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Abstract: In an earlier paper, we found transformation and summation formulas for
43 q-hypergeometric functions of 2n variables. The aim of the present article is to find
convergence regions and a few conjectures of convergence regions for these functions based
on a vector version of the Nova q-addition. These convergence regions are given in a purely
formal way, extending the results of Karlsson (1976). The Γq-function and the q-binomial
coefficients, which are used in the proofs, are adjusted accordingly. Furthermore, limits and
special cases for the new functions, e.g., q-Lauricella functions and q-Horn functions, are
pointed out.
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1. Introduction

The standard work for multiple hypergeometric functions is [1], written by Karlsson and Srivastava.
In a preprint from 1976 [2], Per Karlsson found that the restriction of multiple hypergeometric functions
to an even number of variables gives a large amount of symmetry and, thus, gives clearly defined
convergence regions, integral representations, transformations and reducible cases.

Based on [2] and an earlier paper [3], the aim of the present study is to present convergence
regions for q-functions of 2n variables. Our philosophy is that 2n is an even number, such that the
missing generalizations, or some of them at least, could be discovered by consideration of suitable
hypergeometric functions, which depend on an even number of variables. We do expect such functions to
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possess more complicated parameter systems than the four q-Lauricella functions; on the other hand, they
should not be so complicated that a practical notation becomes impossible; a reasonably high symmetry
will be required. We made the decision that this study should comprise the 43 functions defined in
Definitions 10 and 11. Loosely speaking, we may describe them as certain q-hypergeometric functions
of 2n variables having parameters associated with 1, 2, n or 2n variables (but not any two, nor any n);
for n = 1, they reduce to Appell, Horn, Humbert and simpler q-hypergeometric functions.

The formal q-integral representations work best for q-Appell- and q-Lauricella functions and will be
given in a subsequent article. We make a brief repetition of these q-Appell- and q-Lauricella functions,
with corresponding convergence regions; our 43 functions are natural generalizations, as well as their
convergence regions. For brevity, the definitions will be given in table form, as well as their special
cases. To make the proofs in the current article, we use vector versions of the Γq-function, the q-binomial
coefficients and the q-Stirling formula. A couple of lemmas are necessary for these proofs.

The new definitions are given summarily in tables (which occupy far less space than the corresponding
sequences of equations); certain results are merely suggested; detailed proofs are given only in certain
cases; and conditions of validity are mostly given in introductory remarks, not together with each
result. Since methods and results are natural generalizations of those known from the classical theory
of (multiple) hypergeometric functions, the concentrated exposition is believed to be acceptable. The
usefulness of further investigations is not to be excluded.

This paper is organized as follows: In this section, we give the basic definitions of the first q-functions,
together with the Nova q-addition. In Section 2, we define the 43 q-functions of 2n variables, together
with their limits and special cases. In Section 3, some lemmas are stated and proven. In Section 4, we
derive convergence regions of the new functions by the q-Stirling formula.

Definition 1. Let the q-shifted factorial be defined by:

〈a; q〉N ≡


1, N = 0
N−1∏
m=0

(1− qa+m) N = 1, 2, . . .
(1)

We can write vectors of q-shifted factorials in two ways: Like Exton

〈(g); ~q〉~k ≡
n∏
j=1

〈gj; qj〉kj (2)

or:

〈a1, . . . , an; q〉k ≡
n∏
j=1

〈aj; q〉k (3)

A special notation that is sometimes used is:

〈(α); ~q〉~i+~j− ≡ 〈α1; q1〉i1+jn

n∏
k=2

〈αk; qk〉ik+jk−1
(4)

We have the following inequalities, q-analogues of [2] (p. 11):

〈1; q〉|i| ≥ 〈(1); q〉~i (5)
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〈(1); q〉 ~i+j ≥ 〈(1); q〉~i〈(1); q〉~j (6)(
|i+ j|
|i|

)
q

≥
( ~i+ j

~i

)
q

(7)

These inequalities motivate the following:

Definition 2. The q-binomial coefficients are defined in the usual way, and furthermore, we have the
following extension: (|i+ j|

~i

)
q

≡
〈1; q〉|i+j|
〈1; q〉~i〈1; q〉~j

(8)

The q-multinomial coefficient is defined by:(
n

k1, k2, . . . , km

)
q

≡ 〈1; q〉n
〈1; q〉k1〈1; q〉k2 . . . 〈1; q〉km

(9)

where k1 + k2 + . . .+ km = n. If ~m and ~k are two arbitrary vectors of positive integers with l elements,
their q-binomial coefficient is defined as:(

~m
~k

)
~q

≡
l∏

j=1

(
mj

kj

)
qj

(10)

We now come to the definition that forms the basis for most of the convergence regions given in this
article.

Definition 3. The notation
∑

~m denotes a multiple summation with the indicesm1, . . . ,mn running over
all non-negative integer values.

Given an integer k, the formula:

m0 +m1 + . . .+mj = k (11)

determines a set Jm0,...,mj
∈ Nj+1.

Then, if f(x) is the formal power series
∑∞

l=0 alx
l, its k’-th NWA-power is given by:

(⊕∞q,l=0alx
l)k ≡ (a0 ⊕q a1x⊕q . . .)k ≡

∑
|~m|=k

∏
ml∈Jm0,...,mj

(alx
l)ml

(
k

~m

)
q

(12)

The following important function is used in all convergence proofs.

Definition 4. The q-gamma function is given by:

Γq(z) ≡ 〈1; q〉∞
〈z; q〉∞

(1− q)1−z, 0 < |q| < 1 (13)

To save space, the following notation for quotients of Γq functions will often be used. If the function
values are vectors, we mean the corresponding products of q-gamma functions.

Γq

[
a1, . . . , ap

b1, . . . , br

]
≡ Γq(a1) . . .Γq(ap)

Γq(b1) . . .Γq(br)
(14)
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~Γq

[
~a1, . . . , ~ap
~b1, . . . , ~br

]
≡

~Γq(a1) . . . ~Γq(ap)

~Γq(b1) . . . ~Γq(br)
(15)

where we have used the notation:
~Γq(a) ≡

n∏
k=1

Γq(ak) (16)

Definition 5. Let a and b be any elements with commutative multiplication. Then, the NWA q-addition
is given by:

(a⊕q b)n ≡
n∑
k=0

(
n

k

)
q

akbn−k, n = 0, 1, 2, . . . (17)

In many cases (see [4–6]), the convergence condition can be stated (x⊕q y)n < 1.

