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1. Introduction

Classical results of Poincaré [1] (1885), Hopf [2] (1925) and Lefschetz [3] (1937) yield the archetypal
fixed point theorem for Lie group actions:

Theorem 1. Every flow on a compact manifold of non-zero Euler characteristic has a fixed point.

Here the Lie group is the group R of real numbers.
The earliest papers I have found on fixed points for actions of other non-discrete Lie group are those

of P. A. Smith [4] (1942) and H. Wang [5] (1952). Then came Armand Borel’s landmark paper of 1956:

Theorem 2 (Borel [6]). If H is a solvable, irreducible affine algebraic group over an algebraically
closed field K, every algebraic action of H on a complete algebraic variety over K has a fixed point.

Over the field of complex numbers, completeness is equivalent to compactness in the classical
topology, and complete nonsingular varieties are compact Kähler manifolds.
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In 1973, A. Sommese [7] extended Borel’s theorem to solvable holomorphic actions on compact
Kähler manifolds with first Betti number 0. In contrast to the results below, these have no explicit
restrictions on dimensions or Euler characteristics.

2. Actions and Local Actions

If f : A→ B denotes a map, its domain is Df := A and its range isRf := f(A).
Let g, f denote maps. Regardless of their domains and ranges, the composition g ◦ f is defined as

the map x 7→ g(f(x)) whose domain, perhaps empty, is f−1(Dg). The associative law holds for these
compositions: The maps (h ◦ g) ◦ f and h ◦ (g ◦ f) have the same domain

D := {x ∈ Df : f(x) ∈ Dg, g(f(x)) ∈ Df},

and
x ∈ D =⇒ (h ◦ g)(f(x)) = h((g ◦ f)(x)).

Henceforth M denotes a manifold with boundary ∂M , and G denotes a connected Lie group with Lie
algebra g.

A local homeomorphism f on M is a homeomorphism between open subsets of M . The set of these
homeomorphisms is denoted by LH(M).

A local action of G on M is a triple (α,G,M), where α : G → LH(M) is a function having the
following properties:

• The set Ω(α) :=
{

(g, p) ∈ G×M : p ∈ Dα(g)
}

is an open neighborhood of {eG} ×M .

• The evaluation map
evα : Ω(α)→M, (g, p) 7→ α(g) · p

is continuous.

• α(eG) is the identity map of M .

• The maps α(fg) ◦ α(h) and α(f) ◦ α(gh) agree on the intersection of their domains.

• α(g−1) = α(g)−1.

Notation of α may be omitted.
When Ω(α) = G×M the local action is a global action. If G is simply connected and M is compact,

every local action extends to a unique global action.
When α has been specified, we define the fixed-point sets

Fix(g) := {x ∈ Dg : g(x) = x},

Fix(G) :=
⋂
g∈G

Fix(g)

The local action is effective if Fix(g) 6= M for all g 6= eG.
A local flow is a local action (Ψ,R,M). In this case we set Ψt := Ψ(t) and identify Ψ with the

indexed family of {Ψt}t∈R of local maps in M . If (α,G,M) is a local action, to every X ∈ g there
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corresponds a local flow (α∗Ψ,R,M) defined in the following. Consider X as a 1-parameter subgroup
of G, i.e., a homomorphism X : R→ G, and set α∗Ψ = {α(X(t))}t∈R. The local flow induced by a C1

vector field X on M tangent to ∂M is denoted by ΦX := {ΦX
t }t∈R.

A block for a local flow Ψ (a Ψ-block) is a compact K ⊂ Fix(Ψ) having a precompact open
neighborhood U ⊂ M , termed isolating, such that Fix(Ψ) ∩ U = K. When this holds, the index
i(Ψ, U) of Ψ in U is defined as the fixed point index of Ψt|U : U → M for sufficiently small t > 0, as
defined by Dold [8] (see also Brown [9] and Granas and Dugundji [10]). This integer depends only on
K, and we set iK(Ψ) := i(Ψ, U). When iK(Ψ) 6= 0 then K is essential. If K is a block for the local
flow ΦX of a vector field X , an equivalent definition of iK(ΦX) as the Poincaré–Hopf index of X at K
is given in Section 4.

