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1. Introduction

Our main objective is the study of paratopological groups that can be represented as continuous
images of products of Lindelöf Σ-spaces. While the properties of (para)topological groups that are
Lindelöf Σ-spaces (referred to as Lindelöf Σ-groups) are well-understood [1–4], our knowledge about
the former class of groups is very modest. The lack of the continuity of the inverse in paratopological
groups makes our job more difficult when compared to the case of topological groups. In fact, most of
our technique is essentially asymmetric.

Topological groups representable as continuous images of products of Lindelöf Σ-spaces were studied
in [5], where it was shown that every uncountable regular cardinal was a weak precaliber for any group
G in this class and that G satisfied celω(G) ≤ ω. According to [2] (Corollary 3.5), a slightly weaker
result is valid for Tychonoff paratopological groups representable as continuous images of products of
Lindelöf Σ-spaces: these groups G satisfy the inequality celω(G) ≤ ω. However, the justification of this
fact given in [2] contains a gap. In a few words, the problem with the argument in [2] is the existence of a
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weak σ-lattice of open continuous mappings of a given completely regular paratopological group G onto
Hausdorff spaces with a Gδ-diagonal (see Definition 6). As far as we know, all other results in [2] are
proven correctly. It is a simple exercise to show that every Hausdorff topological group has the required
lattice of open mappings, while the case of paratopological groups is much more elusive.

It follows from our lemmas 9 and 11 that every weakly Lindelöf regular paratopological group has
a weak σ-lattice of continuous open mappings onto Hausdorff spaces with a Gδ-diagonal. Since every
space representable as a continuous image of a product of Lindelöf Σ-spaces is weakly Lindelöf, these
facts fill in the gap in the proof of [2] (Corollary 3.5) (see our Theorem 13).

It turns out that the paratopological groups G, which are continuous images of products of Lindelöf
Σ-spaces, have several properties that make them look like Lindelöf Σ-groups. For example, we prove
in Theorem 12 that such a group G is R-factorizable and has countable cellularity. If in addition the
group G is regular, then it is totally ω-narrow and satisfies celω(G) ≤ ω, and the Hewitt–Nachbin
completion of G is again an R-factorizable paratopological group containing G as a dense subgroup
(see Theorem 13). This fact is one of the first results on the preservation of the paratopological group
structure under taking the Hewitt–Nachbin completion: almost all known results of this kind refer to
topological groups, and their proofs depend essentially on the continuity of the inverse.

Finally, in Section 4, we formulate several open problems regarding paratopological groups
representable as continuous images of products of Lindelöf Σ-spaces. We are mainly interested in finding
out whether the conclusions “G is totally ω-narrow and satisfies celω(G) ≤ ω” in Theorem 13 can be
extended to Hausdorff paratopological groups G.

The article is organized as follows. In Section 2, we introduce a class LΣ of Hausdorff spaces that
contains the Lindelöf Σ-spaces and shares many properties with the latter one. The advantage of working
with spaces from the class LΣ resides in the fact that this class is stable with respect to taking Hausdorff
continuous images. We collect several results about the permanence properties of the class LΣ and
present more facts that will be used in Section 3.

Section 3 contains our main results about paratopological groups representable as continuous images
of products of Lindelöf Σ-spaces. A few selected problems related to the material of Section 3 are given
with comments in Section 4.

2. Preliminaries

A space X is weakly Lindelöf if every open cover of X contains a countable subfamily whose
union is dense in X . Every space with a dense Lindelöf subspace or having countable cellularity is
weakly Lindelöf.

According to [6], a Hausdorff space X is called a Lindelöf Σ-space if there exist a countable family
F of closed sets in X and a cover C of X by compact sets, such that for every C ∈ C and every open
neighborhood U of C in X , one can find F ∈ F, such that C ⊆ F ⊆ U . In fact, K. Nagami defined
in [6] the wider class of Σ-spaces, so the Lindelöf Σ-spaces are simply the Σ-spaces with the Lindelöf
property. The reader can find a detailed discussion of distinct ways to define Lindelöf Σ-spaces in [7]
(Theorem 1).
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It is known that the class of Lindelöf Σ-spaces is countably productive and that an Fσ-subset of a
Lindelöf Σ-space is again a Lindelöf Σ-space [6]. This class of spaces becomes especially stable when
one restricts himself to considering Tychonoff spaces only. It turns out that every continuous image, say
Y of a Lindelöf Σ-space X , is again a Lindelöf Σ-space, provided that X and Y are Tychonoff [1],
(Proposition 5.3.5). In fact, the same conclusion remains valid if X is Hausdorff and Y is regular [4]
(Lemma 4.5). However, we do not know whether the latter fact can be extended to the case when both X
and Y are Hausdorff. This is why we define here a (possibly) wider class LΣ of Hausdorff spaces that is
countably productive and is closed under taking continuous images.

Definition 1. A Hausdorff space X is in the class LΣ if there exist a countable family F of (not
necessarily closed) subsets of X and a cover C of X by compact subsets, such that for every C ∈ C

and every open neighborhood U of C in X , one can find F ∈ F, such that C ⊆ F ⊆ U .

