

Article

Quotient Structures of *BCK/BCI***-Algebras Induced by Quasi-Valuation Maps**

Seok-Zun Song ¹^(b), Hashem Bordbar ^{2,*}^(b) and Young Bae Jun ³

- ¹ Department of Mathematics, Jeju National University, Jeju 63243, Korea; szsong@jejunu.ac.kr
- ² Department of Mathematical Sciences, Shahid Beheshti University, Tehran 1983969411, Iran
- ³ Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea; skywine@gmail.com
- * Correspondence: bordbar.amirh@gmail.com

Received: 4 February 2018; Accepted: 11 April 2018; Published: 23 April 2018

Abstract: Relations between *I*-quasi-valuation maps and ideals in *BCK/BCI*-algebras are investigated. Using the notion of an *I*-quasi-valuation map of a *BCK/BCI*-algebra, the quasi-metric space is induced, and several properties are investigated. Relations between the *I*-quasi-valuation map and the *I*-valuation map are considered, and conditions for an *I*-quasi-valuation map to be an *I*-valuation map are provided. A congruence relation is introduced by using the *I*-valuation map, and then the quotient structures are established and related properties are investigated. Isomorphic quotient *BCK/BCI*-algebras are discussed.

Keywords: ideal; I-quasi-valuation map; I-valuation map; quasi-metric

MSC: 06F35; 03G25; 03C05

1. Introduction

BCK/BCI-algebras are an important class of logical algebras introduced by Imai and Iséki (see [1–4]), and have been extensively investigated by several researchers. It is known that the class of *BCK*-algebras is a proper subclass of *BCI*-algebras. Song et al. [5] introduced the notion of quasi-valuation maps based on a subalgebra and an ideal in *BCK/BCI*-algebras, and then they investigated several properties. They provided relations between a quasi-valuation map based on a subalgebra and gave a condition for a quasi-valuation map based on an ideal to be a quasi-valuation map based on a subalgebra in *BCI*-algebras. Using the notion of a quasi-valuation map based on an ideal, they constructed (pseudo) metric spaces, and showed that the binary operation * in *BCK*-algebras is uniformly continuous.

In this paper, we discuss relations between *I*-quasi-valuation maps and ideals in *BCK/BCI*-algebras. Using the notion of an *I*-quasi-valuation map of a *BCK/BCI*-algebra, we induce the quasi-metric space, and investigate several properties. We discuss relations between the *I*-quasi-valuation map and the *I*-valuation map. We provide conditions for an *I*-quasi-valuation map to be an *I*-valuation map. We use *I*-quasi-valuation maps to introduce a congruence relation, and then we construct the quotient structures and investigate related properties. We establish isomorphic quotient *BCK/BCI*-algebras.

2. Preliminaries

By a *BCI*-algebra, we mean a nonempty set *X* with a binary operation * and a special element 0 satisfying the following axioms:

(I) $(\forall x, y, z \in X) (((x * y) * (x * z)) * (z * y) = 0),$

- (II) $(\forall x, y \in X) ((x * (x * y)) * y = 0),$
- (III) $(\forall x \in X) (x * x = 0)$,
- (IV) $(\forall x, y \in X) (x * y = 0, y * x = 0 \Rightarrow x = y).$

If a *BCI*-algebra *X* satisfies the following identity:

(V) $(\forall x \in X) (0 * x = 0),$

then X is called a *BCK*-algebra. Any *BCK*/*BCI*-algebra X satisfies the following conditions:

$$(\forall x \in X)(x * 0 = x),\tag{1}$$

$$(\forall x, y, z \in X)(x * y = 0 \implies (x * z) * (y * z) = 0, (z * y) * (z * x) = 0),$$
(2)

$$(\forall x, y, z \in X)((x * y) * z = (x * z) * y),$$
(3)

$$(\forall x, y, z \in X)(((x * z) * (y * z)) * (x * y) = 0).$$
(4)

Any *BCI*-algebra *X* satisfies the following condition:

$$(\forall x, y \in X)(0 * (x * y) = (0 * x) * (0 * y)).$$
(5)

We can define a partial ordering \leq on *X* as follows:

$$(\forall x, y \in X) (x \le y \iff x * y = 0).$$

A nonempty subset *S* of a *BCK*/*BCI*-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$. A subset *I* of a *BCK*/*BCI*-algebra X is called an *ideal* of X if it satisfies the following conditions:

$$0 \in I, \tag{6}$$

$$(\forall x, y \in X) (x * y \in I, y \in I \Rightarrow x \in I).$$
(7)

An ideal *I* of a *BCI*-algebra *X* is said to be *closed* if

$$(\forall x \in X)(x \in I \implies 0 * x \in I).$$
(8)

We refer the reader to the books [6,7] for further information regarding BCK/BCI-algebras.