Definition 6. The statement:
(x⊕q y)n < 1, n > N0, n ∈ N (18)

is denoted by x⊕q y < 1 and similarly for a finite number of letters.

Definition 7. The four q-Appell functions [5] are given by:

Φ1(a; b, b′; c|q;x1, x2) ≡
∞∑

m1,m2=0

〈a; q〉m1+m2〈b; q〉m1〈b′; q〉m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1+m2

xm1
1 xm2

2

max(|x1|, |x2|) < 1

(19)

Φ2(a; b, b′; c, c′|q;x1, x2) ≡
∞∑

m1,m2=0

〈a; q〉m1+m2〈b; q〉m1〈b′; q〉m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1〈c′; q〉m2

xm1
1 xm2

2

|x1| ⊕q |x2| < 1

(20)

Φ3(a, a′; b, b′; c|q;x1, x2) ≡
∞∑

m1,m2=0

〈a; q〉m1〈a′; q〉m2〈b; q〉m1〈b′; q〉m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1+m2

xm1
1 xm2

2

max(|x1|, |x2|) < 1

(21)

Φ4(a; b; c, c′|q;x1, x2) ≡
∞∑

m1,m2=0

〈a; q〉m1+m2〈b; q〉m1+m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1〈c′; q〉m2

xm1
1 xm2

2

|
√
x1| ⊕q |

√
x2| < 1

(22)

Definition 8. The q-Lauricella functions [4] are given by:

Φ
(n)
A (a,~b;~c|q; ~x) ≡

∑
~m

〈a; q〉m〈~b; q〉~m~x~m

〈~c,~1; q〉~m
, |x1| ⊕q . . .⊕q |xn| < 1 (23)

Φ
(n)
B (~a,~b; c|q; ~x) ≡

∑
~m

〈~a,~b; q〉~m~x~m

〈c; q〉m〈~1; q〉~m
, max(|x1|, · · · , |xn|) < 1 (24)

Φ
(n)
C (a, b;~c|q; ~x) ≡

∑
~m

〈a, b; q〉m~x~m

〈~c,~1; q〉~m
,
√
x1 ⊕q . . .⊕q

√
xn < 1 (25)
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Φ
(n)
D (a, b1, . . . , bn; c|q;x1, . . . , xn) ≡∑
~m

〈a; q〉m
∏n

j=1〈bj; q〉mj
x
mj

j

〈c; q〉m
∏n

j=1〈1; q〉mj

, max(|x|, . . . , |xn|) < 1
(26)

Definition 9. We also put

F2(~a,~a′; c|q; ~x, ~y) ≡
∑
~i,~j

〈~a; q〉~i〈~a′; q〉~j~x
~i~y
~j

〈c; q〉|i|+|j|〈~1; q〉~i〈~1; q〉~j
(27)

Ψ2(a;~c,~c′|q; ~x, ~y) ≡
∑
~i,~j

〈a; q〉|i|+|j|~x~i~y~j

〈~c,~1; q〉~i〈~c′,~1; q〉~j
(28)

We will use the following q-Stirling formula [7]:

Γq(z) ∼ {z}qz−
1
2 (29)

2. 43 q-Functions of 2n Variables

The following functions were defined in [3]; with the exception of I,J,L,M, capital italics denote
sums, e.g.,

A ≡
n∑
j=1

aj (30)

Definition 10. Power series in 2n variables are written:

F(~x, ~y) =
∑
~i,~j

Ψ(~i,~j)~x
~i~y
~j

〈1; q〉~i〈1; q〉~j
(31)

If there is a q-factor, we denote it by explicitly giving the exponent as function of~i,~j, separated by a
semicolon. Example:

ΦA4(a, b; ν, σ|q; ~x, ~y||q2(
~j
2)+ ~jσ) (32)

denotes the function with generic name ΦA4 and q-factor q2(
~j
2)+ ~jσ.

We give the following two lists of q-hypergeometric functions of 2n variables; as before, it is enough
to give only Ψ(~i,~j) according to Equation (31). The letters and numbers in the notations are a mix of
the notations for Appell and Lauricella functions. We can sometimes switch between vectors and scalars
in the definitions. We can permute the indices in a vector ~x. We then have xn+1 = x1. This means
that the vector index is computed modulo n. To translate between [2] and the present paper, we notice
that vectors in [2] (p. 5) are not written. In this paper, we often denote these by ~a. The product [2]
(b1)i · · · (bk)i in [2] (p. 5 (9)) here corresponds to 〈(g); ~q〉~k.
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Definition 11.
Function Ψ(~i,~j)

Φ1(a; b, b′; c|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉|i|〈b′;q〉|j|

〈c;q〉|i|+|j|

Φ2(a; b, b′; c, c′|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉|i|〈b′;q〉|j|

〈c;q〉|i|〈c′;q〉|j|

Φ3(a, a′; b, b′; c|q; ~x, ~y)
〈a,b;q〉|i|〈a′,b′;q〉|j|
〈c;q〉|i|+|j|

Φ4(a, b; c, c′|q; ~x, ~y)
〈a,b;q〉|i|+|j|
〈c;q〉|i|〈c′;q〉|j|

Ψ2(a;~c,~c′|q; ~x, ~y)
〈a;q〉|i|+|j|
〈c;q〉~i〈c′;q〉~j

ΦA(a;~b,~b′;~c,~c′|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉~i〈b

′;q〉~j
〈c;q〉~i〈c′;q〉~j

ΦB(~a,~a′,~b,~b′; c|q; ~x, ~y)
〈a;q〉~i〈a

′;q〉~j〈b;q〉~i〈b
′;q〉~j

〈c;q〉|i|+|j|

ΦC(a, b;~c, ~c′|q; ~x, ~y)
〈a,b;q〉|i|+|j|
〈c;q〉~i〈c′;q〉~j

ΦD(a;~b,~b′; c|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉~i〈b

′;q〉~j
〈c;q〉|i|+|j|

ΦA1(a, a′;~b;~c|q; ~x, ~y)
〈a;q〉|i|〈a′;q〉|j|〈b;q〉 ~i+j

〈c;q〉 ~i+j

ΦA1(a;~b,~b′;~c|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉~i〈b

′;q〉~j
〈c;q〉 ~i+j

ΦA2(a, a′;~b;~c,~c′|q; ~x, ~y)
〈a;q〉|i|〈a′;q〉|j|〈b;q〉 ~i+j

〈c;q〉~i〈c′;q〉~j

ΦA3(a, a′;~b,~b′;~c|q; ~x, ~y)
〈a;q〉|i|〈a′;q〉|j|〈b;q〉~i〈b

′;q〉~j
〈c;q〉 ~i+j

ΦA4(a;~b;~c,~c′|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉 ~i+j

〈c;q〉~i〈c′;q〉~j

ΦB1(~a,~b,~b′; c|q; ~x, ~y)
〈a;q〉 ~i+j〈b;q〉~i〈b

′;q〉~j
〈c;q〉|i|+|j|

ΦB2(~a,~b,~b′; c, c′|q; ~x, ~y)
〈a;q〉 ~i+j〈b;q〉~i〈b

′;q〉~j
〈c;q〉|i|〈c′;q〉|j|

ΦB4(~a,~b; c, c′|q; ~x, ~y)
〈a,b;q〉 ~i+j

〈c;q〉|i|〈c′;q〉|j|

ΦC1(a, b, b′;~c|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉|i|〈b′;q〉|j|

