Article

Quotient Structures of BCK/BCI-Algebras Induced by Quasi-Valuation Maps

Seok-Zun Song ${ }^{1(0)}$, Hashem Bordbar ${ }^{2, *(\mathbb{D})}$ and Young Bae Jun ${ }^{3}$
1 Department of Mathematics, Jeju National University, Jeju 63243, Korea; szsong@jejunu.ac.kr
2 Department of Mathematical Sciences, Shahid Beheshti University, Tehran 1983969411, Iran
3 Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea; skywine@gmail.com
* Correspondence: bordbar.amirh@gmail.com

Received: 4 February 2018; Accepted: 11 April 2018; Published: 23 April 2018

Abstract

Relations between I-quasi-valuation maps and ideals in $B C K / B C I$-algebras are investigated. Using the notion of an I-quasi-valuation map of a $B C K / B C I$-algebra, the quasi-metric space is induced, and several properties are investigated. Relations between the I-quasi-valuation map and the I-valuation map are considered, and conditions for an I-quasi-valuation map to be an I-valuation map are provided. A congruence relation is introduced by using the I-valuation map, and then the quotient structures are established and related properties are investigated. Isomorphic quotient $B C K / B C I$-algebras are discussed.

Keywords: ideal; I-quasi-valuation map; I-valuation map; quasi-metric
MSC: 06F35; 03G25; 03C05

1. Introduction

$B C K / B C I$-algebras are an important class of logical algebras introduced by Imai and Iséki (see [1-4]), and have been extensively investigated by several researchers. It is known that the class of $B C K$-algebras is a proper subclass of $B C I$-algebras. Song et al. [5] introduced the notion of quasi-valuation maps based on a subalgebra and an ideal in $B C K / B C I$-algebras, and then they investigated several properties. They provided relations between a quasi-valuation map based on a subalgebra and a quasi-valuation map based on an ideal, and gave a condition for a quasi-valuation map based on an ideal to be a quasi-valuation map based on a subalgebra in BCI-algebras. Using the notion of a quasi-valuation map based on an ideal, they constructed (pseudo) metric spaces, and showed that the binary operation $*$ in $B C K$-algebras is uniformly continuous.

In this paper, we discuss relations between I-quasi-valuation maps and ideals in $B C K / B C I$-algebras. Using the notion of an I-quasi-valuation map of a $B C K / B C I$-algebra, we induce the quasi-metric space, and investigate several properties. We discuss relations between the I-quasi-valuation map and the I-valuation map. We provide conditions for an I-quasi-valuation map to be an I-valuation map. We use I-quasi-valuation maps to introduce a congruence relation, and then we construct the quotient structures and investigate related properties. We establish isomorphic quotient $B C K / B C I$-algebras.

2. Preliminaries

By a BCI-algebra, we mean a nonempty set X with a binary operation $*$ and a special element 0 satisfying the following axioms:
(I) $(\forall x, y, z \in X)(((x * y) *(x * z)) *(z * y)=0)$,
(II) $(\forall x, y \in X)((x *(x * y)) * y=0)$,
(III) $(\forall x \in X)(x * x=0)$,
(IV) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$.

If a $B C I$-algebra X satisfies the following identity:
(V) $(\forall x \in X)(0 * x=0)$,
then X is called a $B C K$-algebra. Any $B C K / B C I$-algebra X satisfies the following conditions:

$$
\begin{align*}
& (\forall x \in X)(x * 0=x) \tag{1}\\
& (\forall x, y, z \in X)(x * y=0 \Rightarrow(x * z) *(y * z)=0,(z * y) *(z * x)=0) \tag{2}\\
& (\forall x, y, z \in X)((x * y) * z=(x * z) * y) \tag{3}\\
& (\forall x, y, z \in X)(((x * z) *(y * z)) *(x * y)=0) \tag{4}
\end{align*}
$$

Any BCI-algebra X satisfies the following condition:

$$
\begin{equation*}
(\forall x, y \in X)(0 *(x * y)=(0 * x) *(0 * y)) \tag{5}
\end{equation*}
$$

We can define a partial ordering \leq on X as follows:

$$
(\forall x, y \in X)(x \leq y \Longleftrightarrow x * y=0)
$$

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A subset I of a $B C K / B C I$-algebra X is called an ideal of X if it satisfies the following conditions:

$$
\begin{align*}
& 0 \in I \tag{6}\\
& (\forall x, y \in X)(x * y \in I, y \in I \Rightarrow x \in I) \tag{7}
\end{align*}
$$

An ideal I of a BCI-algebra X is said to be closed if

$$
\begin{equation*}
(\forall x \in X)(x \in I \Rightarrow 0 * x \in I) \tag{8}
\end{equation*}
$$

We refer the reader to the books [6,7] for further information regarding BCK/BCI-algebras.