3. Quasi-Valuation Maps on BCK/BCI-Algebras

In what follows, let X denote a *BCK/BCI*-algebra unless otherwise specified.

Definition 1 ([5]). *By a quasi-valuation map of* X *based on an ideal (briefly I-quasi-valuation map of* X), we mean a mapping $f : X \to \mathbb{R}$ which satisfies the conditions

$$f(0) = 0, \tag{9}$$

$$(\forall x, y \in X) (f(x) \ge f(x * y) + f(y)).$$

$$(10)$$

The I-quasi-valuation map f is called an I-valuation map of X if

$$(\forall x \in X)(f(x) = 0 \Rightarrow x = 0).$$
(11)

Lemma 1 ([5]). For any I-quasi-valuation map f of X, we have the following assertions:

- (1) *f* is order reversing.
- (2) $f(x * y) + f(y * x) \le 0$ for all $x, y \in X$.
- (3) $f(x * y) \ge f(x * z) + f(z * y)$ for all $x, y, z \in X$.

Corollary 1. *Every quasi-valuation map f of a BCK-algebra X satisfies:*

$$(\forall x \in X)(f(x) \le 0)$$

Theorem 1. For any ideal I of X, define a map

$$f_I: X \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & \text{if } x \in I, \\ t & \text{otherwise} \end{cases}$$

where t is a negative number in \mathbb{R} . Then, f_I is an I-quasi-valuation map of X. Moreover, f_I is an I-valuation map of X if and only if I is the trivial ideal of X (i.e., $I = \{0\}$).

Proof. Straightforward. \Box

Theorem 2. If f is an I-quasi-valuation map of X, then the set

$$A_f := \{ x \in X \mid f(x) \ge 0 \}$$

is an ideal of X.

Proof. Obviously $0 \in A_f$. Let $x, y \in X$ be such that $x * y \in A_f$ and $y \in A_f$. Then, $f(x * y) \ge 0$ and $f(y) \ge 0$. It follows from (10) that $f(x) \ge f(x * y) + f(y) \ge 0$ and so that $x \in A_f$. Therefore A_f is an ideal of X. \Box

Note that if an ideal of a *BCI*-algebra *X* is of finite order, then it is a closed ideal of *X*, and every ideal of a *BCK*-algebra *X* is a closed ideal of *X* (see [6]). Hence, we have the following corollary.

Corollary 2. Let X be a finite BCI-algebra or a BCK-algebra. If f is an I-quasi-valuation map of X, then the set A_f is a closed ideal of X.

Theorem 3. If I is an ideal of X, then $A_{f_1} = I$.

Proof. We get $A_{f_I} = \{x \in X \mid f_I(x) \ge 0\} = \{x \in X \mid x \in I\} = I$. \Box

Definition 2. A real-valued function d on $X \times X$ is called a quasi-metric if it satisfies:

$$(\forall x, y \in X) (d(x, y) \le 0, d(x, x) = 0),$$
 (12)

$$(\forall x, y \in X) (d(x, y) = d(y, x)),$$
(13)

$$(\forall x, y, z \in X) (d(x, z) \ge d(x, y) + d(y, z)).$$
(14)

The pair (X, d) is called the quasi-metric space.

Given a real-valued function *f* on *X*, define a mapping

$$d_f: X \times X \to \mathbb{R}, \ (x, y) \mapsto f(x * y) + f(y * x).$$

Theorem 4. If a real-valued function f on X is an I-quasi-valuation map of X, then d_f is a quasi-metric on $X \times X$.

The pair (X, d_f) is called the quasi-metric space induced by f.