〈c;q〉 ~i+j

ΦC2(a, b, b′;~c,~c′|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉|i|〈b′;q〉|j|

〈c;q〉~i〈c′;q〉~j

ΦC3(a, a′; b, b′;~c|q; ~x, ~y)
〈a,b;q〉|i|〈a′,b′;q〉|j|

〈c;q〉 ~i+j

ΦD1(a, a′;~b; c|q; ~x, ~y)
〈a;q〉|i|〈a′;q〉|j|〈b;q〉 ~i+j

〈c;q〉|i|+|j|

ΦD2(a, a′;~b; c, c′|q; ~x, ~y)
〈a;q〉|i|〈a′;q〉|j|〈b;q〉 ~i+j

〈c;q〉|i|〈c′;q〉|j|

ΦD2(a;~b,~b′; c, c′|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉~i〈b

′;q〉~j
〈c;q〉|i|〈c′;q〉|j|

ΦD3(a, a′;~b,~b′; c|q; ~x, ~y)
〈a;q〉|i|〈a′;q〉|j|〈b;q〉~i〈b

′;q〉~j
〈c;q〉|i|+|j|

ΦD4(a;~b; c, c′|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉 ~i+j

〈c;q〉|i|〈c′;q〉|j|
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Definition 12. When all parameters to the left of | are vectors, we can also let q be a vector.

Function Ψ(~i,~j)

Φa(a;~b;~c|q; ~x, ~y)
〈a;q〉|i|+|j|〈b;q〉 ~i+j−

〈c;q〉 ~i+j

Φa1(a, a′;~b;~c|q; ~x, ~y)
〈a;q〉|i|〈a′;q〉|j|〈b;q〉 ~i+j−

〈c;q〉 ~i+j

Φb(~a,~b; c|q; ~x, ~y)
〈a;q〉 ~i+j〈b;q〉 ~i+j−

〈c;q〉|i|+|j|

Φb4(~a,~b; c, c′|q; ~x, ~y)
〈a;q〉 ~i+j〈b;q〉 ~i+j−

〈c;q〉|i|〈c′;q〉|j|

Φg(~a,~b;~c|q; ~x, ~y)
〈a;q〉 ~i+j〈b;q〉 ~i+j−

〈c;q〉 ~i+j

Φg1(~a,~a′,~b;~c|q; ~x, ~y)
〈a;q〉~i〈a

′;q〉~j〈b;q〉 ~i+j−

〈c;q〉 ~i+j

Φg4(~a,~b;~c,~c′|q; ~x, ~y)
〈a;q〉 ~i+j〈b;q〉 ~i+j−

〈c;q〉~i〈c′;q〉~j

Φg(~a,~b;~c|q; ~x, ~y)
〈a,b;q〉 ~i+j−

〈c;q〉 ~i+j

MA(a, a′;~c|q; ~x, ~y)
〈a;q〉|i|〈a′;q〉|j|
〈c;q〉 ~i+j

MB(~b; c, c′|q; ~x, ~y)
〈b;q〉 ~i+j

〈c;q〉|i|〈c′;q〉|j|

Ma(~b;~c|q; ~x, ~y)
〈b;q〉 ~i+j−

〈c;q〉 ~i+j

G1(a; b; b′|q; ~x, ~y) 〈a; q〉|i|+|j|〈b; q〉|j|−|i|〈b′; q〉|i|−|j|
G2(a, a′; b, b′|q; ~x, ~y) 〈a; q〉|i|〈a′; q〉|j|〈b; q〉|j|−|i|〈b′; q〉|i|−|j|
GA1(a;~b,~b′|q; ~x, ~y) 〈a; q〉|i|+|j|〈b; q〉 ~j−i〈b′; q〉 ~i−j

GA2(a, a′;~b,~b′|q; ~x, ~y) 〈a; q〉|i|〈a′; q〉|j|〈b; q〉 ~j−i〈b′; q〉 ~i−j
GD1(a, a′;~b|q; ~x, ~y) 〈a; q〉|j|−|i|〈a′; q〉|i|−|j|〈b; q〉 ~i+j

GD2(a, a′;~b,~b′|q; ~x, ~y) 〈a; q〉|j|−|i|〈a′; q〉|i|−|j|〈b; q〉~i〈b′; q〉~j
Gg1(~a,~b,~b′|q; ~x, ~y) 〈a; q〉 ~i+j−

〈b; q〉 ~j−i〈b′; q〉 ~i−j

2.1. Elementary Special and Limiting Cases

The following rather obvious relations could easily be derived.

1. For x = 0, or y = 0, the above functions reduce to q-Lauricella or q-Humbert functions or to
a product:

ΦA1, ΦA1, ΦA2, ΦA3, ΦA4,
Φa, Φa1, GA1, GA2

ΦA
Φg , Φg1
Φg4 , Φg

∏
2Φ1

ΦC1, ΦC2, ΦC3 ΦC Gg1

∏
2Φ1

ΦB1, ΦB2, ΦB4, Φb, Φb4 ΦB MA Ψ2
ΦD1, ΦD2, ΦD2, ΦD3, ΦD4,

GD1, GD2
ΦD

MB
Ma

F2∏
1Φ1

2. When a numerator parameter is equal to zero, the result is unity or a simpler function. For example,
the functions ΦA1, ΦA2,

ΦA3, Φa1, GA2 reduce to a ΦA for a = 0.
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3. For n = 1, the functions reduce to q-Appell, q-Humbert or q-Horn functions, or to a
q-hypergeometric function with argument x⊕q y according to the following table:

ΦA1, ΦA1, ΦB1,
ΦC1, ΦD1,
Φa1, Φg1

Φ1
ΦA4, ΦB4, ΦD4,

Φb4, Φg4
Φ4 GA1, GD1, Gg1 G1

ΦA2, ΦB2, ΦC2,
ΦD2, ΦD2

Φ2
Φa, Φb,
Φg, Φg 2Φ1 ΦA3, ΦC3, ΦD3 Φ3

GA2, GD2 G2 MA; MB F2; Ψ2 Ma 1Φ1

4. For n = 2, the series in the same boxes are identical. The K- and D-series are q-analogues of
series introduced by Exton [8–10].