3. Quasi-Valuation Maps on BCK/BCI-Algebras

In what follows, let X denote a $B C K / B C I$-algebra unless otherwise specified.
Definition 1 ([5]). By a quasi-valuation map of X based on an ideal (briefly I-quasi-valuation map of X), we mean a mapping $f: X \rightarrow \mathbb{R}$ which satisfies the conditions

$$
\begin{align*}
& f(0)=0 \tag{9}\\
& (\forall x, y \in X)(f(x) \geq f(x * y)+f(y)) \tag{10}
\end{align*}
$$

The I-quasi-valuation map f is called an I-valuation map of X if

$$
\begin{equation*}
(\forall x \in X)(f(x)=0 \Rightarrow x=0) \tag{11}
\end{equation*}
$$

Lemma 1 ([5]). For any I-quasi-valuation map f of X, we have the following assertions:
(1) f is order reversing.
(2) $f(x * y)+f(y * x) \leq 0$ for all $x, y \in X$.
(3) $f(x * y) \geq f(x * z)+f(z * y)$ for all $x, y, z \in X$.

Corollary 1. Every quasi-valuation map f of a BCK-algebra X satisfies:

$$
(\forall x \in X)(f(x) \leq 0)
$$

Theorem 1. For any ideal I of X, define a map

$$
f_{I}: X \rightarrow \mathbb{R}, x \mapsto \begin{cases}0 & \text { if } x \in I \\ t & \text { otherwise }\end{cases}
$$

where t is a negative number in \mathbb{R}. Then, f_{I} is an I-quasi-valuation map of X. Moreover, f_{I} is an I-valuation map of X if and only if I is the trivial ideal of X (i.e., $I=\{0\}$).

Proof. Straightforward.

Theorem 2. If f is an I-quasi-valuation map of X, then the set

$$
A_{f}:=\{x \in X \mid f(x) \geq 0\}
$$

is an ideal of X.

Proof. Obviously $0 \in A_{f}$. Let $x, y \in X$ be such that $x * y \in A_{f}$ and $y \in A_{f}$. Then, $f(x * y) \geq 0$ and $f(y) \geq 0$. It follows from (10) that $f(x) \geq f(x * y)+f(y) \geq 0$ and so that $x \in A_{f}$. Therefore A_{f} is an ideal of X.

Note that if an ideal of a $B C I$-algebra X is of finite order, then it is a closed ideal of X, and every ideal of a BCK-algebra X is a closed ideal of X (see [6]). Hence, we have the following corollary.

Corollary 2. Let X be a finite BCI-algebra or a BCK-algebra. If f is an I-quasi-valuation map of X, then the set A_{f} is a closed ideal of X.

Theorem 3. If I is an ideal of X, then $A_{f_{I}}=I$.
Proof. We get $A_{f_{I}}=\left\{x \in X \mid f_{I}(x) \geq 0\right\}=\{x \in X \mid x \in I\}=I$.
Definition 2. A real-valued function d on $X \times X$ is called a quasi-metric if it satisfies:

$$
\begin{align*}
& (\forall x, y \in X)(d(x, y) \leq 0, d(x, x)=0) \tag{12}\\
& (\forall x, y \in X)(d(x, y)=d(y, x)) \tag{13}\\
& (\forall x, y, z \in X)(d(x, z) \geq d(x, y)+d(y, z)) \tag{14}
\end{align*}
$$

The pair (X, d) is called the quasi-metric space.
Given a real-valued function f on X, define a mapping

$$
d_{f}: X \times X \rightarrow \mathbb{R},(x, y) \mapsto f(x * y)+f(y * x)
$$

Theorem 4. If a real-valued function f on X is an I-quasi-valuation map of X, then d_{f} is a quasi-metric on $X \times X$.

The pair $\left(X, d_{f}\right)$ is called the quasi-metric space induced by f.

Proof. Using Lemma 1(2), we have $d_{f}(x, y)=f(x * y)+f(y * x) \leq 0$ for all $(x, y) \in X \times X$. Obviously, $d_{f}(x, x)=0$ and $d_{f}(x, y)=d_{f}(y, x)$ for all $x, y \in X$. Using Lemma 1(3), we get

$$
\begin{aligned}
d_{f}(x, y)+d_{f}(y, z) & =(f(x * y)+f(y * x))+(f(y * z)+f(z * y)) \\
& =(f(x * y)+f(y * z))+(f(z * y)+f(y * x)) \\
& \leq f(x * z)+f(z * x)=d_{f}(x, z)
\end{aligned}
$$

for all $x, y, z \in X$. Therefore d_{f} is a quasi-metric on X.
Proposition 1. Let f be an I-quasi-valuation map of a BCK-algebra X such that

$$
\begin{equation*}
(\forall x \in X)(x \neq 0 \Rightarrow f(x) \neq 0) \tag{15}
\end{equation*}
$$