Proof. Using Lemma 1(2), we have $d_f(x, y) = f(x * y) + f(y * x) \le 0$ for all $(x, y) \in X \times X$. Obviously, $d_f(x, x) = 0$ and $d_f(x, y) = d_f(y, x)$ for all $x, y \in X$. Using Lemma 1(3), we get

$$\begin{aligned} d_f(x,y) + d_f(y,z) &= (f(x*y) + f(y*z)) + (f(y*z) + f(z*y)) \\ &= (f(x*y) + f(y*z)) + (f(z*y) + f(y*z)) \\ &\leq f(x*z) + f(z*x) = d_f(x,z) \end{aligned}$$

for all $x, y, z \in X$. Therefore d_f is a quasi-metric on X. \Box

Proposition 1. Let f be an I-quasi-valuation map of a BCK-algebra X such that

$$(\forall x \in X)(x \neq 0 \Rightarrow f(x) \neq 0). \tag{15}$$

Then, the quasi-metric space (X, d_f) induced by f satisfies:

$$(\forall x, y \in X)(d_f(x, y) = 0 \Rightarrow x = y).$$
(16)

,

Proof. Assume that $d_f(x, y) = 0$ for $x, y \in X$. Then, f(x * y) + f(y * x) = 0, and so f(x * y) = 0 and f(y * x) = 0 by Corollary 1. It follows from (15) that x * y = 0 and y * x = 0. Hence x = y. \Box

We provide conditions for an *I*-quasi-valuation map to be an *I*-valuation map.

Theorem 5. Let f be an I-quasi-valuation map of a BCI-algebra X such that A_f is a closed ideal of X. If the quasi-metric d_f induced by f satisfies the condition (16), then f is an I-valuation map of X.

Proof. Assume that *f* does not satisfy the condition (11). Then, there exists $x \in X$ such that $x \neq 0$ and f(x) = 0. Thus, $x \in A_f$, and so $0 * x \in A_f$ since A_f is a closed ideal of *X*. Hence $f(0 * x) \ge 0$, which implies that

$$0 = f(0) \ge f(0 * x) + f(x) = f(0 * x) \ge 0.$$

Thus, f(0 * x) = 0, and so $d_f(x, 0) = f(x * 0) + f(0 * x) = f(x) = 0$. It follows from (16) that x = 0. Therefore, f is an *I*-valuation map of *X*. \Box

Since every ideal is closed in a BCK-algebra, we have the following corollary.

Corollary 3. Given an I-quasi-valuation map f of a BCK-algebra X, if the quasi-metric d_f induced by f satisfies the condition (16), then f is an I-valuation map of X.

Consider the *BCI*-algebra $(\mathbb{Z}, -, 0)$ and define a map *f* on \mathbb{Z} as follows:

$$f_k : \mathbb{Z} \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & \text{if } x = 0, \\ k - x & \text{otherwise} \end{cases}$$

where *k* is a negative integer. For any $x \in \mathbb{Z} \setminus \{0\}$ and $y \in \mathbb{Z}$, we have $f_k(x) = k - x$ and

$$f_k(x-y) + f_k(y) = \begin{cases} k-x & \text{if either } y = 0 \text{ or } y = x, \\ 2k-x & \text{otherwise.} \end{cases}$$

It follows that $f_k(x) \ge f_k(x-y) + f_k(y)$ for all $x, y \in \mathbb{Z}$, and so f_k is an *I*-quasi-valuation map of $(\mathbb{Z}, -, 0)$. It is clear that the set

$$A_{f_k} = \{ x \in \mathbb{Z} \mid f_k(x) \ge 0 \} = \{ x \in \mathbb{Z} \mid x \le k \} \cup \{ 0 \}$$

is an ideal of $(\mathbb{Z}, -, 0)$ which is not closed. Using Theorem 4, we know that d_{f_k} is a quasi-metric induced by f_k and satisfies:

$$(\forall x, y \in X)(d_{f_k}(x, y) = 0 \Rightarrow x = y).$$

However, f_k is not an *I*-valuation map of $(\mathbb{Z}, -, 0)$ since $f_k(k) = 0$ and $k \neq 0$. This shows that if A_f is not a closed ideal of X, then the conclusion of Theorem 5 is not true.

Proposition 2. *Given an I-quasi-valuation map f of X, the quasi-metric space* (X, d_f) *satisfies:*

(1) $d_f(x,y) \le \min\{d_f(x*a,y*a), d_f(a*x), d_f(a*y)\},\$ (2) $d_f(x*y,a*b) \ge d_f(x*y,a*y) + d_f(a*y,a*b),\$

for all $x, y, a, b \in X$.