It follows from Definition 1 that every Lindelöf Σ-space is in the class LΣ. It is also easy to verify
that every space X ∈ LΣ is Lindelöf. Therefore, a regular space in LΣ is normal (hence, Tychonoff), so
regular spaces in LΣ are Lindelöf Σ-spaces according to [7] (Theorem 1).

Proposition 2. The class LΣ is countably productive and closed under taking continuous images.
Further, if Y is an Fσ-subset of a space X ∈ LΣ, then Y ∈ LΣ.

Proof. Let {Xk : k ∈ ω} ⊆ LΣ be a family of spaces. For every k ∈ ω, let Fk and Ck be families of
subsets of Xk witnessing that Xk ∈ LΣ. We can assume that Xk ∈ Fk for each k ∈ ω. To show that
X =

∏
k∈ωXk is in LΣ, we define families F and C of subsets of X as follows.

Let F be the family of sets of the form
∏

k∈ω Fk, where Fk ∈ Fk for each k ∈ ω and Fk 6= Xk for at
most finitely many indices k ∈ ω. Clearly the family F is countable. Similarly, let C be the family of sets
of the form

∏
k∈ωCk, where Ck ∈ Ck for each k ∈ ω. Then, the family C consists of compact subsets

of X . Take an element C ∈ C and an open neighborhood U of C in X . Then, C =
∏

k∈ωCk, where
Ck ∈ Ck for each k ∈ ω. By Wallace’s Lemma, there exists a finite set A ⊆ ω and open sets Ok ⊆ Xk

with k ∈ A, such that C ⊆
∏

k∈ω Vk ⊆ U , where Vk = Ok if k ∈ A and Vk = Xk if k ∈ ω \ A. For
every k ∈ A, there exists Fk ∈ Fk, such that Ck ⊆ Fk ⊆ Ok. Let F =

∏
k∈ωEk, where Ek = Fk if

k ∈ A and Ek = Xk if k ∈ ω \ A. Then, F ∈ F and C ⊆ F ⊆
∏

k∈ω Vk ⊆ U . Therefore, the families
F and C witness that X ∈ LΣ. This proves that the class LΣ is countably productive.

Let f : X → Y be a continuous onto mapping of Hausdorff spaces, where X ∈ LΣ. Take families F
and C of subsets of X witnessing that X ∈ LΣ. It is easy to verify that the families FY = {f(F ) : F ∈
F} and CY = {f(C) : C ∈ C} of subsets of Y witness that Y ∈ LΣ.

Finally, let Y =
⋃
k∈ωBk, where each Bk is a closed subset of a space X ∈ LΣ. Denote by F and C

families of subsets of X witnessing that X ∈ LΣ, where F is countable and each C ∈ C is compact. Let
us verify that the families:

FY = {F ∩Bk : F ∈ F, k ∈ ω}

and:
CY = {C ∩Bk : C ∈ C, k ∈ ω}
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witness that Y ∈ LΣ. It is clear that |FY | ≤ ω and that each element of CY is a compact subset of Y .
Let K = C ∩Bk be an element of CY , where C ∈ C and k ∈ ω. Let also V be an open neighborhood of
K in Y . Then, there exists an open set O in X , such that O∩Y = V . Since the compact set C ′ = C \O
is disjoint from K and the space X is Hausdorff, we can find disjoint open in X neighborhoods W1

and W2 of K and C ′, respectively. The set W ∗ = W2 \ Bk is open in X and contains C ′. Hence, the
set U = O ∪ W ∗ is an open neighborhood of C in X , so we can find an element F ∈ F, such that
C ⊆ F ⊆ U . Then, F ∩Bk is an element of FY that satisfies:

K ⊆ F ∩Bk ⊆ U ∩Bk = O ∩Bk ⊆ O ∩ Y = V

This completes the proof of the fact that Y ∈ LΣ.

Another important property of the spaces in LΣ is presented in the following result, which is close
to [1] (Proposition 5.3.15). However, our proof of Proposition 3 is quite different from the one given in
[1], since we work in the class of Hausdorff spaces, which is much wider than the class of Tychonoff
spaces considered in [1] (Section 5.3).

Proposition 3. If a space X ∈ LΣ admits a continuous one-to-one mapping onto a Hausdorff space Y
with a countable network, then X itself has a countable network.

Proof. Let f : X → Y be a continuous bijection. It is well known that every Hausdorff space with a
countable network admits a continuous one-to-one mapping onto a second countable Hausdorff space.
Let i : Y → Z be a continuous bijection of Y onto a second countable Hausdorff space Z. Then, g = i◦f
is a continuous bijection of X onto Z. Denote by B a countable base for Z. We can assume that B is
closed under finite intersections and finite unions.

Let families F and C of subsets of X witness that X ∈ LΣ, where |F| ≤ ω and each C ∈ C is
compact. We claim that the countable family:

N = {F ∩ g−1(W ) : F ∈ F, W ∈ B}

is a network for X . Indeed, take a point x ∈ X and an open neighborhood U of x in X . There exists
C ∈ C, such that x ∈ C. Then, K = C \ U is a compact subset of X and x /∈ K. Hence, the compact
subset g(K) of Z does not contain the point g(x), and we can find disjoint elements W,W ′ ∈ B, such
that g(x) ∈ W and g(K) ⊆ W ′. Then, O = U ∪ g−1(W ′) is an open neighborhood of C in X , so there
exists an element F ∈ F, such that C ⊆ F ⊆ O. It is clear that F ∩ g−1(W ) is an element of N, and we
have that:

x ∈ F ∩ g−1(W ) ⊆ O ∩ g−1(W ) = U ∩ g−1(W ) ⊆ U

We have thus proven that N is a countable network for X .