Then, the quasi-metric space $\left(X, d_{f}\right)$ induced by f satisfies:

$$
\begin{equation*}
(\forall x, y \in X)\left(d_{f}(x, y)=0 \Rightarrow x=y\right) \tag{16}
\end{equation*}
$$

Proof. Assume that $d_{f}(x, y)=0$ for $x, y \in X$. Then, $f(x * y)+f(y * x)=0$, and so $f(x * y)=0$ and $f(y * x)=0$ by Corollary 1. It follows from (15) that $x * y=0$ and $y * x=0$. Hence $x=y$.

We provide conditions for an I-quasi-valuation map to be an I-valuation map.
Theorem 5. Let f be an I-quasi-valuation map of a BCI-algebra X such that A_{f} is a closed ideal of X. If the quasi-metric d_{f} induced by f satisfies the condition (16), then f is an I-valuation map of X.

Proof. Assume that f does not satisfy the condition (11). Then, there exists $x \in X$ such that $x \neq 0$ and $f(x)=0$. Thus, $x \in A_{f}$, and so $0 * x \in A_{f}$ since A_{f} is a closed ideal of X. Hence $f(0 * x) \geq 0$, which implies that

$$
0=f(0) \geq f(0 * x)+f(x)=f(0 * x) \geq 0
$$

Thus, $f(0 * x)=0$, and so $d_{f}(x, 0)=f(x * 0)+f(0 * x)=f(x)=0$. It follows from (16) that $x=0$. Therefore, f is an I-valuation map of X.

Since every ideal is closed in a BCK-algebra, we have the following corollary.
Corollary 3. Given an I-quasi-valuation map f of a BCK-algebra X, if the quasi-metric d_{f} induced by f satisfies the condition (16), then f is an I-valuation map of X.

Consider the BCI-algebra $(\mathbb{Z},-, 0)$ and define a map f on \mathbb{Z} as follows:

$$
f_{k}: \mathbb{Z} \rightarrow \mathbb{R}, x \mapsto \begin{cases}0 & \text { if } x=0 \\ k-x & \text { otherwise }\end{cases}
$$

where k is a negative integer. For any $x \in \mathbb{Z} \backslash\{0\}$ and $y \in \mathbb{Z}$, we have $f_{k}(x)=k-x$ and

$$
f_{k}(x-y)+f_{k}(y)= \begin{cases}k-x & \text { if either } y=0 \text { or } y=x \\ 2 k-x & \text { otherwise }\end{cases}
$$

It follows that $f_{k}(x) \geq f_{k}(x-y)+f_{k}(y)$ for all $x, y \in \mathbb{Z}$, and so f_{k} is an I-quasi-valuation map of $(\mathbb{Z},-, 0)$. It is clear that the set

$$
A_{f_{k}}=\left\{x \in \mathbb{Z} \mid f_{k}(x) \geq 0\right\}=\{x \in \mathbb{Z} \mid x \leq k\} \cup\{0\}
$$

is an ideal of $(\mathbb{Z},-, 0)$ which is not closed. Using Theorem 4 , we know that $d_{f_{k}}$ is a quasi-metric induced by f_{k} and satisfies:

$$
(\forall x, y \in X)\left(d_{f_{k}}(x, y)=0 \Rightarrow x=y\right)
$$

However, f_{k} is not an I-valuation map of $(\mathbb{Z},-, 0)$ since $f_{k}(k)=0$ and $k \neq 0$. This shows that if A_{f} is not a closed ideal of X, then the conclusion of Theorem 5 is not true.

Proposition 2. Given an I-quasi-valuation map f of X, the quasi-metric space $\left(X, d_{f}\right)$ satisfies:
(1) $d_{f}(x, y) \leq \min \left\{d_{f}(x * a, y * a), d_{f}(a * x), d_{f}(a * y)\right\}$,
(2) $d_{f}(x * y, a * b) \geq d_{f}(x * y, a * y)+d_{f}(a * y, a * b)$,
for all $x, y, a, b \in X$.
Proof. Let $x, y, a, b \in X$. Using (4), we have

$$
(y * a) *(x * a) \leq y * x \text { and }(x * a) *(y * a) \leq x * y .
$$

Since f is order reversing, it follows that

$$
f(y * x) \leq f((y * a) *(x * a)) \text { and } f(x * y) \leq f((x * a) *(y * a))
$$