Proof. Let $x, y, a, b \in X$. Using (4), we have

$$(y * a) * (x * a) \le y * x$$
 and $(x * a) * (y * a) \le x * y$.

Since f is order reversing, it follows that

$$f(y * x) \le f((y * a) * (x * a))$$
 and $f(x * y) \le f((x * a) * (y * a))$.

Thus,

$$\begin{aligned} d_f(x,y) &= f(x*y) + f(y*x) \\ &\leq f((y*a)*(x*a)) + f((x*a)*(y*a)) \\ &= d_f(x*a,y*a). \end{aligned}$$

Similarly, we get

$$d_f(x,y) \le d_f(a * x, a * y).$$

Therefore, (1) is valid. Now, using Lemma 1(3) implies that

$$f((x * y) * (a * b)) \ge f((x * y) * (a * y)) + f((a * y) * (a * b))$$

and

$$f((a * b) * (x * y)) \ge f((a * b) * (a * y)) + f((a * y) * (x * y))$$

for all $x, y, a, b \in X$. Hence

$$\begin{split} d_f(x*y,a*b) &= f((x*y)*(a*b)) + f((a*b)*(x*y)) \\ &\geq f((x*y)*(a*y)) + f((a*y)*(a*b)) \\ &\quad + f((a*b)*(a*y)) + f((a*y)*(x*y)) \\ &\geq f((x*y)*(a*y)) + f((a*y)*(x*y)) \\ &\quad + f((a*b)*(a*y)) + f((a*y)*(a*b)) \\ &\quad = d_f(x*y,a*y) + d_f(a*y,a*b) \end{split}$$

for all $x, y, a, b \in X$. Therefore, (2) is valid. \Box

Definition 3. Let f be an I-quasi-valuation map of X. Define a relation θ_f on X by

$$(\forall x, y \in X) \left((x, y) \in \theta_f \iff f(x * y) + f(y * x) = 0 \right).$$
(17)

Theorem 6. The relation θ_f on X which is given in (17) is a congruence relation on X.

Proof. It is clear that θ_f is an equivalence relation on *X*. Let $x, y, u, v \in X$ be such that $(x, y) \in \theta_f$ and $(u, v) \in \theta_f$. Then, f(x * y) + f(y * x) = 0 and f(u * v) + f(v * u) = 0. It follows from Proposition 2 that

$$f((x * u) * (y * v)) + f((y * v) * (x * u))$$

= $d_f(x * u, y * v) \ge d_f(x, y)$
= $f(x * y) + f(y * x) = 0.$

Hence, f((x * u) * (y * v)) + f((y * v) * (x * u)) = 0, and so $(x * u, y * v) \in \theta_f$. Therefore, θ_f is a congruence relation on *X*. \Box

Definition 4. Let f be an I-quasi-valuation map of X and θ_f be a congruence relation on X induced by f. Given $x \in X$, the set

$$x_f := \{ y \in X \mid (x, y) \in \theta_f \}$$

is called an equivalence class of x.

Denote by X_f the set of all equivalence classes; that is,

$$X_f := \{x_f \mid x \in X\}.$$

Theorem 7. Let f be an I-quasi-valuation map of X. Then, $(X_f, \odot, 0_f)$ is a BCK/BCI-algebra where " \odot " is the binary operation on X_f which is defined as follows:

$$(\forall x_f, y_f \in X_f) \left(x_f \odot y_f = (x * y)_f \right).$$

Proof. Let *X* be a *BCI*-algebra. The operation \odot is well-defined since *f* is an *I*-quasi-valuation map of *X*. For any $x_f, y_f, z_f \in X_f$, we have

$$\begin{array}{l} ((x_f \odot y_f) \odot (x_f \odot z_f)) \odot (z_f \odot y_f) = (((x * y) * (x * z)) * (z * y))_f = 0_f, \\ (x_f \odot (x_f \odot y_f)) \odot y_f = ((x * (x * y)) * y)_f = 0_f, \\ x_f \odot x_f = (x * x)_f = 0_f. \end{array}$$