Replacing the family N in the proof of Proposition 3 with the family:

N′ = {F ∩ g−1(W ) : F ∈ F, W ∈ B}

we obtain the following version of the proposition:
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Proposition 4. If a Lindelöf Σ-space X admits a continuous one-to-one mapping onto a Hausdorff
space with a countable network, then X has a countable network of closed sets.

The following lemma was proven in [2] for regular Lindelöf Σ-spaces. Therefore, we extend the
corresponding result from [2] to the wider class of Hausdorff LΣ-spaces.

Lemma 5. If a space X ∈ LΣ has a Gδ-diagonal, then it has a countable network.

Proof. Suppose that X ∈ LΣ. Then, Proposition 2 implies that X2 ∈ LΣ, so the space X2 is Lindelöf.
Let {Un : n ∈ ω} be a family of open neighborhoods of the diagonal ∆X in X2 such that ∆X =⋂
n∈ω Un. It is clear that Fn = X2 \ Un is a closed Lindelöf subspace of X2. Given n ∈ ω and a

point (x, y) ∈ Fn, we can find disjoint open neighborhoods Vn(x, y) and Wn(x, y) of the points x and
y, respectively, in X . The open cover {Vn(x, y) ×Wn(x, y) : (x, y) ∈ Fn} of the Lindelöf space Fn
contains a countable subcover, say {Vn(x, y)×Wn(x, y) : (x, y) ∈ Cn}, where Cn is a countable subset
of Fn. Let:

γ = {Vn(x, y) : n ∈ ω, (x, y) ∈ Cn} ∪ {Wn(x, y) : n ∈ ω, (x, y) ∈ Cn}

Then, γ is a countable family of open sets in X . We claim that for every pair a, b of distinct points in
X , there exist disjoint elements V,W ∈ γ, such that a ∈ V and b ∈ W . Indeed, since (a, b) ∈ X2 \∆X ,
there exists n ∈ ω, such that (a, b) /∈ Un, i.e., (a, b) ∈ Fn. Hence, there exists an element (x, y) ∈ Cn,
such that (a, b) ∈ Vn(x, y)×Wn(x, y). This means that V = Vn(x, y) ∈ γ and W = Wn(x, y) ∈ γ are
disjoint open neighborhoods of the points a and b, respectively. This proves our claim.

Let B be the family of finite intersections of elements of γ. It is clear that B is a base for a Hausdorff
topology τ on X . Then, the space Y = (X, τ) has a countable base, and the identity mapping of X onto
Y is a continuous bijection. Applying Proposition 3, we conclude that X has a countable network.

Given continuous mappings g : X → Y and h : X → Z, we will write g ≺ h if there exists a
continuous mapping p : Y → Z satisfying h = p ◦ g.

We will also need the notion of a weak σ-lattice of mappings mentioned in the Introduction (see
also [2], Definition 3.1).

Definition 6. Let Y be a space and L a family of continuous mappings of Y elsewhere. Then, L is said
to be a weak σ-lattice for Y if the following conditions hold:

(1) L generates the original topology of Y ;
(2) every finite subfamily of L has a lower bound in (L,≺);

(3) for every decreasing sequence p0 � p1 � p2 � · · · in L, there exists p ∈ L and a continuous
one-to-one mapping φ : p(Y )→ q(Y ), such that q = φ ◦ p, where q is the diagonal product of the
family {pn : n ∈ ω}.

A typical example of a weak σ-lattice for a topological groupH is the family of all quotient mappings
πN : H → H/N onto left coset spaces, where N is an arbitrary closed subgroup of type Gδ in H .

Let us recall that a Gδ,Σ-set in a space X is the union of an arbitrary family ofGδ-sets in X . Further, a
space Y is said to beω-cellular or, in symbols, celω(Y ) ≤ ω if every family γ ofGδ-sets in Y contains a
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countable subfamily λ, such that
⋃
λ is dense in

⋃
γ. It is clear that everyω-cellular space has countable

cellularity. In fact, the class of ω-cellular spaces is considerably narrower than the class of spaces of
countable cellularity. For example, a space Y of countable pseudo-character satisfies celω(Y ) ≤ ω if
and only if it is hereditarily separable.

Our next result is a special case of [2] (Theorem 3.4), which is sufficient for our purposes. We supply
it with a short proof based on another fact from [2].

Theorem 7. Let X =
∏

i∈I Xi be a product of regular Lindelöf Σ-spaces and a Tychonoff space Y be
a continuous image of X . If Y has a weak σ-lattice of open mappings onto Hausdorff spaces with a
Gδ-diagonal, then celω(Y ) ≤ ω, and the closure of every Gδ,Σ-subset of Y is a Gδ-set.