Thus,

$$
\begin{aligned}
d_{f}(x, y) & =f(x * y)+f(y * x) \\
& \leq f((y * a) *(x * a))+f((x * a) *(y * a)) \\
& =d_{f}(x * a, y * a)
\end{aligned}
$$

Similarly, we get

$$
d_{f}(x, y) \leq d_{f}(a * x, a * y)
$$

Therefore, (1) is valid. Now, using Lemma 1(3) implies that

$$
f((x * y) *(a * b)) \geq f((x * y) *(a * y))+f((a * y) *(a * b))
$$

and

$$
f((a * b) *(x * y)) \geq f((a * b) *(a * y))+f((a * y) *(x * y))
$$

for all $x, y, a, b \in X$. Hence

$$
\begin{aligned}
d_{f}(x * y, a * b)= & f((x * y) *(a * b))+f((a * b) *(x * y)) \\
\geq & f((x * y) *(a * y))+f((a * y) *(a * b)) \\
& \quad+f((a * b) *(a * y))+f((a * y) *(x * y)) \\
\geq & f((x * y) *(a * y))+f((a * y) *(x * y)) \\
& \quad+f((a * b) *(a * y))+f((a * y) *(a * b)) \\
= & d_{f}(x * y, a * y)+d_{f}(a * y, a * b)
\end{aligned}
$$

for all $x, y, a, b \in X$. Therefore, (2) is valid.

Definition 3. Let f be an I-quasi-valuation map of X. Define a relation θ_{f} on X by

$$
\begin{equation*}
(\forall x, y \in X)\left((x, y) \in \theta_{f} \Longleftrightarrow f(x * y)+f(y * x)=0\right) \tag{17}
\end{equation*}
$$

Theorem 6. The relation θ_{f} on X which is given in (17) is a congruence relation on X.
Proof. It is clear that θ_{f} is an equivalence relation on X. Let $x, y, u, v \in X$ be such that $(x, y) \in \theta_{f}$ and $(u, v) \in \theta_{f}$. Then, $f(x * y)+f(y * x)=0$ and $f(u * v)+f(v * u)=0$. It follows from Proposition 2 that

$$
\begin{aligned}
& f((x * u) *(y * v))+f((y * v) *(x * u)) \\
& =d_{f}(x * u, y * v) \geq d_{f}(x, y) \\
& =f(x * y)+f(y * x)=0
\end{aligned}
$$

Hence, $f((x * u) *(y * v))+f((y * v) *(x * u))=0$, and so $(x * u, y * v) \in \theta_{f}$. Therefore, θ_{f} is a congruence relation on X.

Definition 4. Let f be an I-quasi-valuation map of X and θ_{f} be a congruence relation on X induced by f. Given $x \in X$, the set

$$
x_{f}:=\left\{y \in X \mid(x, y) \in \theta_{f}\right\}
$$

is called an equivalence class of x.
Denote by X_{f} the set of all equivalence classes; that is,

$$
X_{f}:=\left\{x_{f} \mid x \in X\right\} .
$$

Theorem 7. Let f be an I-quasi-valuation map of X. Then, $\left(X_{f}, \odot, 0_{f}\right)$ is a BCK/BCI-algebra where " \odot " is the binary operation on X_{f} which is defined as follows:

$$
\left(\forall x_{f}, y_{f} \in X_{f}\right)\left(x_{f} \odot y_{f}=(x * y)_{f}\right)
$$

Proof. Let X be a $B C I$-algebra. The operation \odot is well-defined since f is an I-quasi-valuation map of X. For any $x_{f}, y_{f}, z_{f} \in X_{f}$, we have

$$
\begin{aligned}
& \left(\left(x_{f} \odot y_{f}\right) \odot\left(x_{f} \odot z_{f}\right)\right) \odot\left(z_{f} \odot y_{f}\right)=(((x * y) *(x * z)) *(z * y))_{f}=0_{f} \\
& \left(x_{f} \odot\left(x_{f} \odot y_{f}\right)\right) \odot y_{f}=((x *(x * y)) * y)_{f}=0_{f} \\
& x_{f} \odot x_{f}=(x * x)_{f}=0_{f} .
\end{aligned}
$$

Assume that $x_{f} \odot y_{f}=0_{f}$ and $y_{f} \odot x_{f}=0_{f}$. Then, $(x * y)_{f}=0_{f}$ and $(y * x)_{f}=0_{f}$, which imply that $(x * y, 0) \in \theta_{f}$ and $(y * x, 0) \in \theta_{f}$. It follows from (1), (5), and (10) that

$$
\begin{aligned}
0 & =f((x * y) * 0)+f(0 *(x * y)) \\
& =f(x * y)+f((0 * x) *(0 * y)) \\
& \leq f(x * y)+f(0 * x)-f(0 * y)
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =f((y * x) * 0)+f(0 *(y * x)) \\
& =f(y * x)+f((0 * y) *(0 * x)) \\
& \leq f(y * x)+f(0 * y)-f(0 * x)
\end{aligned}
$$