Assume that $x_f \odot y_f = 0_f$ and $y_f \odot x_f = 0_f$. Then, $(x * y)_f = 0_f$ and $(y * x)_f = 0_f$, which imply that $(x * y, 0) \in \theta_f$ and $(y * x, 0) \in \theta_f$. It follows from (1), (5), and (10) that

$$0 = f((x * y) * 0) + f(0 * (x * y))$$

= $f(x * y) + f((0 * x) * (0 * y))$
 $\leq f(x * y) + f(0 * x) - f(0 * y)$

and

$$\begin{split} 0 &= f((y * x) * 0) + f(0 * (y * x)) \\ &= f(y * x) + f((0 * y) * (0 * x)) \\ &\leq f(y * x) + f(0 * y) - f(0 * x). \end{split}$$

Hence, f(x * y) + f(0 * x) - f(0 * y) = 0 and f(y * x) + f(0 * y) - f(0 * x) = 0, which imply that f(x * y) + f(y * x) = 0. Hence, $(x, y) \in \theta_f$; that is, $x_f = y_f$. Therefore, $(X_f, \odot, 0_f)$ is a *BCI*-algebra. Moreover, if X is a *BCK*-algebra, then 0 * x = 0 for all $x \in X$. Hence, $0_f \odot x_f = (0 * x)_f = 0_f$ for all $x_f \in X_f$. Hence, $(X_f, \odot, 0_f)$ is a *BCK*-algebra. \Box

The following example illustrates Theorem 7.

Example 1. Let $X = \{0, a, b, c, d\}$ be a set with the *-operation given by Table 1.

Table 1. *-operation.					
*	0	а	b	С	d
0	0	0	0	0	0
а	а	0	0	а	0
b	b	b	0	b	0
С	С	С	С	0	С

Then, (X; *, 0) is a BCK-algebra (see [7]), and a real-valued function f on X defined by

$$f = \begin{pmatrix} 0 & a & b & c & d \\ 0 & -4 & -9 & 0 & -11 \end{pmatrix}$$

is an I-quasi-valuation map of X (see [5]). It is routine to verify that

$$\theta_f = \{(0,0), (a,a), (b,b), (c,c), (d,d), (0,c), (c,0)\},\$$

and $X_f = \{0_f, a_f, b_f, d_f\}$ is a BCK-algebra where $0_f = \{0, c\}, a_f = \{a\}, b_f = \{b\}$, and $d_f = \{d\}$.

Proposition 3. *Given an I-quasi-valuation map f of a BCI-algebra X, if A_f is a closed ideal of X, then A_f* \subseteq 0_f.

Proof. Let $x \in A_f$. Then, $0 * x \in A_f$ since A_f is a closed ideal, and so $f(x) \ge 0$ and $f(0 * x) \ge 0$. It follows from (1) that

$$f(0 * x) + f(x * 0) = f(0 * x) + f(x) \ge 0,$$

and so that f(0 * x) + f(x * 0) = 0 by using Lemma 1(2). Hence, $(0, x) \in \theta_f$; that is, $x \in 0_f$. Therefore, $A_f \subseteq 0_f$. \Box

Corollary 4. If f is an I-quasi-valuation map of a BCK-algebra X, then $A_f \subseteq 0_f$.

Proposition 4. Let f be an I-quasi-valuation map of a BCI-algebra such that

$$(\forall x \in X)(f(x) \le 0). \tag{18}$$

Then, $0_f \subseteq A_f$.

Proof. Let $x \in 0_f$. Then, $(0, x) \in \theta_f$, and so

$$f(0 * x) + f(x) = f(0 * x) + f(x * 0) = 0.$$

It follows from (18) that f(0 * x) = 0 = f(x). Hence, $x \in A_f$, and therefore $0_f \subseteq A_f$. \Box

Let *I* be an ideal of *X* and let η_I be a relation on *X* defined as follows:

$$(\forall x, y \in X)((x, y) \in \eta_I \Leftrightarrow x * y \in I, y * x \in I).$$

Then, η_I is a congruence relation on *X*, which is called the ideal congruence relation on *X* induced by *I* (see [6]). Denote by *X*/*I* the set of all equivalence classes; that is,

$$X/I := \{ [x]_I \mid x \in X \},\$$

where $[x]_I = \{y \in X \mid (x, y) \in \eta_I\}$. If we define a binary operation $*_I$ on X/I by $[x]_I *_I [y]_I = [x * y]_I$ for all $[x]_I, [y]_I \in X/I$, then $(X, *_I, [0]_I)$ is a *BCK/BCI*-algebra (see [6]).