Proof. First, we choose a point a ∈ X . For every countable set J ⊆ I , denote by pJ the projection
of X onto the sub-product XJ =

∏
i∈J Xi. Then, XJ is a Lindelöf Σ-space, and we identify it with a

corresponding closed subspace of X multiplying XJ by the singleton {pJ(a)}. Then, the family:

{pJ : J ⊆ I, |J | ≤ ω}

constitutes a strong σ-lattice of open retractions ofX onto Lindelöf Σ-subspaces (see [2], Definition 3.1).
Let f : X → Y be a continuous onto mapping. Denote by L a weak σ-lattice of open mappings

of Y onto Hausdorff spaces with a Gδ-diagonal. For every ϕ ∈ L, the composition g = ϕ ◦ f is a
continuous mapping of X onto the Hausdorff space ϕ(Y ) with a Gδ-diagonal. By [8] (Theorem 1), g
depends at most on countably many coordinates, so we can find a countable set J ⊆ I and a mapping
hJ : XJ → ϕ(Y ), such that g = hJ ◦ pJ . Since pJ is an open continuous mapping, hJ is continuous.
Hence, ϕ(Y ) is in the class LΣ as a continuous image of the Lindelöf Σ-space XJ . By Lemma 5, ϕ(Y )

has a countable network for each ϕ ∈ L. It follows that X , f , Y satisfy the conditions of Theorem 3.3
in [2]; hence, celω(Y ) ≤ ω, and the closure of every Gδ,Σ-subset of Y is a Gδ-set in Y .

We recall that a paratopological group G is called R-factorizable if for every continuous real-valued
function f on G, one can find a continuous homomorphism p : G → H onto a second countable
paratopological group H and a continuous real-valued function h on H satisfying f = h ◦ p. The
original definition of R-factorizable paratopological groups in [9] involves separation restrictions on the
groups G and H , thus giving rise to the concepts of Ri-factorizability for i = 1, 2, 3. However, it is
shown in [4] that all of these concepts coincide and are equivalent to the one given above.

The following fact is a special case of [10] (Theorem 2.2) formulated in a form convenient for
applications in Section 3. More precisely, it will be used in the proof of Theorem 12 to deduce
the R-factorizability of paratopological groups representable as continuous images of products of
Lindelöf Σ-spaces.

Proposition 8. Let f : H → M be a continuous mapping of a Hausdorff weakly Lindelöf
paratopological group H to a metrizable space M . Then, one can find a closed subgroup N of type
Gδ in H and a continuous mapping h of the left coset space H/N to M , such that H/N is Hausdorff
and the equality f = h ◦ p holds, where p : G→ G/N is the quotient mapping.
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3. Continuous Images of Products of Lindelöf Σ-Spaces

In this section we present the proofs of our main results announced in the Introduction. We start with
three auxiliary results, Lemmas 9 to 11.

Let us recall that a space X is Urysohn if for every pair x, y of distinct points in X , there exist open
neighborhoods Ux and Uy of x and y, respectively, such that Ux ∩ Uy = ∅.

Lemma 9. Let G be a weakly Lindelöf regular paratopological group, λ0 a countable family of open
neighborhoods of the identity element e in G and U0 ∈ λ0. Then, there exists a closed subgroup N of G
satisfying the following conditions, where πl : G → G/N and πr : G → G\N are quotient mappings of
G onto the left and right coset spaces G/N and G\N , respectively:

(a) N ⊆
⋂
λ0;

(b l) the space G/N is Urysohn and has a Gδ-diagonal;
(br) the space G\N is Urysohn and has a Gδ-diagonal;
(c) there exist open neighborhoods Ol and Or of the elements πl(e) and πr(e) in G/N and G\N ,

respectively, such that π−1
l (Ol) ⊆ U0 and π−1

r (Or) ⊆ U0.

Proof. Denote by N(e) the family of open neighborhoods of e in G. Since G is weakly Lindelöf,
it follows from [11] (Theorem 10) that the index of regularity of G is countable. Hence the Hausdorff
number of G is also countable [12] (Proposition 3.5), i.e., for every U ∈ N(e), there exists a countable
family λ ⊂ N(e), such that

⋂
V ∈λ V V

−1 ⊂ U .
We introduce a new group multiplication in G by letting x ∗ y = y · x, for all x, y ∈ G. Let G∗ be the

paratopological group (G, ∗, τ), where τ is the topology of G. In other words, G and G∗ differ only in
multiplication. Hence, G∗ is also weakly Lindelöf and has a countable Hausdorff number. Therefore, for
every U ∈ N(e), there exists a countable family λ ⊂ N(e), such that

⋂
V ∈λ V ∗V −1 ⊂ U or, equivalently,⋂

V ∈λ V
−1V ⊂ U .

Let γ0 = λ0. Making use of the inequalities Hs(G) ≤ ω and Hs(G∗) ≤ ω, one can define a
sequence {γn : n ∈ ω} of countable subfamilies of N(e) satisfying the following conditions for each
n ∈ ω:

(i) For every V ∈ γn, there exists W ∈ γn+1, such that W 2 ⊂ V ;
(iir)

⋂
W∈γn+1

WW−1 ⊂ V , for each V ∈ γn;
(ii l)

⋂
W∈γn+1

W−1W ⊂ V , for each V ∈ γn.

Then, γ =
⋃
n∈ω γn is a countable subfamily of N(e). Let us show that N =

⋂
γ is as required.

