1375–1376. [Google Scholar] [CrossRef]
12. Rosengren, H. Karlsson-Minton type hypergeometric functions on the root system Cn. J. Math. Anal. Appl. 2003, 281, 332–345. [Google Scholar] [CrossRef]
13. Srivastava, H.M. Generalized hypergeometric functions with integral parameter differences. Indag. Math. 1973, 76, 38–40. [Google Scholar] [CrossRef]
14. Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. More Special Functions; Integrals and Series; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1990; Volume 3. [Google Scholar]

## Share and Cite

MDPI and ACS Style

Masjed-Jamei, M.; Koepf, W. Some Summation Theorems for Generalized Hypergeometric Functions. Axioms 2018, 7, 38. https://doi.org/10.3390/axioms7020038

AMA Style

Masjed-Jamei M, Koepf W. Some Summation Theorems for Generalized Hypergeometric Functions. Axioms. 2018; 7(2):38. https://doi.org/10.3390/axioms7020038

Chicago/Turabian Style

Masjed-Jamei, Mohammad, and Wolfram Koepf. 2018. "Some Summation Theorems for Generalized Hypergeometric Functions" Axioms 7, no. 2: 38. https://doi.org/10.3390/axioms7020038

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.