Proposition 5. *If f is an I-quasi-valuation map of X, then* $\eta_{A_f} \subseteq \theta_f$ *.*

Proof. Let $x, y \in X$ be such that $(x, y) \in \eta_{A_f}$. Then, $x * y \in A_f$ and $y * x \in A_f$, which imply that $f(x * y) \ge 0$ and $f(y * x) \ge 0$. Hence, $f(x * y) + f(y * x) \ge 0$, and so f(x * y) + f(y * x) = 0 by using Lemma 1(2). Thus, $(x, y) \in \theta_f$. This completes the proof. \Box

Proposition 6. If f is an I-quasi-valuation map of X such that $A_f = X$, then $\theta_f \subseteq \eta_{A_f}$.

Proof. Let $x, y \in X$ be such that $(x, y) \in \theta_f$. Then, f(x * y) + f(y * x) = 0, and so f(x * y) = 0 and f(y * x) = 0 by the condition $A_f = X$. It follows that $x * y \in A_f$ and $y * x \in A_f$. Hence, $(x, y) \in \eta_{A_f}$, and therefore $\theta_f \subseteq \eta_{A_f}$. \Box

Theorem 8. If *I* is an ideal of *X*, then $\eta_I = \theta_{f_I}$.

Proof. Let $x, y \in X$ be such that $(x, y) \in \eta_I$. Then, $x * y \in I$ and $y * x \in I$. It follows that $f_I(x * y) = 0$ and $f_I(y * x) = 0$. Hence, $f_I(x * y) + f_I(y * x) = 0$, and thus $(x, y) \in \theta_{f_I}$.

Conversely, let $(x, y) \in \theta_{f_I}$ for $x, y \in X$. Then, $f_I(x * y) + f_I(y * x) = 0$, which implies that $f_I(x * y) = 0$ and $f_I(y * x) = 0$ since $f_I(x) \le 0$ for all $x \in X$. Hence, $x * y \in I$ and $y * x \in I$; that is, $(x, y) \in \eta_I$. This completes the proof. \Box

Corollary 5. If f is an I-quasi-valuation map of X, then $\eta_{A_f} = \theta_{f_{A_f}}$.

Theorem 9. For any two different I-quasi-valuation maps f and g of X, if $0_f = 0_g$, then θ_f and θ_g coincide, and so $X_f = X_g$.

Proof. Let $x, y \in X$ be such that $(x, y) \in \theta_f$. Then, $(x * y, 0) = (x * y, y * y) \in \theta_f$, and so $x * y \in 0_f$. Similarly, we have $y * x \in 0_f$. It follows from $0_f = 0_g$ that $x_g \odot y_g = (x * y)_g = 0_g$ and $y_g \odot x_g = (y * x)_g = 0_g$. Hence, $x_g = y_g$, and so $(x, y) \in \theta_g$. Similarly, we can verify that if $(x, y) \in \theta_g$, then $(x, y) \in \theta_f$. Therefore, θ_f and θ_g coincide and so $X_f = X_g$. \Box

Theorem 10. Let I be an ideal of X and let f be an I-quasi-valuation map of X such that $0_f \subseteq I$. If we denote

$$I_f := \{ x_f \mid x \in I \},$$

then the following assertions are valid.

- (1) $(\forall x \in X)(x \in I \Leftrightarrow x_f \in I_f).$
- (2) I_f is an ideal of X_f .

Proof. (1) It is clear that if $x \in I$, then $x_f \in I_f$. Let $x \in X$ be such that $x_f \in I_f$. Then, there exists $y \in I$ such that $x_f = y_f$. Hence, $(x, y) \in \theta_f$, and so $(x * y, 0) = (x * y, y * y) \in \theta_f$. It follows that $x * y \in 0_f \subseteq I$ and so that $x \in I$.

(2) Clearly, $0_f \in I_f$ since $0 \in I$. Let $x, y \in X$ be such that $x_f \odot y_f \in I_f$ and $y_f \in I_f$. Then, $(x * y)_f = x_f \odot y_f \in I_f$, and so $x * y \in I$ and $y \in I$ by (1). Since I is an ideal of X, it follows that $x \in I$ and so that $x_f \in I_f$. Therefore, I_f is an ideal of X_f . \Box

Theorem 11. For any I-quasi-valuation map f of X, if J^* is an ideal of X_f , then the set

$$J := \{x \in X \mid x_f \in J^*\}$$

is an ideal of X containing 0_f .