Hence, $f(x * y)+f(0 * x)-f(0 * y)=0$ and $f(y * x)+f(0 * y)-f(0 * x)=0$, which imply that $f(x * y)+f(y * x)=0$. Hence, $(x, y) \in \theta_{f}$; that is, $x_{f}=y_{f}$. Therefore, $\left(X_{f}, \odot, 0_{f}\right)$ is a BCI-algebra. Moreover, if X is a $B C K$-algebra, then $0 * x=0$ for all $x \in X$. Hence, $0_{f} \odot x_{f}=(0 * x)_{f}=0_{f}$ for all $x_{f} \in X_{f}$. Hence, $\left(X_{f}, \odot, 0_{f}\right)$ is a BCK-algebra.

The following example illustrates Theorem 7.
Example 1. Let $X=\{0, a, b, c, d\}$ be a set with the $*$-operation given by Table 1 .

Table 1. $*$-operation.

$*$	0	a	b	c	d
0	0	0	0	0	0
a	a	0	0	a	0
b	b	b	0	b	0
c	c	c	c	0	c
d	d	d	d	d	0

Then, $(X ; *, 0)$ is a BCK-algebra (see [7]), and a real-valued function f on X defined by

$$
f=\left(\begin{array}{ccccc}
0 & a & b & c & d \\
0 & -4 & -9 & 0 & -11
\end{array}\right)
$$

is an I-quasi-valuation map of X (see [5]). It is routine to verify that

$$
\theta_{f}=\{(0,0),(a, a),(b, b),(c, c),(d, d),(0, c),(c, 0)\},
$$

and $X_{f}=\left\{0_{f}, a_{f}, b_{f}, d_{f}\right\}$ is a BCK-algebra where $0_{f}=\{0, c\}, a_{f}=\{a\}, b_{f}=\{b\}$, and $d_{f}=\{d\}$.
Proposition 3. Given an I-quasi-valuation map f of a BCI-algebra X, if A_{f} is a closed ideal of X, then $A_{f} \subseteq 0_{f}$.
Proof. Let $x \in A_{f}$. Then, $0 * x \in A_{f}$ since A_{f} is a closed ideal, and so $f(x) \geq 0$ and $f(0 * x) \geq 0$. It follows from (1) that

$$
f(0 * x)+f(x * 0)=f(0 * x)+f(x) \geq 0
$$

and so that $f(0 * x)+f(x * 0)=0$ by using Lemma 1(2). Hence, $(0, x) \in \theta_{f}$; that is, $x \in 0_{f}$. Therefore, $A_{f} \subseteq 0_{f}$.

Corollary 4. If f is an I-quasi-valuation map of a BCK-algebra X, then $A_{f} \subseteq 0_{f}$.
Proposition 4. Let f be an I-quasi-valuation map of a BCI-algebra such that

$$
\begin{equation*}
(\forall x \in X)(f(x) \leq 0) \tag{18}
\end{equation*}
$$

Then, $0_{f} \subseteq A_{f}$.
Proof. Let $x \in 0_{f}$. Then, $(0, x) \in \theta_{f}$, and so

$$
f(0 * x)+f(x)=f(0 * x)+f(x * 0)=0 .
$$

It follows from (18) that $f(0 * x)=0=f(x)$. Hence, $x \in A_{f}$, and therefore $0_{f} \subseteq A_{f}$.

Let I be an ideal of X and let η_{I} be a relation on X defined as follows:

$$
(\forall x, y \in X)\left((x, y) \in \eta_{I} \Leftrightarrow x * y \in I, y * x \in I\right)
$$

Then, η_{I} is a congruence relation on X, which is called the ideal congruence relation on X induced by I (see [6]). Denote by X / I the set of all equivalence classes; that is,

$$
X / I:=\left\{[x]_{I} \mid x \in X\right\}
$$

where $[x]_{I}=\left\{y \in X \mid(x, y) \in \eta_{I}\right\}$. If we define a binary operation $*_{I}$ on X / I by $[x]_{I} *_{I}[y]_{I}=[x * y]_{I}$ for all $[x]_{I},[y]_{I} \in X / I$, then $\left(X, *_{I},[0]_{I}\right)$ is a BCK/BCI-algebra (see [6]).