3. Fixed Points of Local Actions on Surfaces

In the rest of this section M denotes a real closed surface (compact with empty boundary) and G is a
connected Lie group acting continuously on M .

An important role is played by the group ST◦(n,R), the solvable group of real, upper triangulable
n × n matrices with positive diagonal entries. In his pioneering 1964 paper, E. Lima [11] constructed
fixed-point free actions of ST◦(2,R) on the compact 2-cell and the 2-sphere, but he also showed that
every abelian Lie group action on a compact surface M of nonzero Euler characteristic χ(M) has a fixed
point. These results were extended in 1986 by Plante:

Theorem 3 (Plante [12]). Let M be a compact surface whose boundary may be nonempty.

(i) ST◦(2,R) has a fixed-point free action on M .

(ii) If χ(M) 6= 0, every action on M by a connected nilpotent Lie group has a fixed point.

Many facts about existence of fixed points for continuous actions on closed surfaces can be derived
from the results of M. Belliart summarized in the following theorem. If H ⊂ GL(n,F) denotes a group
of matrices, PH denotes the quotient of H by its center.

Theorem 4 (Belliart [13]). There is a fixed-point free action ofG onM iff one of the following conditions
(a), (b), (c) holds:

(a) χ(M) > 0 and G is solvable but not nilpotent.

(b) χ(M) < 0 and G has ST◦(2,R) as a quotient.

(c) χ(M) ≥ 0, G is semisimple, and either:

(i) G has PSL(2,R) as a quotient, or

(ii) χ(M) > 0, ∂M = ∅, and G has as a quotient one of the groups
PSL(3,R), PSL(2,C) or PSO(3).

A Lie algebra is supersolvable if it is faithfully represented as upper triangular real matrices. A Lie
group is supersolvable if its Lie algebra is.
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Theorem 5.

(i) ST◦(3,R) has an effective analytic action on M .

(ii) If G has an effective, fixed-point free analytic action on M , then χ(M) ≥ 0, with equality when G
is a supersolvable and ∂M = ∅.

Part (i) and the first conclusion in (ii) are due to Turiel [14]. The second conclusion in (ii) is due to
Hirsch and Weinstein [15].

The following result gives upper and lower bounds on the number of fixed points of analytic actions
of ST◦(3,R):

Proposition 1 (Hirsch [16], Cor. 17, Thm 22).

(i) Let M have genus g. For every k ∈ N there is an effective analytic action β of ST◦(3,R) on M
such that:

#Fix(β) =

2(g + k + 1) if M is orientable,

g + k if M is nonorientable and g ≥ 1.
(1)

(ii) If G is not supersolvable and has an effective analytic action on M ,

0 ≤ #Fix(G) ≤ χ(M) ≤ 2.

Question. Can the right hand side of Equation (1) can be lowered?

4. Indices of Vector Fields

Let V(M) denote the vector space of vector fields (continuous sections of the tangent bundle) on a
smooth manifold M , endowed with the compact open topology.

The zero set of X ∈ V(M) is

Z(X) := {p ∈M : Xp = 0}.

A block forX (anX-block) is a compact, relatively open setK ⊂ Z(X). Every sufficiently small open
neighborhood U ⊂ M of K is isolating for X , meaning its closure U is compact and Z(X) ∩ U = K.
This implies that U is isolating for every vector field Y sufficiently close to X .

Let K be an X-block. When K is finite, the Poincaré–Hopf index of X at K, and in U , is the integer
iPHK (X) = iPH(X,U) defined as follows. For each p ∈ K choose an open set W ⊂ U meeting K only
at p, such that W is the domain of a C1 chart

φ : W ≈ W ′ ⊂ Rn, φ(p) = p′.

The transform of X by φ is
X ′ := Tφ ◦X ◦ φ−1 ∈ V(W ′).

There is a unique map of pairs
Fp : (W ′, 0)→ Rn, 0)
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that expresses X ′ by the formula

X ′x =
(
x, Fp(x)

)
∈ {x} × Rn, (x ∈ W ′).