Proof. It is obvious that $0 \in 0_f \subseteq J$. Let $x, y \in X$ be such that $x * y \in J$ and $y \in J$. Then, $y_f \in J^*$ and $x_f \odot y_f = (x * y)_f \in J^*$. Since J^* is an ideal of X_f , it follows that $x_f \in J^*$ (i.e., $x \in J$). Therefore, J is an ideal of X. \Box

Let $\mathcal{I}(X_f)$ denote the set of all ideals of X_f , and let $\mathcal{I}(X, f)$ denote the set of all ideals of X containing 0_f . Then, there exists a bijection between $\mathcal{I}(X_f)$ and $\mathcal{I}(X, f)$; that is, $\psi : \mathcal{I}(X_f) \to \mathcal{I}(X, f), I \mapsto I_f$ is a bijection.

Proposition 7. Let $\varphi : X \to Y$ be a homomorphism of BCK/BCI-algebras. If f is an I-quasi-valuation map of Y, then the composition $f \circ \varphi$ of f and φ is an I-quasi-valuation map of X.

Proof. We have $(f \circ \varphi)(0) = f(\varphi(0)) = f(0) = 0$. For any $x, y \in X$, we get

$$\begin{aligned} (f \circ \varphi)(x) &= f(\varphi(x)) \\ &\geq f(\varphi(x) * \varphi(y)) + f(\varphi(y)) \\ &= f(\varphi(x * y)) + f(\varphi(y)) \\ &= (f \circ \varphi)(x * y) + (f \circ \varphi)(y). \end{aligned}$$

Hence, $f \circ \varphi$ is an *I*-quasi-valuation map of *X*. \Box

Theorem 12. Let φ : $X \to Y$ be an onto homomorphism of BCK/BCI-algebras. If f is an I-quasi-valuation map of Y, then $X_{f \circ \varphi}$ and Y_f are isomorphic.

Proof. Define a map $\zeta : X_{f \circ \varphi} \to Y_f$ by $\zeta(x_{f \circ \varphi}) = \varphi(x)_f$ for all $x \in X$. If we let $x_{f \circ \varphi} = a_{f \circ \varphi}$ for $a, x \in X$, then

$$\begin{aligned} 0 &= (f \circ \varphi)(x * a) + (f \circ \varphi)(a * x) \\ &= f(\varphi(x * a)) + f(\varphi(a * x)) \\ &= f(\varphi(x) + \varphi(a)) + f(\varphi(a) * \varphi(x)), \end{aligned}$$

which implies that $\zeta(x_{f \circ \varphi}) = \varphi(x)_f = \varphi(a)_f = \zeta(a_{f \circ \varphi})$. Hence, ζ is well-defined. For any $a, x \in X$, we have

$$\begin{aligned} \zeta(x_{f \circ \varphi} \odot a_{f \circ \varphi}) &= \zeta((x * a)_{f \circ \varphi}) = \varphi(x * a)_f \\ &= (\varphi(x) * \varphi(a))_f = \varphi(x)_f \odot \varphi(a)_f \\ &= \zeta(x_{f \circ \varphi}) \odot \zeta(a_{f \circ \varphi}). \end{aligned}$$

This shows that ζ is a homomorphism. For any y_f in Y_f , there exists $x \in X$ such that $\varphi(x) = y$, since φ is surjective. It follows that $\zeta(x_{f \circ \varphi}) = \varphi(x)_f = y_f$. Thus, ζ is surjective. Suppose that $\zeta(x_{f \circ \varphi}) = \zeta(a_{f \circ \varphi})$ for any $x_{f \circ \varphi}, a_{f \circ \varphi} \in X_{f \circ \varphi}$. Then, $\varphi(x)_f = \varphi(a)_f$, and so

$$(f \circ \varphi)(x * a) + (f \circ \varphi)(a * x) = f(\varphi(x * a)) + f(\varphi(a * x))$$
$$= f(\varphi(x) * \varphi(a)) + f(\varphi(a) * \varphi(x)) = 0.$$

Hence, $x_{f \circ \varphi} = a_{f \circ \varphi}$. This shows that ζ is injective, and therefore $X_{f \circ \varphi}$ and Y_f are isomorphic. \Box

Theorem 13. *Given an I-quasi-valuation map f of X, the following assertions are valid.*

- (1) The map $\pi: X \to X_f$, $x \mapsto x_f$ is an onto homomorphism.
- (2) For each I-quasi-valuation map g^* of X_f , there exist an I-quasi-valuation map g of X such that $g = g^* \circ \pi$.
- (3) If $A_f = X$, then the map

$$f^*: X_f \to \mathbb{R}, x_f \mapsto f(x)$$

is an I-quasi-valuation map of X_f .