ΦA1, ΦD2, K12 ΦA1, ΦD2, Φg ΦA3, ΦB2, Φg1 ΦA2, Φg4

ΦA4, ΦC2, K5 ΦB1, ΦD3, K20 ΦB4, ΦC3 ΦA1, Φb4

ΦD1, Φb, K16 MA,MB,Ma GD1,D1 GD2,D5

ΦC1, ΦD4, Φa, K3

5. In the following cases, a reduction to a product of inverse q-shifted factorials takes place:

Function ΦA1 ΦD2 ΦD, Φg GA1, GA2, Gg1 GD1,GD2

with b = c a = c, a′ = c′ a = c b+ b′ = 1 a+ a′ = 1

3. A Couple of Lemmas

Lemma 13. A q-analogue of [2] (p. 11): if the general term in a power series with summation indices
~i,~j is multiplied by a factor f(~i,~j), which satisfies:

α(1 + |{i}q|+ |{j}q|)ξ < |f(~i,~j)| < β(1 + |{i}q|+ |{j}q|)η (33)

where α, β ∈ (0,∞) and ξ, η ∈ R, then the region of convergence is unaltered.

Lemma 14. A q-analogue of [2] (p. 11): The region of convergence for a multiple q-hypergeometric
series is independent of the parameters provided that they do not take exceptional values, i.e.,
0,−1,−2, · · · , in general.

Proof. An alteration of a parameter value is equivalent to the insertion of a factor in the general term that

has the form f(~i,~j) =
〈α; q〉~l
〈β; q〉~l

, where ~l denotes the relevant linear combination of q-shifted factorials.

Since exceptional values are excluded, f does not take the values 0,∞; and the q-Stirling formula
implies:

lim
|l|→∞

|f | = O(|{l}q|Re(α−β)) (34)

The statement in the lemma now follows by Lemma 13.

Lemma 15. [2] (p. 13): Assume that all ai > 0. Then, the sum:∑
I=i

~a
~i (35)

is equivalent to (max{am})i for convergence purposes.
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Proof. The inequalities:

(max{am})i <
∑
I=i

~a
~i < (i+ 1)n−1(max{am})i (36)

are obvious. By Lemma 13, the factor (i+ 1)n−1 is unimportant.

Theorem 16. [2](p. 13): For a positive sequence {F (i)}nj=1, we have the following inequalities:

(i+ 1)−n+1

[∑
I=i

F (i)

]2

<
∑
I=i

F (i)2 <

[∑
I=i

F (i)

]2

(37)

Thus, a sum of squares is equivalent to the square of the sum for convergence purposes; we denote
this equivalence by ∼.

Proof. The first inequality is proven in the following way by using the relation between the arithmetic
and geometric mean values. The second inequality is obvious.[∑

I=i

F (i)

]2

=
∑
I=i

F (i)
∑
J=j

F (j) ≤ 1

2

∑
I=i

∑
J=j

(F (i)2 + F (j)2)

=
∑
I=i

∑
J=i

F (i)2 < (i+ 1)n−1
∑
I=i

F (i)2

(38)

Lemma 17. The following inequality holds for all sequences {xm}nm=1:∑
|r|=m

((
m

~r

)
q

)2

|~x~r| <
(√
|x1| ⊕q . . .⊕q

√
|xn|

)2m

(39)

4. Convergence Regions

In this final section, we will give convergence regions (and guesses of convergence regions) for
most of the 43 functions from Section 2. Some of these convergence regions will be vector versions
of the previously given convergence regions for q-Appell- [5] and q-Lauricella-functions [4]; they all use
formula Equation (12). The special case q = 1 corresponds to the regions given in [2] (p. 10). For each
convergence region, we give the corresponding functions and give the proof for one of the functions.

In a few cases, the convergence region is slightly different, and we point this out. We then give
guesses of convergence regions that are between two regions; the smaller region is then always the
region from [2]. We cannot prove these exceptional cases, and they remain conjectures.

Convergence regions for general multiple q-functions of this kind involving the Nova q-addition have
not been given before. The rest of the section consists of theorems (and conjectures) followed by proofs.

Theorem 18. Let n ≥ 2. The convergence region for the functions:

ΦB1, ΦD1, ΦD3, GD2,Φb (40)

is indicated.
∀m : |xm| < 1, |ym| < 1 (41)
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Proof. The proof is for the function ΦB1. The coefficient of ~x~i~y~j is equal to:

A ~i,j ≡ Γq

[
~a+ i+ j, ~b+ i, ~b′ + j, c,~1,~1

~a,~b, ~b′, c+ i+ j, ~1 + i, ~1 + j

]
(42)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
c

~a,~b, ~b′

]
lim
~i,j→ ~∞

~{i+ j}
a−1

q
~{i}

b−1

q
~{j}

b′−1

q {i+ j}1−c
q

1(|i+j|
~i+j

)
q

(43)

The maximum values of the real parts of ~a,~b, ~b′, c are α, β, β′, γ, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

c

~a,~b, ~b′

]∣∣∣∣∣ (44)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣∣∣ 1(|i+j|
~i+j

)
q

∣∣∣∣∣∣ {i+ j}α−1
q {i}β−1

q {j}β
′−1
q {i+ j}1−γ

q |~x
~i~y
~j| (45)

If ε1 denotes a positive number bigger than the greatest of β− 1 and β′− 1 and ε′1 is a sufficiently big
number, we have:

{i}β−1
q {j}β

′−1
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(46)

Therefore:

∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1

∑
~i,j

∣∣∣∣∣∣ 1(|i+j|
~i+j

)
q

{i+ j}2ε′1+α−γ
q ~x

~i~y
~j

∣∣∣∣∣∣ =
N

4ε1

∑
~k

∣∣∣∣∣∣ 1(|k|
~k

)
q

∏
m

∑
im+jm=km

{i+ j}2ε′1+α−γ
q ~x

~i~y
~j

∣∣∣∣∣∣
(47)

and the series converges ∀m : |xm| < 1, |ym| < 1 and ΦB1 converges in the same region.