Proposition 5. If f is an I-quasi-valuation map of X, then $\eta_{A_{f}} \subseteq \theta_{f}$.
Proof. Let $x, y \in X$ be such that $(x, y) \in \eta_{A_{f}}$. Then, $x * y \in A_{f}$ and $y * x \in A_{f}$, which imply that $f(x * y) \geq 0$ and $f(y * x) \geq 0$. Hence, $f(x * y)+f(y * x) \geq 0$, and so $f(x * y)+f(y * x)=0$ by using Lemma 1(2). Thus, $(x, y) \in \theta_{f}$. This completes the proof.

Proposition 6. If f is an I-quasi-valuation map of X such that $A_{f}=X$, then $\theta_{f} \subseteq \eta_{A_{f}}$.
Proof. Let $x, y \in X$ be such that $(x, y) \in \theta_{f}$. Then, $f(x * y)+f(y * x)=0$, and so $f(x * y)=0$ and $f(y * x)=0$ by the condition $A_{f}=X$. It follows that $x * y \in A_{f}$ and $y * x \in A_{f}$. Hence, $(x, y) \in \eta_{A_{f}}$, and therefore $\theta_{f} \subseteq \eta_{A_{f}}$.

Theorem 8. If I is an ideal of X, then $\eta_{I}=\theta_{f_{I}}$.
Proof. Let $x, y \in X$ be such that $(x, y) \in \eta_{I}$. Then, $x * y \in I$ and $y * x \in I$. It follows that $f_{I}(x * y)=0$ and $f_{I}(y * x)=0$. Hence, $f_{I}(x * y)+f_{I}(y * x)=0$, and thus $(x, y) \in \theta_{f_{I}}$.

Conversely, let $(x, y) \in \theta_{f_{I}}$ for $x, y \in X$. Then, $f_{I}(x * y)+f_{I}(y * x)=0$, which implies that $f_{I}(x * y)=0$ and $f_{I}(y * x)=0$ since $f_{I}(x) \leq 0$ for all $x \in X$. Hence, $x * y \in I$ and $y * x \in I$; that is, $(x, y) \in \eta_{I}$. This completes the proof.

Corollary 5. If f is an I-quasi-valuation map of X, then $\eta_{A_{f}}=\theta_{f_{A_{f}}}$.
Theorem 9. For any two different I-quasi-valuation maps f and g of X, if $0_{f}=0_{g}$, then θ_{f} and θ_{g} coincide, and so $X_{f}=X_{g}$.

Proof. Let $x, y \in X$ be such that $(x, y) \in \theta_{f}$. Then, $(x * y, 0)=(x * y, y * y) \in \theta_{f}$, and so $x * y \in 0_{f}$. Similarly, we have $y * x \in 0_{f}$. It follows from $0_{f}=0_{g}$ that $x_{g} \odot y_{g}=(x * y)_{g}=0_{g}$ and $y_{g} \odot x_{g}=(y * x)_{g}$ $=0_{g}$. Hence, $x_{g}=y_{g}$, and so $(x, y) \in \theta_{g}$. Similarly, we can verify that if $(x, y) \in \theta_{g}$, then $(x, y) \in \theta_{f}$. Therefore, θ_{f} and θ_{g} coincide and so $X_{f}=X_{g}$.

Theorem 10. Let I be an ideal of X and let f be an I-quasi-valuation map of X such that $0_{f} \subseteq I$. If we denote

$$
I_{f}:=\left\{x_{f} \mid x \in I\right\}
$$

then the following assertions are valid.
(1) $(\forall x \in X)\left(x \in I \Leftrightarrow x_{f} \in I_{f}\right)$.
(2) I_{f} is an ideal of X_{f}.

Proof. (1) It is clear that if $x \in I$, then $x_{f} \in I_{f}$. Let $x \in X$ be such that $x_{f} \in I_{f}$. Then, there exists $y \in I$ such that $x_{f}=y_{f}$. Hence, $(x, y) \in \theta_{f}$, and so $(x * y, 0)=(x * y, y * y) \in \theta_{f}$. It follows that $x * y \in 0_{f} \subseteq I$ and so that $x \in I$.
(2) Clearly, $0_{f} \in I_{f}$ since $0 \in I$. Let $x, y \in X$ be such that $x_{f} \odot y_{f} \in I_{f}$ and $y_{f} \in I_{f}$. Then, $(x * y)_{f}=$ $x_{f} \odot y_{f} \in I_{f}$, and so $x * y \in I$ and $y \in I$ by (1). Since I is an ideal of X, it follows that $x \in I$ and so that $x_{f} \in I_{f}$. Therefore, I_{f} is an ideal of X_{f}.