Proof. (1) and (2) are straightforward.

(3) Assume that $x_f = y_f$ for $x, y \in X$. Then, f(x * y) + f(y * x) = 0, which implies from the assumption that f(x * y) = 0 = f(y * x). Since $x * (x * y) \le y$ for all $x, y \in X$, we get $f(y) \le f(x * (x * y))$. It follows that

$$f(x) \ge f(x * (x * y)) + f(x * y) \ge f(x * y) + f(y) \ge f(y).$$

Similarly, we show that $f(x) \le f(y)$, and so f(x) = f(y); that is, $f^*(x_f) = f^*(y_f)$. Therefore, f^* is well-defined. Now, we have $f^*(0_f) = f(0) = 0$ and

$$f^*(x_f) = f(x) \ge f(x * y) + f(y) = f^*((x * y)_f) + f^*(y_f) = f^*(x_f \odot y_f) + f^*(y_f).$$

Therefore, f^* is an *I*-quasi-valuation map of X_f . \Box

4. Conclusions

Quasi-valuation maps on BCK/BCI-algebras were studied by Song et al. in [5]. The aim of this paper was to study the quotient structures of BCK/BCI-algebras induced by quasi-valuation maps. We have described relations between *I*-quasi-valuation maps and ideals in BCK/BCI-algebras. We have induced the quasi-metric space by using an *I*-quasi-valuation map of a BCK/BCI-algebra, and have investigated several properties. We have considered relations between the *I*-quasi-valuation map and the *I*-valuation map, and have provided conditions for an *I*-quasi-valuation map to be an *I*-valuation map. We have used *I*-quasi-valuation maps to introduce a congruence relation, and then constructed the quotient structures with related properties. We have established isomorphic quotient BCK/BCI-algebras. In the future, from a purely mathematical standpoint, we will apply the concepts and results in this article to related algebraic structures, such as BCC-algebras (see [9,10]), and so on. From an application standpoint, we will try to find the possibility of extending our proposed approach to some decision-making problem, mathematical programming, medical diagnosis, etc.

Acknowledgments: The authors wish to thank the anonymous reviewers for their valuable suggestions.

Author Contributions: All authors contributed equally and significantly to the study and preparation of the manuscript. They have read and approved the final article.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Imai, Y.; Iséki, K. On axiom systems of propositional calculi, XIV. Proc. Jpn. Acad. 1966, 42, 19–22. [CrossRef]
- 2. Iséki, K. An algebra related with a propositional calculus. Proc. Jpn. Acad. 1966, 42, 26–29.[CrossRef]
- 3. Iséki, K. On BCI-algebras. Math. Semin. Notes 1980, 8, 125–130.
- 4. Iséki, K.; Tanaka, S. An introduction to theory of BCK-algebras. Math. Japonica 1978, 23, 1–26.
- 5. Song, S.Z.; Roh, E.H.; Jun, Y.B. Quasi-valuation mapd on *BCK/BCI*-algebras. *Kyungpook Math. J.* 2015, 55, 859–870.[CrossRef]
- 6. Huang, Y.S. BCI-Algebra; Science Press: Beijing, China, 2006.
- 7. Meng, J.; Jun, Y.B. *BCK-Algebras*; Kyungmoon Sa Co.: Seoul, Korea, 1994.
- 8. Dudek, W.A.; Zhang, X.H. On atoms in BCC-Algebras. Discuss. Math. Algebra Stoch. Methods 1995, 15, 81–85.
- Zhang, X.H. Fuzzy anti-grouped filters and fuzzy normal filters in pseudo *BCI*-Algebras. *J. Intell. Fuzzy Syst.* 2017, 33, 1767–1774.[CrossRef]
- Zhang, X.H.; Park, C.; Wu, S.P. Soft set theoretical approach to pseudo *BCI*-algebras. *J. Intell. Fuzzy Syst.* 2018, 34, 559–568.[CrossRef]

 \odot 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).