Since λ0 = γ0 ⊆ γ, it follows thatN ⊆
⋂
λ0. This implies the validity of (a) of the lemma. Condition

(iir) implies that NN−1 ⊆ V for every V ∈ γn and every n ∈ ω, so NN−1 ⊆ N . Since N contains
the identity e of G, we see that N is a subgroup of G. Let πl : G → G/N and πr : G → G\N be the
quotient mappings. By (i), there exists V ∈ γ1 ⊂ γ, such that V 2 ⊂ U0. Then, Ol = πl(V ) is an open
neighborhood of πl(e) in G/N and π−1

l (Ol) = V N ⊂ V 2 ⊂ U0. Similarly, Or = πr(V ) is an open
neighborhood of πr(e) in G\N and π−1

r (Or) = NV ⊂ V 2 ⊂ U0. Hence, (c) of the lemma is valid,
as well.
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Our next step is to show that condition (b l) of the lemma is also fulfilled, i.e., the coset space G/N
is Urysohn and, hence, Hausdorff. In particular, the subgroup N = π−1

l πl(e) is closed in G. A similar
verification of item (br) is left to the reader, since it only requires the use of (iir) in place of (ii l).

Take an arbitrary element x ∈ G, such that x /∈ N . Since the space G/N is homogeneous, it suffices
to show that the points πl(e) and πl(x) have disjoint closed neighborhoods in G/N . As x /∈ N , there
exists an element U ∈ γn, for some n ∈ ω, such that x /∈ U . By (ii l), there exists V ∈ γn+1, such
that x /∈ V −1V . Applying (i) twice, we can find W ∈ γn+3, such that W 4 ⊆ V . Then, W−2W 4 ⊆
W−4W 4 63 x, whence it follows that:

W−1W 2 ∩WxW−2 = ∅ (1)

Since the mapping πl of G onto G/N is open and N ⊆ W (and, therefore, N = N−1 ⊆ W−1), we
have the following inclusions:

π−1
l (πl(W )) = π−1

l (πl(W )) = WN ⊆ W−1WN ⊆ W−1W 2 (2)

and:
π−1
l (πl(Wx)) = π−1

l (πl(Wx)) = WxN ⊆ WxNW−1 ⊆ WxW−2 (3)

Combining Equations (1) to (3), we see that the closed subsets πl(W ) and πl(Wx) of G/N are
disjoint. Since πl(W ) and πl(Wx) are open neighborhoods of πl(e) and πl(x), respectively, in G/N ,
the latter space is Urysohn.

Finally we verify that G/N has a Gδ-diagonal. For every U ∈ N(e), let:

OU =
⋃
{πl(xU)× πl(xU) : x ∈ G}

Then, the countable family F = {OU : U ∈ γ} of open entourages of the diagonal ∆ in G/N ×G/N
satisfies ∆ =

⋂
F. Indeed, take arbitrary elements a, b ∈ G, such that πl(a) 6= πl(b). Then, a−1b /∈ N ,

so we can find an element U ∈ γn, for some n ∈ ω, such that a−1b /∈ U . By (ii l), there exists
V ∈ γn+1, such that a−1b /∈ V −1V . Now, we apply (i) to take W ∈ γn+2 with W 2 ⊆ V . We claim
that (πl(a),πl(b)) /∈ OW . Indeed, otherwise, there exists x ∈ G, such that πl(a) ∈ πl(xW ) and
πl(b) ∈ πl(xW ). The latter implies that a ∈ xWN and b ∈ xWN , whence:

a−1b ∈ N−1W−1x−1xWN ⊂ W−2W 2 ⊂ V −1V

which is a contradiction. Since the family F is countable, we conclude that the coset space G/N
has a Gδ-diagonal. A similar argument shows that the right coset space G\N has a Gδ-diagonal. This
completes the proof.

The next result is almost evident, so we omit its proof.

Lemma 10. The class of spaces with a Gδ-diagonal is countably productive.

Lemma 11. Let G be a weakly Lindelöf regular paratopological group and A the family of closed
subgroups N of G that satisfy conditions (b l) and (br) of Lemma 9. Then, A is closed under
countable intersections.
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Proof. Let {Nk : k ∈ ω} ⊆ A be a sequence of subgroups of G. For every k ∈ ω, denote by πk the
quotient mapping of G onto the left coset space G/Nk. Let also ϕ be the diagonal product of the family
{πk : k ∈ ω}. Then, ϕ is a continuous mapping of G to the product space Z =

∏
k∈ωG/Nk. Each of

the factors G/Nk has a Gδ-diagonal, and so does Z, by Lemma 10. Hence the subspace ϕ(G) of Z also
has a Gδ-diagonal. Similarly, the space Z and its subspace ϕ(G) are Urysohn since the factors G/Nk

are Urysohn.
Put N =

⋂
k∈ωNk, and let π : G → G/N be the quotient mapping. For every k ∈ ω, there exists a

mapping pk : G/N → G/Nk, such that πk = pk ◦ π. The mapping pk is continuous and open since so
are π and πk. The diagonal product of the family {pk : k ∈ ω}, say p, is a continuous mapping of G/N
to Z =

∏
k∈ωG/Nk. It is clear that p satisfies the equality ϕ = p ◦π. It is also easy to see that the fibers

of the mappings ϕ and π coincide, i.e., p is a continuous bijection of G/N onto ϕ(G). Indeed, take
arbitrary points x, y ∈ G with ϕ(x) = ϕ(y). We have to show that π(x) = π(y). It follows from the
definition of ϕ that πk(x) = πk(y), for each k ∈ ω. Hence, x−1y ∈

⋂
k∈ωNk = N and π(x) = π(y).