Theorem 19. The convergence region for the functions:

ΦB2, ΦD2, GD1 (48)

is indicated.
∀m : |xm| ⊕q |ym| < 1 (49)

Proof. The proof is for the function ΦB2. The coefficient of ~x~i~y~j is equal to:

A ~i,j ≡ Γq

[
~a+ i+ j, ~b+ i, ~b′ + j, c, c′,~1,~1

~a,~b, ~b′, c+ i, c′ + j, ~1 + i, ~1 + j

]
(50)
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According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
c, c′

~a,~b, ~b′

]
lim
~i,j→ ~∞

~{i}
b−1

q
~{j}

b′−1

q
~{i+ j}

a−1

q {i}
1−c
q {j}1−c′

q

〈(1); q〉 ~i+j
〈1; q〉|i|〈1; q〉|j|

(51)

The maximum values of the real parts of ~a,~b, ~b′, c, c′ are α, β, β′, γ, γ′, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

c, c′

~a,~b, ~b′

]∣∣∣∣∣ (52)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣ 〈(1); q〉 ~i+j
〈1; q〉|i|〈1; q〉|j|

∣∣∣∣ {i}β−1
q {j}β

′−1
q {i+ j}α−1

q {i}1−γ
q {j}1−γ′

q |~x~i~y~j| (53)

If:

1. ε1 denotes a positive number bigger than the greatest of β − 1 and β′ − 1 and ε′1 is a sufficiently
big number

2. ε2 denotes a positive number bigger than the greatest of 1−γ and 1−γ′ and ε′2 denotes a sufficiently
large number,

we have:

{i}β−1
q {j}β

′−1
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(54)

{i}1−γ
q {j}1−γ′

q < {i}ε2q {j}ε2q <
{i+ j}2ε′2

q

4ε2
(55)

Therefore: ∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1+ε2

∑
~i,j

∣∣∣∣ 〈(1); q〉 ~i+j
〈1; q〉|i|〈1; q〉|j|

{i+ j}2ε′1+2ε′2+α−1
q ~x

~i~y
~j

∣∣∣∣
by(5)

≤ N

4ε1+ε2

∏
m

∑
im,jm

∣∣∣∣ 〈(1); q〉im+jm

〈1; q〉im〈1; q〉jm
{i+ j}2ε′1+2ε′2+α−1

q ~x
~i~y
~j

∣∣∣∣
(56)

and the series converges for ⊕nq,m=1|xm| ⊕q |ym| < 1 and ΦB2 converges in the same region.

Theorem 20. Let n ≥ 2. The convergence region for the functions:

Φg, Gg1, Φg1 (57)

is indicated.
∀m > 1 : |xm| ⊕q |ym−1| < 1 (58)
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Proof. The proof is for the function Φg1. The coefficient of ~x~i~y~j is equal to:

A ~i,j ≡ Γq

[
~a+ i, ~a′ + j, ~b+ i+ j−,~c,~1,~1

~a, ~a′,~b, ~c+ i+ j, ~1 + i, ~1 + j

]
(59)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
~c

~a, ~a′,~b

]
lim
~i,j→ ~∞

~{i}
a−1

q
~{j}

a′−1

q
~{i+ j}

b−c
q

〈(1); q〉 ~i+j−

〈(1); q〉 ~i+j

(60)

The maximum values of the real parts of ~a, ~a′,~b,~c are α, α′, β, γ, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

~c

~a, ~a′,~b

]∣∣∣∣∣ (61)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣∣〈(1); q〉 ~i+j−

〈(1); q〉 ~i+j

∣∣∣∣∣ {i}α−1
q {j}α

′−1
q {i+ j}β−γq |~x~i~y~j| (62)

If ε1 denotes a positive number bigger than the greatest of α−1 and α′−1 and ε′1 denotes a sufficiently
large number, we have:

{i}α−1
q {j}α

′−1
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(63)

Therefore: ∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1

∑
~i,j

∣∣∣∣∣〈(1); q〉 ~i+j−

〈(1); q〉 ~i+j
{i+ j}2ε′1+β−γ

q ~x
~i~y
~j

∣∣∣∣∣ by(6)

≤ N

4ε1∏
m

∑
im,jm−1

∣∣∣∣ 〈1; q〉im+jm−1

〈1; q〉im〈1; q〉jm−1

{i+ j}2ε′1+β−γ
q xm

imym−1
jm−1

∣∣∣∣
(64)

and the series converges for |xm| ⊕q |ym−1| < 1 and ΦG1 converges in the same region.

Theorem 21. The convergence region for the function ΦB4 is indicated.

∀m :
√
xm ⊕q

√
ym < 1 (65)

Proof. The coefficient of ~x~i~y~j is equal to:

A ~i,j ≡ Γq

[
~a+ i+ j, ~b+ i+ j, c, c′,~1,~1

~a,~b, c+ i, c′ + j, ~1 + i, ~1 + j

]
(66)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
c, c′,

~a,~b

]
lim
~i,j→ ~∞

~{i+ j}
a+b−2

q {i}1−c
q {j}

1−c′
q

〈(1); q〉2~i+j
〈1; q〉|i|〈1; q〉|j|〈(1); q〉~i〈(1); q〉~j

(67)
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The maximum values of the real parts of ~a,~b, c, c′ are α, β, γ, γ′, and N is a number, such that:

N >

∣∣∣∣∣Γq
[
c, c′

~a,~b

]∣∣∣∣∣ (68)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣∣ 〈(1); q〉2~i+j
〈1; q〉|i|〈1; q〉|j|〈(1); q〉~i〈(1); q〉~j

∣∣∣∣∣
~{i+ j}

α+β−2

q {i}1−γ
q {j}

1−γ′
q |~x~i~y~j|

(69)

If ε1 denotes a positive number bigger than the greatest of 1− γ and 1− γ′ and ε′1 is a sufficiently big
number, we have:

{i}1−γ
q {j}

1−γ′
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(70)

Therefore:

∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1

∑
~i,j

∣∣∣∣∣ 〈(1); q〉2~i+j
〈1; q〉|i|〈1; q〉|j|〈(1); q〉~i〈(1); q〉~j

{i+ j}2ε′1+α+β−2
q ~x

~i~y
~j

∣∣∣∣∣
by(5)

≤ N

4ε1

∑
~k

∏
m

∑
im+jm=km

∣∣∣∣ 〈1; q〉2im+jm

〈1; q〉2im〈1; q〉2jm
{i+ j}2ε′1+α+β−2

q xm
imym

jm

∣∣∣∣
by(39)
<

N

4ε1

∑
~k

∏
m

{km}2ε′1+α+β−2
q (

√
xm ⊕q

√
ym)2km

(71)

and the series converges ∀m :
√
xm ⊕q

√
ym < 1 and ΦB4 converges in the same region.