Noting that F−1(0) = p, we define iPHp (X) ∈ Z as the degree of the map defined for any sufficiently
small ε > 0 as

Sn−1 → Sn−1, u 7→ Fp(εu)

‖Fp(εu)‖
where ‖ · ‖ is the norm defined by any Riemannian metric on M . This degree is independent of ε and the
chart φ, by standard properties of the degree function. Therefore the integer

iPHK (X) = iPH(X,U) :=


∑

p∈K i
PH
p (X) ifK 6= ∅,

0 ifK = ∅.

is well defined and depends only on X and K.
The index of an arbitrary X-block K is the integer iK(X) := i(X,U) defined as the Poincaré–Hopf

index of any sufficiently close approximation to X having only finitely many zeros in U [17].
This number is independent of U and is stable under perturbations of X . The X-block K is essential

when iK(X) 6= 0. This implies Z(X)∩K 6= ∅ because every isolating neighborhood of K meets Z(X).

Theorem 6 (Poincaré–Hopf). If M is compact, i(X,M) = χ(M) for all continuous vector fields X
on M .

For calculations of the index in more general settings see Morse [18], Pugh [19], Gottlieb [20],
Jubin [21].

Theorem 7 (Bonatti [22]). Assume M is a real manifold of dimension ≤ 4 with empty boundary,
and X, Y are analytic vector fields on M such that [X, Y ] = 0. Then Z(Y ) meets every essential
X-block [23].

This implies certain local actions of 2-dimensional abelian Lie groups have fixed points. The results
below are analogs for local actions of nonabelian Lie groups.

Theorem 8 (Hirsch [24]). Let M be a real surface, perhaps non-compact or having non-empty
boundary. Let G be a connected nilpotent Lie group and (α,G,M) an effective local action. Assume
given a continuous local action of G on M , and let K be an essential block for the local flow induced by
a 1-parameter subgroup. Then Fix(G) ∩K 6= ∅.

This implies Plante’s result, Theorem 3(ii).

Corollary 1. Let G,M and X be as in Theorem 8.

(i) If Γ ⊂M is a compact attractor for ΦX and χ(Γ) 6= 0, then Fix(G) ∩ Γ 6= ∅.

(ii) If ΦX has n essential blocks, then Fix(G) has n components.
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The counter-example in Theorem 3(i) show that fixed point results for broader classes of Lie groups,
including supersolvable groups, need stronger hypotheses.

Henceforth M denotes either a real or complex 2-manifold, the corresponding ground field being
F = R or C. Let Vω(M) denote the Lie algebra of vector fields on M that are analytic over F. If
Y ∈ Vω(M), TΦY denotes the induced local flow on the tangent vector bundle of M .

Assume X, Y ∈ Vω(M). We say that Y tracks X if there exists a continuous map

f : M → F, f−1(0) = Z(X), [Y,X] = fX.

Equivalently: if p ∈M and t ∈ R there exists g(t, p) ∈ F such that:

ΦY
t (p) = q(t) =⇒ TΦY

t (Xp) = g(t, p)Xq(t).

For real M this means ΦY
t sends orbits of X|DΦY

t to orbits of X|RΦY
t .

Let G ⊂ Vω(M) denote a Lie algebra of vector fields. We say that G tracks X provided each Y ∈ G
tracks X .

Example 1. If X spans an ideal in G then G tracks X , and the converse holds if G is finite dimensional.

Example 2. The set {Y ∈ Vω(M) : Y tracks X} is a Lie algebra that tracks X .

The following result will be proved in a forthcoming paper [25]; a preliminary version is in [26].

Theorem 9. Assume X ∈ Vω(M), K is an essential X-bloc, and G ⊂ Vω(M) tracks X . Let one of the
following conditions hold:

(a) M is complex,

(b) M is real and G is supersolvable.

Then Z(G) ∩K 6= ∅.

Example 3. Here is a simple example in which the hypotheses hold. For M take complex projective
3-space. Let G be the solvable complex Lie group of unimodular 4× 4 upper triangular complex
matrices. The natural action of G on C4 induces an effective holomorphic action of G on M , mapping
the Lie algebra of G isomorphically onto a Lie algebra G ⊂ Vω(M). Let X ∈ G have the block [ 0 1

0 0 ] in
its upper right hand corner and all other elements equal to zero. X spans an ideal, the triple commutator
subalgebra G ′′′. The X-block K := Z(X), a copy of CP1, is essential because χ(M) = 3; and Z(G) is a
singleton in Z(X).