Therefore, the equality ϕ = p ◦ π implies that p : G/N → ϕ(G) is a continuous bijection.
Finally, since the space ϕ(G) is Urysohn and has a Gδ-diagonal and p is continuous and one-to-one,

we infer that the space G/N is also Urysohn and has a Gδ-diagonal. A similar argument shows that the
right coset space G\N has the same property. This proves that N ∈ A.

In the following theorem, we do not impose any separation restriction on the paratopological
group G.

Theorem 12. Let X =
∏

i∈I Xi be a product of regular Lindelöf Σ-spaces and f : X → G a
continuous mapping of X onto a paratopological group G. Then, the group G is R-factorizable and
has countable cellularity.

Proof. Consider a continuous real-valued function g defined on G. We can assume the group G is
a regular space. Indeed, let ϕr : G → Reg(G) be the canonical continuous homomorphism, where
Reg(G) is the regularization of G (see [13,14]). Then, Reg(G) is a regular paratopological group, and
by the definition of Reg(G), there exists a continuous real-valued function gr on Reg(G), such that g =

gr ◦ϕr. Hence, G is R-factorizable if so is the group Reg(G). It also follows from [15] (Proposition 2.2)
that the groups G and Reg(G) have the same cellularity. Notice that ϕr ◦ f is a continuous mapping of
X onto Reg(G). Thus, we can assume that G itself is regular.

By a recent theorem of Banakh and Ravsky in [16], every regular paratopological group is completely
regular. Each factor Xi, being a regular Lindelöf space, is normal and, hence, Tychonoff. Therefore,
the product space X is Tychonoff, as well. Our next step is to show that G has a weak σ-lattice of open
mappings onto Hausdorff spaces with a Gδ-diagonal.

Take an arbitrary point x∗ inX and denote by σ(x∗) the subspace ofX consisting of the points x ∈ X
that differ from x∗ at most on finitely many coordinates. Clearly σ(x∗) is dense in X . Since the class
of Lindelöf Σ-spaces is finitely productive (this follows, e.g., from Proposition 2) [1] (Corollary 1.6.45)
implies that the subspace σ(x∗) of X is Lindelöf. Hence, f(σ(x∗)) is a dense Lindelöf subspace of G,
so the space G is weakly Lindelöf. Applying Lemma 9, we see that the topology of the group G is
initial with respect to the family L of quotient mappings of G onto Urysohn left coset spaces with a
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Gδ-diagonal, and the same is valid for the family R of quotient mappings of G onto Urysohn right coset
spaces with a Gδ-diagonal. Making use of Lemma 11, one can easily prove that both L and R are weak
σ-lattices of continuous open mappings for G. A routine verification of this fact is omitted.

Since G is a continuous image of the product space X , Theorem 7 implies that celω(G) ≤ ω. As
c(G) ≤ celω(G), we conclude that G has countable cellularity. It remains to show that the group G is
R-factorizable. This requires several steps.

Following the notation in Lemma 11, we denote by A the family of all closed subgroupsN ofG, such
that the coset spaces G/N and G\N are Urysohn and have a Gδ-diagonal.

Claim 1. The coset spaces G/N and G\N have a countable network, for each N ∈ A.

Let πN,l : G → G/N be the quotient mapping, where N ∈ A. Then, fN = πN,l ◦ f is a continuous
mapping of X onto the left coset space G/N . Notice that XJ =

∏
i∈J Xi is a Lindelöf Σ-space for

every countable set J ⊂ I; hence, [8] (Theorem 1) implies that fN depends on at most countably many
coordinates, i.e., one can find a countable set J ⊂ I and a continuous mapping h : XJ → G/N , such that
fN = h ◦ pJ , where pJ : X → XJ is the projection. It is clear that h is a surjective mapping. Applying
Proposition 2, we conclude that G/N ∈ LΣ. Hence, by Lemma 5, the space G/N has a countable
network. The same argument applied to the quotient mapping πN,r : G → G\N enables us to deduce
that the right coset space G\N also has a countable network. This proves Claim 1.

Claim 2. For every N ∈ A, there exists M ∈ A, such that πM,r ≺ πN,l, and similarly, for every
L ∈ A, there exists K ∈ A, such that πK,l ≺ πL,r.

By the symmetry argument, it suffices to verify the first part of the claim. Let N be a closed subgroup
of G, such that the left coset space G/N is Urysohn and has a Gδ-diagonal. By Claim 1, the space G/N
has a countable network. Denote by Z the semi-regularization of the space G/N (see [14], p. 204), and
let iN : G/N → Z be the identity mapping. SinceG/N is Hausdorff, it follows from [17] (Proposition 1)
that the space Z is regular. It is clear that the mapping iN is continuous, so Z has a countable network as
a continuous image of the space G/N . In particular, Z is Lindelöf and normal. Since Z has a countable
network, we can find a continuous bijection iZ : Z → Z0 onto a separable metrizable space Z0. Then,
p = iZ ◦iN ◦πN,l is a continuous mapping ofG onto Z0. By Proposition 8, there exists a closed subgroup
M of type Gδ in G and a continuous mapping q : G\M → Z0, such that p = q ◦ πM,r, where πM,r is
the quotient mapping of G onto G\M . According to Lemma 9 we can assume without loss of generality
that M ∈ A. Let q0 = i−1

N ◦ i
−1
Z ◦ q. The mapping q0 of G\M to G/N is well defined, since iN and iZ

are bijections. Thus, the following diagram commutes.