Theorem 22. Let n ≥ 2. The convergence region for the function Φg is indicated.

∀m > 1 :
√
xm ⊕q

√
ym−1 < 1 (72)

Proof. The coefficient of ~x~i~y~j is equal to:

A ~i,j ≡ Γq

[
~a+ i+ j−, ~b+ i+ j−,~c,~1,~1

~a,~b, ~c+ i+ j, ~1 + i, ~1 + j

]
(73)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
~c

~a,~b

]
lim
~i,j→ ~∞

~{i+ j}
a+b−c−1

q

〈(1); q〉2 ~i+j−
〈(1); q〉 ~i+j〈(1); q〉~i〈(1); q〉~j

(74)

The maximum values of the real parts of ~a,~b,~c are α, β, γ, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

~c

~a,~b

]∣∣∣∣∣ (75)
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For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣∣ 〈(1); q〉2 ~i+j−
〈(1); q〉 ~i+j〈(1); q〉~i〈(1); q〉~j

∣∣∣∣∣ {i+ j}α+β−γ−1
q |~x~i~y~j| (76)

Therefore, we have:

∑
~i,j

|A ~i,j~x
~i~y
~j| < N

∑
~i,j

∣∣∣∣∣ 〈(1); q〉2 ~i+j−
〈(1); q〉 ~i+j〈(1); q〉~i〈(1); q〉~j

{i+ j}α+β−γ−1
q ~x

~i~y
~j

∣∣∣∣∣
by(6)

≤ N
∑
~k

∏
m

∑
im+jm=km

∣∣∣∣∣ 〈1; q〉2im+jm−1

〈1; q〉2im〈1; q〉2jm−1

{i+ j}α+β−γ−1
q xm

imym−1
jm−1

∣∣∣∣∣
by(39)
< N

∑
~k

∏
m

{km}α+β−γ−1
q (

√
xm ⊕q

√
ym−1)2km

(77)

and the series converges for ∀m > 1 :
√
xm ⊕q

√
ym−1 < 1, and Φg converges in the same region.

Theorem 23. The convergence region for the function ΦD2 is indicated.

max
m |xm| ⊕q max

m |ym| < 1 (78)

Proof. The coefficient of ~x~i~y~j is equal to:

A ~i,j ≡ Γq

[
a+ i+ j, ~b+ i, ~b′ + j, c, c′,~1,~1

a,~b, ~b′, c+ i, c′ + j, ~1 + i, ~1 + j

]
(79)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
c, c′

a,~b, ~b′

]
lim
~i,j→ ~∞

~{i}
b−1

q
~{j}

b′−1

q {i+ j}a−1
q {i}

1−c
q {j}1−c′

q(
|i+ j|
|i|

)
q

(80)

The maximum values of the real parts of a,~b, ~b′, c, c′ are α, β, β′, γ, γ′, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

c, c′

a,~b, ~b′

]∣∣∣∣∣ (81)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣∣
(
|i+ j|
|i|

)
q

∣∣∣∣∣ {i}β−1
q {j}β

′−1
q {i+ j}α−1

q {i}1−γ
q {j}1−γ′

q |~x~i~y~j| (82)

If:

1. ε1 denotes a positive number bigger than the greatest of β − 1 and β′ − 1 and ε′1 is a sufficiently
big number
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2. ε2 denotes a positive number bigger than the greatest of 1−γ and 1−γ′ and ε′2 denotes a sufficiently
large number,

we have:

{i}β−1
q {j}β

′−1
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(83)

{i}1−γ
q {j}1−γ′

q < {i}ε2q {j}ε2q <
{i+ j}2ε′2

q

4ε2
(84)

Therefore: ∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1+ε2

∑
~i,j

∣∣∣∣∣
(
|i+ j|
|i|

)
q

{i+ j}2ε′1+2ε′2+α−1
q ~x

~i~y
~j

∣∣∣∣∣ =
N

4ε1+ε2

∑
~i,j

∣∣∣∣∣
( ~i+ j

~i

)
q

{i+ j}2ε′1+2ε′2+α−1
q

∑
I=i

|~x~i|
∑
J=j

|~y~j
∣∣∣∣∣ by lemma (15)∼ N

4ε1+ε2

∑
~i,j

∣∣∣∣∣
( ~i+ j

~i

)
q

∣∣∣∣∣ {i+ j}2ε′1+2ε′2+α−1
q max|xm|imax|ym|j

(85)

and the series converges for max
m |xm| ⊕q max

m |ym| < 1, and ΦD2 converges in the same region.

Theorem 24. The convergence region for the functions:

ΦA1, ΦA3, GA2 (86)

is indicated.
⊕nq,m=1 |xm| < 1 ∧ ⊕nq,m=1|ym| < 1 (87)

Proof. The proof is for the function ΦA3. The coefficient of ~x~i~y~j is equal to:

A ~i,j ≡ Γq

[
~c, a+ i, a′ + j, ~b+ i, ~b′ + j,~1,~1

~c+ i+ j, a, a′,~b, ~b′, ~1 + i, ~1 + j

]
(88)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
~c

a, a′,~b, ~b′

]
lim
~i,j→ ~∞

~{i}
b−1

q
~{j}

b′−1

q
~{i+ j}

1−c
q {i}

a−1
q {j}a

′−1
q

〈1; q〉|i|〈1; q〉|j|
〈(1); q〉 ~i+j

(89)

The maximum values of the real parts of a, a′,~b, ~b′,~c are α, α′, β, β′, γ, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

~c

a, a′,~b, ~b′

]∣∣∣∣∣ (90)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣∣〈1; q〉|i|〈1; q〉|j|
〈(1); q〉 ~i+j

∣∣∣∣∣ {i}β−1
q {j}β

′−1
q

~{i+ j}
1−γ
q {i}

α−1
q {j}α′−1

q |~x~i~y~j| (91)

If:
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1. ε1 denotes a positive number bigger than the greatest of β − 1 and β′ − 1 and ε′1 is a sufficiently
big number