Conflicts of Interest

The author declares no conflict of interest.



Axioms 2015, 4 319

References and Notes

1. Poincaré, H. Sur les courbes définies par une équation différentielle. J. Math. Pures Appl. 1885,
1, 167–244.

2. Hopf, H. Vektorfelder in Mannifgfaltigkeiten. Math. Ann. 1925, 95, 340–367.
3. Lefschetz, S. On the fixed point formula. Ann. Math. 1937, 38, 819–822.
4. Smith, P.A. Stationary points of transformation groups. Proc. Natl. Acad. Sci. USA 1942, 28,

293–297.
5. Wang, H.-C. A remark on transformation groups leaving fixed an end point. Proc. Am. Math. Soc.

1952, 3, 548–549.
6. Borel, A. Groupes linéaires algébriques. Ann. Math. 1956, 64, 20–80.
7. Sommese, A. Borel’s fixed point theorem for Kaehler manifolds and an application. Proc. Am.

Math. Soc. 1973, 41, 51–54.
8. Dold, A. Lectures on Algebraic Topology. In Die Grundlehren der Matematischen Wissenschaften

Bd. 52, 2nd ed.; Springer-Verlag: New York, NY, USA, 1972.
9. Brown, R. The Lefschetz fixed point theorem. Scott, Foresman & Co.: Glenview, IL, USA, 1971.

10. Granas, A.; Dugundji, J. Fixed Point Theory; Springer-Verlag: New York, NY, USA, 2003.
11. Lima, E. Common singularities of commuting vector fields on 2-manifolds. Comment. Math.

Helv. 1964, 39, 97–110.
12. Plante, J. Fixed points of Lie group actions on surfaces. Ergod. Theory Dyn. Syst. 1986, 6,

149–161.
13. Belliart, M. Actions sans points fixes sur les surfaces compactes. Math. Z. 1997, 225, 453–465.
14. Turiel, F.-J. Analytic actions on compact surfaces and fixed points. Manuscr. Math. 2003, 110,

195–201.
15. Hirsch, M.; Weinstein, A. Fixed points of analytic actions of supersoluble Lie groups on compact

surfaces. Ergod. Theory Dyn. Syst. 2001, 21, 1783–1787
16. Hirsch, M. Actions of Lie groups and Lie algebras on manifolds. In A Celebration of the

Mathematical Legacy of Raoul Bott; Amer. Math. Soc.: Providence, RI, USA, 2010.
17. Equivalently: i(X,U) is the intersection number ofX|U with the zero section of the tangent bundle

(Bonatti [22]).
18. Morse, M. Singular Points of Vector Fields Under General Boundary Conditions. Am. J. Math.

1929, 52, 165–178.
19. Pugh, C. A generalized Poincaré index formula. Topology 1968, 7, 217–226.
20. Gottlieb, D. A de Moivre like formula for fixed point theory. In Fixed Point Theory and its

Applications (Berkeley, CA, 1986); Amer. Math. Soc.: Providence, RI, USA, 1988.
21. Jubin, B. A generalized Poincaré–Hopf index theorem. arxiv:0903.0697, 2009.
22. Bonatti, C. Champs de vecteurs analytiques commutants, en dimension 3 ou 4: Existence de zéros

communs. Bol. Soc. Brasil. Mat. 1992, 22, 215–247.
23. This paper was inspired by a remarkable result of C. Bonatti, which does not require compactness

ofM . “The demonstration of this result involves a beautiful and quite difficult local study of the set
of zeros of X , as an analytic Y -invariant set.” —Molino, P. Review of Bonatti [22], Math Reviews
93h:57044; Amer. Math. Soc.: Providence, RI, USA, 1993.



Axioms 2015, 4 320

24. Hirsch, M. Fixed points of local actions of nilpotent Lie groups on surfaces.
arXiv:org/1405.2331, 2013.

25. Hirsch, M. Zero sets of Lie algebras of analytic vector fields on real and complex 2-manifolds.
2015, submitted.

26. Hirsch, M. Zero sets of Lie algebras of analytic vector fields on real and complex 2-manifolds.
arXiv.1310.0081v2, 2015.

c© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Actions and Local Actions
	Fixed Points of Local Actions on Surfaces
	Indices of Vector Fields