G
πN,l //

πM,r !!

G/N
iN // Z

iZ // Z0

G\M

q0

OO

q

77

Since πN,l and πM,r are continuous open mappings, so is q0. This implies that πM,r ≺ πN,l. Claim 2
is proven.

Claim 3. For every N ∈ A, there exists K ∈ A, such that K ⊆ N and K is invariant in G.

Indeed, take an arbitrary element N ∈ A, and let N0 = N . By Claim 2, there exists M0 ∈ A, such
that πM0,r ≺ πN0,l. Hence, M0x ⊆ xN0 or, equivalently, M0 ⊆ xN0x

−1, for each x ∈ G. Applying
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Claim 2 once again, we find N1 ∈ A, such that N1 ⊆ x−1M0x for each x ∈ G. Continuing this way,
we define sequences {Nk : k ∈ ω} ⊆ A and {Mk : k ∈ ω} ⊆ A, such that Mk ⊆ xNkx

−1 and
Nk+1 ⊆ xMkx

−1 for each x ∈ G. Then, the subgroup K =
⋂
k∈ωMk =

⋂
k∈ωNk of G is as required.

Indeed, it follows from Lemma 11 that K ∈ A, so both coset spaces G/K and G\K are Urysohn and
have a Gδ-diagonal. It also follows from our definition of K that:

x−1Kx ⊆ x−1Mkx ⊆ Nk

for all x ∈ G and k ∈ ω, so x−1Kx ⊆
⋂
k∈ωNk = K. This inclusion is in fact the equality, so K is a

closed invariant subgroup of G. Since K ⊆ N0 = N , this completes the proof of Claim 3.

We are now in the position to complete our argument. Let us recall that g is an arbitrary continuous
real-valued function on G. Since G is Hausdorff and weakly Lindelöf, we apply Proposition 8 to find a
closed subgroup N of type Gδ in G, such that g is constant on each left coset of N in G. Therefore, there
exists a real-valued function h on G/N , such that g = h ◦ πN,l, where πN,l : G → G/N is the quotient
mapping. Since πN,l is continuous and open, the function h is also continuous. By Lemma 9, there exists
N1 ∈ A with N1 ⊆ N . Then, Claim 3 implies the existence of an invariant subgroup K of G, such that
K ∈ A and K ⊆ N1. The inclusions K ⊆ N1 ⊆ N mean that there exists a mapping πKN : G/K → GN ,
such that πN,l = πKN ◦ πK , where πK : G→ G/K is the quotient homomorphism.

G/K

πKN ##

G

πN,l

��

g //πKoo R

G/N

h

==

Since the mappings πN,l and πK are continuous and open, so is πKN . Hence, hK = h ◦ πKN is a
continuous real-valued function on G/K. Notice that G/K is a paratopological group, by the invariance
of K in G, and G/K is Hausdorff by our choice of K ∈ A. The group G/K has a countable network by
Claim 1; hence, we can apply [9] (Corollary 3.11) according to whichG/K is R-factorizable. Therefore,
we can find a continuous homomorphism ϕ : G/K → P onto a second countable paratopological group
P and a continuous real-valued function hP on P , such that hK = hP ◦ ϕ. Therefore, the following
diagram commutes.

G
πK //

g

��

G/K

ϕ

��

hK

||
R P

hPoo

It remains to note that the continuous homomorphism ψ = ϕ ◦ πK and the function hP satisfy the
equality g = hP ◦ψ, which implies the R-factorizability of the group G.

A topological group G is said to be ω-narrow (see [1], Section 3.4) if it can be covered by countably
many translations of any neighborhood of the identity. A paratopological group is totally ω-narrow if it
is a continuous homomorphic image of anω-narrow topological group or, equivalently, if the topological
group G∗ associated with G isω-narrow [12] (Subsection 1.1).

If the paratopological group G in Theorem 12 is regular, we are able to complement the conclusion
of the theorem as follows:
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Theorem 13. Let X =
∏

i∈I Xi be a product space, where each Xi is a regular Lindelöf Σ-space and
f : X → G a continuous mapping of X onto a regular paratopological group G. Then, the group G
is totally ω-narrow and satisfies celω(G) ≤ ω, and the Hewitt–Nachbin completion υG of the group
G is again a paratopological group containing G as a dense subgroup. Furthermore, the group υG

is R-factorizable.

Proof. Every regular paratopological group is Tychonoff according to [16]. Hence, applying
Theorem 12, we conclude that G is a Tychonoff R-factorizable paratopological group. By [17]
(Proposition 3.10), G is totallyω-narrow.

The inequality celω(G) ≤ ω was established in the proof of Theorem 12 under the assumption of the
regularity of G.