2. ε2 denotes a positive number bigger than the greatest of α−1 and α′−1 and ε′2 denotes a sufficiently
large number,

we have:

{i}β−1
q {j}β

′−1
q < {i}ε1q {j}

ε1
q

{i+ j}2ε′1
q

4ε1
(92)

{i}α−1
q {j}α′−1

q < {i}ε2q {j}ε2q <
{i+ j}2ε′2

q

4ε2
(93)

Therefore: ∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1+ε2

∑
~i,j

∣∣∣∣∣〈1; q〉|i|〈1; q〉|j|
〈(1); q〉 ~i+j

{i+ j}2ε′1+2ε′2+1−γ
q ~x

~i~y
~j

∣∣∣∣∣
by(6)

≤ N

4ε1+ε2

∑
~i,j

∣∣∣∣∣
(|i|
~i

)
q

(|j|
~j

)
q

{i+ j}2ε′1+2ε′2+1−γ
q ~x

~i~y
~j

∣∣∣∣∣
(94)

and the series converges for ⊕nq,m=1|xm| < 1, ⊕nq,m=1|ym| < 1 and ΦA3 converges in the
same region.

Theorem 25. The convergence region for the function ΦC3 is governed by:

⊕nq,m=1 |
√
xm| < 1 ∧ ⊕nq,m=1|

√
ym| < 1 (95)

Proof. The coefficient of ~x~i~y~j is equal to:

A ~i,j ≡ Γq

[
a+ i, b+ i, a′ + j, b′ + j,~c,~1,~1

a, a′, b, b′, ~c+ i+ j, ~1 + i, ~1 + j

]
(96)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
~c

a, a′, b, b′

]
lim
~i,j→ ~∞

{i}a+b−2
q {j}a

′+b′−2
q

~{i+ j}
1−c
q(|i|

~i

)
q

(|j|
~j

)
q

〈1; q〉|i|〈1; q〉|j|
〈(1); q〉 ~i+j

(97)

The maximum values of the real parts of a, a′, b, b′,~c are α, α′, β, β′, γ, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

~c

a, a′, b, b′

]∣∣∣∣∣ (98)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣∣
(|i|
~i

)
q

(|j|
~j

)
q

〈1; q〉|i|〈1; q〉|j|
〈(1); q〉 ~i+j

∣∣∣∣∣
{i}α+β−2

q {j}α
′+β′−2
q {i+ j}1−γ

q |~x
~i~y
~j|

(99)
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If ε1 denotes a positive number bigger than the greatest of α + β − 2 and α′ + β′ − 2 and ε′1 is a
sufficiently big number, we have:

{i}α+β−2
q {j}α

′+β′−2
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(100)

Therefore: ∑
~i,j

∣∣∣A ~i,j~x
~i~y
~j
∣∣∣ < N

4ε1

∑
~i,j

∣∣∣∣∣
(|i|
~i

)
q

(|j|
~j

)
q

〈1; q〉|i|〈1; q〉|j|
〈(1); q〉 ~i+j

{i+ j}2ε′1+1−γ
q

∣∣∣∣∣∣∣∣~x~i∣∣∣ ∣∣∣~y~j∣∣∣ by(6)

≤ N

4ε1

∑
~i

(|i|
~i

)2

q

|~x~i|
∑
~j

(|j|
~j

)2

q

|~y~j|{i+ j}2ε′1+1−γ
q

by(39)
<

N

4ε1

∑
~i

(|i|
~i

)
q

|~x~i|
∑
~j

(|j|
~j

)
q

|~y~j|{i+ j}2ε′1+1−γ
q

(101)

and we get the estimate for the convergence of ΦC3.

Conjecture 26. In this conjecture, we have two convergence regions in R2n: Equations (102) and (103).
We have Equation (102) ⊂ Equation (103).∑

m

|xm|+ |ym| < 1 (102)

⊕nq,m=1 (|xm| ⊕q |ym|) < 1 (103)

The convergence regions for the function GA1 are somewhere between Equation (102) and (103).

Proof. The coefficient of ~x~i~y~j in GA1 is equal to:

A ~i,j ≡ Γq

[
a+ i+ j, ~b+ j − i, ~b′ + i− j,~1,~1

a, b, b′, ~1 + i, ~1 + j

]
(104)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
·

a, b, b′

]
lim
~i,j→ ~∞

{i+ j}a−1
q {j − i}

b−1
q {i− j}

b′−1
q

〈1; q〉|i+j|
〈(1); q〉~i(1); q〉~j

(105)

The maximum values of the real parts of a, b, b′ are α, β, β′, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

·
a, b, b′

]∣∣∣∣∣ (106)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣∣ 〈1; q〉|i+j|
〈(1); q〉~i(1); q〉~j

∣∣∣∣∣∣∣∣{j − i}β−1
q {i− j}β

′−1
q {i+ j}α−1

q

∣∣∣ |~x~i~y~j| (107)



Axioms 2015, 4 151

If ε1 denotes a positive number bigger than the greatest of β− 1 and β′− 1 and ε′1 is a sufficiently big
number, we have:

{j − i}β−1
q {i− j}β

′−1
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(108)

Therefore:∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1

∑
~i,j

∣∣∣∣∣ 〈1; q〉|i+j|
〈(1); q〉~i(1); q〉~j

{i+ j}2ε′1+α−1
q ~x

~i~y
~j

∣∣∣∣∣
=
N

4ε1

∑
~i,j

∣∣∣∣∣∣
( ~i+ j

~i

)
q

{i+ j}2ε′1+α−1
q

∣∣∣∣∣∣
∑
I=i

[(|i|
~i

)
q

√
~x~i

]2∑
J=j

[(|j|
~j

)
q

√
~y~j

]2
∣∣∣∣∣∣

by(37)∼ N

4ε1

∑
~i,j

∣∣∣∣∣
( ~i+ j

~i

)
q

{i+ j}2ε′1+α−1
q

∣∣∣∣∣
[∑
I=i

(|i|
~i

)
q

n∏
m=1

√
|xm|im

]2 [∑
J=j

(|j|
~j

)
q

n∏
m=1

√
|ym|jm

]2

=
N

4ε1

∑
~i,j

∣∣∣∣∣
( ~i+ j

~i

)
q

{i+ j}2ε′1+α−1
q

∣∣∣∣∣
[[
⊕nq,m=1

√
|xm|

]|i|]2 [[
⊕nq,m=1

√
|ym|

]|j|]2

by(37)∼ N

4ε1

∑
~i,j

∣∣∣∣∣
( ~i+ j

~i

)
q

{i+ j}2ε′1+α−1
q

∣∣∣∣∣ [⊕nq,m=1|xm| ]|i|
[
⊕nq,m=1|ym|

]|j|
(109)

and we get the estimate for the convergence of GA1 in the conjecture.