Theorem 11. For any I-quasi-valuation map f of X, if J^{*} is an ideal of X_{f}, then the set

$$
J:=\left\{x \in X \mid x_{f} \in J^{*}\right\}
$$

is an ideal of X containing 0_{f}.
Proof. It is obvious that $0 \in 0_{f} \subseteq J$. Let $x, y \in X$ be such that $x * y \in J$ and $y \in J$. Then, $y_{f} \in J^{*}$ and $x_{f} \odot y_{f}=(x * y)_{f} \in J^{*}$. Since J^{*} is an ideal of X_{f}, it follows that $x_{f} \in J^{*}$ (i.e., $x \in J$). Therefore, J is an ideal of X.

Let $\mathcal{I}\left(X_{f}\right)$ denote the set of all ideals of X_{f}, and let $\mathcal{I}(X, f)$ denote the set of all ideals of X containing 0_{f}. Then, there exists a bijection between $\mathcal{I}\left(X_{f}\right)$ and $\mathcal{I}(X, f)$; that is, $\psi: \mathcal{I}\left(X_{f}\right) \rightarrow$ $\mathcal{I}(X, f), I \mapsto I_{f}$ is a bijection.

Proposition 7. Let $\varphi: X \rightarrow Y$ be a homomorphism of BCK/BCI-algebras. If f is an I-quasi-valuation map of Y, then the composition $f \circ \varphi$ of f and φ is an I-quasi-valuation map of X.

Proof. We have $(f \circ \varphi)(0)=f(\varphi(0))=f(0)=0$. For any $x, y \in X$, we get

$$
\begin{aligned}
(f \circ \varphi)(x) & =f(\varphi(x)) \\
& \geq f(\varphi(x) * \varphi(y))+f(\varphi(y)) \\
& =f(\varphi(x * y))+f(\varphi(y)) \\
& =(f \circ \varphi)(x * y)+(f \circ \varphi)(y) .
\end{aligned}
$$

Hence, $f \circ \varphi$ is an I-quasi-valuation map of X.
Theorem 12. Let $\varphi: X \rightarrow Y$ be an onto homomorphism of BCK/BCI-algebras. If f is an I-quasi-valuation map of Y, then $X_{f \circ \varphi}$ and Y_{f} are isomorphic.

Proof. Define a map $\zeta: X_{f \circ \varphi} \rightarrow Y_{f}$ by $\zeta\left(x_{f \circ \varphi}\right)=\varphi(x)_{f}$ for all $x \in X$. If we let $x_{f \circ \varphi}=a_{f \circ \varphi}$ for $a, x \in X$, then

$$
\begin{aligned}
0 & =(f \circ \varphi)(x * a)+(f \circ \varphi)(a * x) \\
& =f(\varphi(x * a))+f(\varphi(a * x)) \\
& =f(\varphi(x)+\varphi(a))+f(\varphi(a) * \varphi(x))
\end{aligned}
$$

which implies that $\zeta\left(x_{f \circ \varphi}\right)=\varphi(x)_{f}=\varphi(a)_{f}=\zeta\left(a_{f \circ \varphi}\right)$. Hence, ζ is well-defined. For any $a, x \in X$, we have

$$
\begin{aligned}
\zeta\left(x_{f \circ \varphi} \odot a_{f \circ \varphi}\right) & =\zeta\left((x * a)_{f \circ \varphi}\right)=\varphi(x * a)_{f} \\
& =(\varphi(x) * \varphi(a))_{f}=\varphi(x)_{f} \odot \varphi(a)_{f} \\
& =\zeta\left(x_{f \circ \varphi}\right) \odot \zeta\left(a_{f \circ \varphi}\right) .
\end{aligned}
$$

This shows that ζ is a homomorphism. For any y_{f} in Y_{f}, there exists $x \in X$ such that $\varphi(x)=y$, since φ is surjective. It follows that $\zeta\left(x_{f \circ \varphi}\right)=\varphi(x)_{f}=y_{f}$. Thus, ζ is surjective. Suppose that $\zeta\left(x_{f \circ \varphi}\right)=\zeta\left(a_{f \circ \varphi}\right)$ for any $x_{f \circ \varphi}, a_{f \circ \varphi} \in X_{f \circ \varphi}$. Then, $\varphi(x)_{f}=\varphi(a)_{f}$, and so

$$
\begin{aligned}
(f \circ \varphi)(x * a)+(f \circ \varphi)(a * x) & =f(\varphi(x * a))+f(\varphi(a * x)) \\
& =f(\varphi(x) * \varphi(a))+f(\varphi(a) * \varphi(x))=0
\end{aligned}
$$