Finally, according to [18] (Theorem 2.3), the Hewitt–Nachbin completion of a Tychonoff
R-factorizable paratopological group is again an R-factorizable paratopological group containing the
original group as a dense subgroup.

Since the Sorgenfrey line S is a regular paratopological group that fails to be totally ω-narrow,
Theorem 13 implies the following curious fact:

Corollary 14. The Sorgenfrey line S is not a continuous image of any product of regular
Lindelöf Σ-spaces.

The above corollary also follows from Theorem 12, since the group S is not R-factorizable according
to [1] (Example 8.1.8). We also note that the conclusion of Corollary 14 is valid for every uncountable
subgroup of S.

Remark 1. We present here a direct proof of the fact that the regular group G in Theorem 13 is totally
ω-narrow. We hope that it can help to treat the more general case when G is Hausdorff.

Let τ be the topology of G. Denote by τ−1 the family {U−1 : U ∈ τ}. Then, G′ = (G, τ−1) is
a paratopological group conjugated to G, and the inversion in G is a homeomorphism of G onto G′.
Hence, G′ is also a continuous image of X , so the groups G and G′ have the same properties. Let ∆ =

{(x, x) : x ∈ G} be the diagonal in the paratopological group G × G′. According to [9] (Lemma 2.2),
∆ is a closed subgroup of G×G′ topologically isomorphic to the topological group G∗ associated with
G. Therefore, it suffices to show that the group ∆ is ω-narrow. Let O be a neighborhood of the identity
e∗ in ∆. There exists an open neighborhood U of the identity e in G, such that ∆ ∩ (U × U−1) ⊆ O.
By Lemma 9 and Claims 1 and 3 in the proof of Theorem 12, we can find a closed invariant subgroup
N of G, such that the quotient group G/N has a countable network and π−1(V ) ⊆ U for some open
neighborhood V of the identity in G/N , where π : G→ G/N is the quotient homomorphism. It is clear
that G′/N is a paratopological group conjugated to G/N and that G′/N has a countable network. Let
π′ : G′ → G′/N be the quotient homomorphism. Then, ϕ = π × π′ is a continuous homomorphism of
G × G′ onto the paratopological group G/N × G′/N with a countable network. Clearly, the subgroup
∆N = {(π(x),π′(x)) : x ∈ G} of G/N × G′/N also has a countable network and, hence, is Lindelöf.
In particular, the group ∆N is ω-narrow. Therefore, we can find a countable subset D of ∆N , such that
DW = ∆N = WD, whereW = ∆N∩(V ×V −1) (we identify the groupsG/N andG′/N algebraically).
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Let C be a countable subset of ∆, such that ϕ(C) = D. It easily follows from our choice of the sets V
and W that ∆∩ϕ−1(W ) ⊆ ∆∩ (U ×U−1) ⊆ O, so we have the equality CO = ∆ = OC. This proves
that the topological group ∆ ∼= G∗ isω-narrow.

4. Open Problems

A space Y is said to have the Knaster property if every uncountable family γ of open sets in Y

contains an uncountable subfamily λ, such that every two elements of λ have a non-empty intersection [1]
(Section 5.4). It is clear that every space with the Knaster property has countable cellularity; the converse
is valid under MA plus the negation of CH and fails under CH .

Problem 15. Let a (Hausdorff) paratopological group G be a continuous image of a product of a family
of Lindelöf Σ-spaces. Does G have the Knaster property? Is it ω-narrow?

It is worth mentioning that if G itself is a Lindelöf Σ-space, then it has the Knaster property and is
totally ω-narrow, since the topological group G∗ associated with G is again a Lindelöf Σ-space (see,
e.g., [9], Corollary 2.3, and [1], Theorem 5.4.7).

Problem 16. Let G be as in Problem 15.

(a) Does the topological group G∗ associated with G satisfies c(G∗) ≤ ω?
(b) Is the group G∗ R-factorizable?
(c) Is the group G∗ ω-narrow?

What if, in addition, the group G in (a), (b) or (c) is Hausdorff or regular?

Let us note that Theorem 13 answers (c) of Problem 16 in the affirmative for a regular paratopological
group G. Since every R-factorizable topological group is ω-narrow, the affirmative answer to (b) of
Problem 16 would imply the same answer to (c) of the problem.

Let us recall that a space Y is said to be perfectly κ-normal if the closure of every open set in Y is
a Gδ-set. Every metrizable space is evidently perfectly κ-normal; it is much less evident that arbitrary
products of metrizable spaces are also perfectly κ-normal [19] (Theorem 2).

Problem 17. Let a Hausdorff (regular) paratopological group G be a continuous image of a dense
subspace of a product of separable metrizable spaces. Is G perfectly κ-normal or R-factorizable?

Every paratopological group G admits the natural left quasi-uniformity LG whose base consists of
the sets:

U l
V = {(x, y) ∈ G2 : x−1y ∈ V }

where V runs through all open neighborhoods of the identity in G. Since every quasi-uniformity is
generated by a family of upper quasi-uniformly continuous quasi-pseudometrics, the following problem
arises in an attempt to show that the group G in Theorem 12 is ω-narrow independently of whether it is
regular or not.
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Problem 18. Does every upper quasi-uniformly continuous quasi-pseudometric on an arbitrary product
of Lindelöf Σ-spaces depend at most on countably many coordinates?
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