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Abstract: We prove that if G is a Polish group and A a group admitting a system of generators whose
associated length function satisfies: (i) if 0 < k < ω, then lg(x) ≤ lg(xk); (ii) if lg(y) < k < ω and
xk = y, then x = e, then there exists a subgroup G∗ of G of size b (the bounding number) such that
G∗ is not embeddable in A. In particular, we prove that the automorphism group of a countable
structure cannot be an uncountable right-angled Artin group. This generalizes analogous results for
free and free abelian uncountable groups.
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In a meeting in Durham in 1997, Evans asked if an uncountable free group can be realized as
the group of automorphisms of a countable structure. This was settled in the negative by Shelah [1].
Independently, in the context of descriptive set theory, Becher and Kechris [2] asked if an uncountable
Polish group can be free. This was also answered negatively by Shelah [3], generalizing the techniques
of [1]. Inspired by the question of Becher and Kechris, Solecki [4] proved that no uncountable Polish
group can be free abelian. In this paper, we give a general framework for these results, proving that no
uncountable Polish group can be a right-angled Artin group (see Definition 1). We actually prove more:

Theorem 1. Let G = (G, d) be an uncountable Polish group and A a group admitting a system of generators
whose associated length function satisfies the following conditions:

(i) if 0 < k < ω, then lg(x) ≤ lg(xk);
(ii) if lg(y) < k < ω and xk = y, then x = e.

Then G is not isomorphic to A; in fact, there exists a subgroup G∗ of G of size b (the bounding number)
such that G∗ is not embeddable in A.

After the authors proved Theorem 1, they discovered that the impossibility to endow groups A as
in Theorem 1 with a Polish group topology follows from an old important result of Dudley [5]. In fact,
Dudley’s work implies more strongly that we cannot even find a homomorphism from a Polish group
G into A. Apart from the fact that the claim about G∗ in Theorem 1 is of independent interest and not
subsumed by Dudley’s work, our focus here is on techniques; i.e., the crucial use of the Compactness
Lemma of [3]. This powerful result has a broad scope of applications, and is used by the authors in a
work in preparation [6] to deal with classes of groups not covered by Theorem 1 or Dudley’s work,
most notably the class of right-angled Coxeter groups (see Definition 1).

Proof of Theorem 1. Let ζ = (ζn)n<ω ∈ Rω be such that ζn < 2−n, for every n < ω, and
ḡ = (gn)n<ω ∈ Gω such that gn 6= e and d(gn, e) < ζn, for every n < ω. Let Λ be a set of power
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b of increasing functions η ∈ ωω which is unbounded with respect to the partial order of eventual
domination. For transparency, we also assume that for every η ∈ Λ we have η(0) > 0. For η ∈ Λ,
define the following set of equations:

Γη = {xη(n)
n+1 = xngn : n < ω}.

By (3.1, [3]), for every η ∈ Λ, Γη is solvable in G. Let b̄η = (bη,n)n<ω witness it; i.e.,

b̄η ∈ Gω and
∧

n<ω

bη(n)
η,n+1 = bη,ngn.

Let G∗ be the subgroup of G generated by {gn : n < ω} ∪ {bη,n : η ∈ Λ, n < ω}. Towards
contradiction, suppose that π is an embedding of G∗ into A, and let S be a system of generators for
A whose associated length function lgS = lg satisfies conditions (i) and (ii) of the statement of the
theorem. For η ∈ Λ and n < ω, let:

π(gn) = g′n, π(bη,n) = cη,n and m∗(η) = lg(cη,0).

Now, m∗ is a function from Λ to ω and so there exists unbounded Λ1 ⊆ Λ such that for every
η ∈ Λ1 the value m∗(η) is a constant m∗. Fix such a Λ1 and m∗, and let f1, f2 ∈ ωω increasing satisfying
the following:

(1) f1(n) > lg(g′n);
(2) f2(n) = (m∗ + 1) + ∑`<n f1(`).

Claim 1. For every η ∈ Λ1, lg(cη,n) < f2(n).

Proof. By induction on n < ω. The case n = 0 is clear by the choice of f1 and f2. Let n = m + 1.
Because of assumption (i) on A, the choice of Λ1, and the choice of f1 and f2, we have:

lg(cη,n) ≤ lg(cη(m)
η,n )

= lg(cη,mg′m)
≤ lg(cη,m) + lg(g′m)
< f2(m) + f1(m)

= f2(n).

Now, by the choice of Λ1, we can find η ∈ Λ1 and n < ω such that η(n) > f2(n + 2). Notice then
that by the claim above and the choice of f1 and f2, we have:

η(n) > f2(n + 1) = f2(n) + f1(n) > lg(cη,n) + lg(g′n) ≥ lg(cη,ng′n), (1)

η(n) > f2(n + 2) ≥ f1(n + 1) > lg(g′n+1). (2)

Thus, by (1) and the fact that cη(n)
η,n+1 = cη,ng′n, using assumption (ii), we infer that cη,n+1 = e. Hence,

cη(n+1)
η,n+2 = cη,n+1g′n+1 = g′n+1.

Furthermore, if η(n+ 1) > lg(g′n+1), then again by assumption (ii), we have that cη,n+2 = e, and so

cη(n+1)
η,n+2 = g′n+1 = e, which contradicts the choice of (gn)n<ω. Hence, η(n) < η(n + 1) ≤ lg(g′n+1),

contradicting (2). It follows that the embedding π from G∗ into A cannot exist.
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Definition 1. Given a graph Γ = (E, V), the right-angled Artin group A(Γ) is the group with presentation:

Ω(Γ) = 〈V | ab = ba : aEb〉.

If in the presentation Ω(Γ), we ask in addition that all the generators are involutions, then we speak of
right-angled Coxeter groups C(Γ).

Thus, for Γ, a graph with no edges (resp. a complete graph) A(Γ) is a free group (resp. a free
abelian group).

Definition 2. Let A(Γ) be a right-angled Artin group and lg its associated length function. We say that an
element g ∈ A(Γ) is cyclically reduced if it cannot be written as g = h f h−1 with lg(g) = lg( f ) + 2.

Fact 1. Let A(Γ) be a right-angled Artin group, lg its associated length function, and g ∈ A(Γ). Then:

(1) g can be written as h f h−1 with f cyclically reduced and lg(g) = lg( f ) + 2lg(h);
(2) if 0 < k < ω and f is cyclically reduced, then lg( f k) = klg( f );
(3) if 0 < k < ω and g = h f h−1 is as in (1), then lg(h f h−1)k = klg( f ) + 2lg(h).

Proof. Item (1) is proved in (Proposition on p. 38, [7]). The rest is folklore.

Corollary 1. No uncountable Polish group can be a right-angled Artin group.

Proof. By Theorem 1 it suffices to show that for every right-angled Artin group A(Γ) the associated
length function lg satisfies conditions (i) and (ii) of the theorem, but by Fact 1, this is clear.

As is well known, the automorphism group of a countable structure is naturally endowed with a
Polish topology which respects the group structure, hence:

Corollary 2. The automorphism group of a countable structure cannot be an uncountable right-angled Artin group.

As already mentioned, the situation is different for right-angled Coxeter groups; in fact, the
structure M with ω many disjoint unary predicates of size 2 is such that Aut(M) = (Z2)

ω; i.e., Aut(M)

is the right-angled Coxeter group on Kc (a complete graph on continuum many vertices). Notice that
in this group for any a 6= b ∈ Kc, we have:

(i) (ab)2 = 1;
(ii) lg(ab) = 2 < 3, (ab)3 = ab and ab 6= e.
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