Hence, $x_{f \circ \varphi}=a_{f \circ \varphi}$. This shows that ζ is injective, and therefore $X_{f \circ \varphi}$ and Y_{f} are isomorphic.
Theorem 13. Given an I-quasi-valuation map f of X, the following assertions are valid.
(1) The map $\pi: X \rightarrow X_{f}, x \mapsto x_{f}$ is an onto homomorphism.
(2) For each I-quasi-valuation map g^{*} of X_{f}, there exist an I-quasi-valuation map g of X such that $g=g^{*} \circ \pi$.
(3) If $A_{f}=X$, then the map

$$
f^{*}: X_{f} \rightarrow \mathbb{R}, x_{f} \mapsto f(x)
$$

is an I-quasi-valuation map of X_{f}.
Proof. (1) and (2) are straightforward.
(3) Assume that $x_{f}=y_{f}$ for $x, y \in X$. Then, $f(x * y)+f(y * x)=0$, which implies from the assumption that $f(x * y)=0=f(y * x)$. Since $x *(x * y) \leq y$ for all $x, y \in X$, we get $f(y) \leq f(x *(x * y))$. It follows that

$$
f(x) \geq f(x *(x * y))+f(x * y) \geq f(x * y)+f(y) \geq f(y)
$$

Similarly, we show that $f(x) \leq f(y)$, and so $f(x)=f(y)$; that is, $f^{*}\left(x_{f}\right)=f^{*}\left(y_{f}\right)$. Therefore, f^{*} is well-defined. Now, we have $f^{*}\left(0_{f}\right)=f(0)=0$ and

$$
f^{*}\left(x_{f}\right)=f(x) \geq f(x * y)+f(y)=f^{*}\left((x * y)_{f}\right)+f^{*}\left(y_{f}\right)=f^{*}\left(x_{f} \odot y_{f}\right)+f^{*}\left(y_{f}\right)
$$

Therefore, f^{*} is an I-quasi-valuation map of X_{f}.

4. Conclusions

Quasi-valuation maps on $B C K / B C I$-algebras were studied by Song et al. in [5]. The aim of this paper was to study the quotient structures of $B C K / B C I$-algebras induced by quasi-valuation maps. We have described relations between I-quasi-valuation maps and ideals in $B C K / B C I$-algebras. We have induced the quasi-metric space by using an I-quasi-valuation map of a $B C K / B C I$-algebra, and have investigated several properties. We have considered relations between the I-quasi-valuation map and the I-valuation map, and have provided conditions for an I-quasi-valuation map to be an I-valuation map. We have used I-quasi-valuation maps to introduce a congruence relation, and then constructed the quotient structures with related properties. We have established isomorphic quotient $B C K / B C I$-algebras. In the future, from a purely mathematical standpoint, we will apply the concepts and results in this article to related algebraic structures, such as BCC-algebras (see [8]), pseudo BCI-algebras (see [9,10]), and so on. From an application standpoint, we will try to find the possibility of extending our proposed approach to some decision-making problem, mathematical programming, medical diagnosis, etc.

Acknowledgments: The authors wish to thank the anonymous reviewers for their valuable suggestions.
Author Contributions: All authors contributed equally and significantly to the study and preparation of the manuscript. They have read and approved the final article.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Imai, Y.; Iséki, K. On axiom systems of propositional calculi, XIV. Proc. Jpn. Acad. 1966, 42, 19-22.[CrossRef]
2. Iséki, K. An algebra related with a propositional calculus. Proc. Jpn. Acad. 1966, 42, 26-29.[CrossRef]
3. Iséki, K. On BCI-algebras. Math. Semin. Notes 1980, 8, 125-130.
4. Iséki, K.; Tanaka, S. An introduction to theory of BCK-algebras. Math. Japonica 1978, 23, 1-26.
5. Song, S.Z.; Roh, E.H.; Jun, Y.B. Quasi-valuation mapd on BCK/BCI-algebras. Kyungpook Math. J. 2015, 55, 859-870.[CrossRef]
6. Huang, Y.S. BCI-Algebra; Science Press: Beijing, China, 2006.
7. Meng, J.; Jun, Y.B. BCK-Algebras; Kyungmoon Sa Co.: Seoul, Korea, 1994.
8. Dudek, W.A.; Zhang, X.H. On atoms in BCC-Algebras. Discuss. Math. Algebra Stoch. Methods 1995, 15, 81-85.
9. Zhang, X.H. Fuzzy anti-grouped filters and fuzzy normal filters in pseudo BCI-Algebras. J. Intell. Fuzzy Syst. 2017, 33, 1767-1774.[CrossRef]
10. Zhang, X.H.; Park, C.; Wu, S.P. Soft set theoretical approach to pseudo BCI-algebras. J. Intell. Fuzzy Syst. 2018, 34, 559-568.[CrossRef]