Conjecture 27. In this conjecture, we have two convergence regions in R2n: Equations (110) and (111).
We have Equation (110) ⊂ Equation (111).

(
∑
m

|
√
xm|)2 + (

∑
m

|√ym|)2 < 1 (110)

⊕nq,m=1 |
√
xm| ⊕q |

√
ym| < 1 (111)

The convergence region for the function ΦC2 is somewhere between Equations (110) and (111).

Proof. The coefficient of ~x~i~y~j in ΦC2. is equal to

A ~i,j ≡ Γq

[
a+ i+ j, b+ i, b′ + j,~c,~c′,~1,~1

a, b, b′, ~c+ i, ~c′ + j, ~1 + i, ~1 + j

]
(112)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
~c, ~c′

a, b, b′

]
lim
~i,j→ ~∞

{i+ j}a−1
q {i}

b−1
q {j}

b′−1
q

~{i}
1−c
q

~{j}
1−c′

q(|i|
~i

)
q

(|j|
~j

)
q

〈1; q〉|i+j|
〈(1); q〉~i(1); q〉~j

(113)

The maximum values of the real parts of a, b, b′,~c, ~c′ are α, β, β′, γ, γ′, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

~c, ~c′

a, b, b′

]∣∣∣∣∣ (114)
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For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

∣∣∣∣∣
(|i|
~i

)
q

(|j|
~j

)
q

〈1; q〉|i+j|
〈(1); q〉~i(1); q〉~j

∣∣∣∣∣
{i}β−1

q {j}β
′−1
q {i+ j}α−1

q
~{i}

1−γ
q

~{j}
1−γ′

q |~x~i~y~j|

(115)

1. If ε1 denotes a positive number bigger than the greatest of β − 1 and β′ − 1 and ε′1 is a sufficiently
big number, we have:

{i}β−1
q {j}β

′−1
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(116)

2. If ε2 denotes a positive number bigger than the greatest of 1− γ and 1− γ′ and ε′2 is a sufficiently
big number, we have:

{i}1−γ
q {j}

1−γ′
q < {i}ε2q {j}

ε2
q <

{i+ j}2ε′2
q

4ε2
(117)

Therefore:

∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1+ε2

∑
~i,j

∣∣∣∣∣
(|i|
~i

)
q

(|j|
~j

)
q

〈1; q〉|i+j|
〈(1); q〉~i(1); q〉~j

{i+ j}2ε′1+α−1
q ~x

~i~y
~j

∣∣∣∣∣
=

N

4ε1+ε2

∑
~i,j

∣∣∣∣∣∣
( ~i+ j

~i

)
q

{i+ j}2ε′1+α−1
q

∑
I=i

[(|i|
~i

)
q

√
~x~i

]2∑
J=j

[(|j|
~j

)
q

√
~y~j

]2
∣∣∣∣∣∣

by(37)∼ N

4ε1+ε2

∑
~i,j

∣∣∣∣∣
( ~i+ j

~i

)
q

{i+ j}2ε′1+α−1
q

∣∣∣∣∣
[∑
I=i

(|i|
~i

)
q

n∏
m=1

√
|xm|im

]2 [∑
J=j

(|j|
~j

)
q

n∏
m=1

√
|ym|jm

]2

=
N

4ε1+ε2

∑
~i,j

∣∣∣∣∣
( ~i+ j

~i

)
q

{i+ j}2ε′1+α−1
q

∣∣∣∣∣
[[
⊕nq,m=1

√
|xm|

]|i|]2 [[
⊕nq,m=1

√
|ym|

]|j|]2

(118)

and we get the approximate estimate for the convergence of ΦC2 in the conjecture.

Conjecture 28. In this conjecture, we have two convergence regions in R2n: Equations (119) and (120).
We have Equation (119) ⊂ Equations (120).∑

m

(
√
|xm +

√
|ym|)2 < 1 (119)

∀m :
√
|xm| ⊕q

√
|ym| < 1 (120)

The convergence region for the function ΦA4 is somewhere between Equations (119) and (120).

Proof. The coefficient of ~x~i~y~j in ΦA4. is equal to:

A ~i,j ≡ Γq

[
a+ i+ j, ~b+ i+ j,~c, ~c′,~1,~1

a,~b, ~c+ i, ~c′ + j, ~1 + i, ~1 + j

]
(121)
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According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
~c, ~c′

a,~b

]
lim
~i,j→ ~∞

{i+ j}a−1
q

~{i}
1−c
q

~{j}
1−c′

q
~{i+ j}

b−1

q(|i+ j|
~i

)
q

( ~i+ j
~i

)
q

(122)

The maximum values of the real parts of a,~b,~c, ~c′ are α, ~β, γ, γ′, and N is a number, such that:

N >

∣∣∣∣∣Γq
[
~c, ~c′

a,~b

]∣∣∣∣∣ (123)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N{i+ j}α−1

q
~{i}

1−γ
q {j}

1−γ′
q

~{i+ j}
β−1

q(|i+ j|
~i

)
q

( ~i+ j
~i

)
q

|~x~i~y~j|
(124)

If ε1 denotes a positive number bigger than the greatest of 1− γ and 1− γ′ and ε′1 is a sufficiently big
number, we have:

{i}1−γ
q {j}

1−γ′
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(125)

Therefore:

∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1

∑
~i,j

∣∣∣∣∣
(|i+ j|

~i

)
q

( ~i+ j
~i

)
q

{i+ j}2ε′1+α+β−2
q ~x

~i~y
~j

∣∣∣∣∣ =
N

4ε1

∑
~k

(|k|
~k

)
q

n∏
m=1

∑
im+jm=km

[(
im + jm
im

)
q

√
|xm|im

√
|ym|jm

]2 ∣∣∣{i+ j}2ε′1+α+β−2
q

∣∣∣
by(37)∼ N

4ε1

∑
~k

∣∣∣∣∣
(|k|
~k

)
q

∣∣∣∣∣
n∏

m=1

[ ∑
im+jm=km

(
im + jm
im

)
q

√
|xm|im

√
|ym|jm

]2

∣∣∣{i+ j}2ε′1+α+β−2
q

∣∣∣ =
N

4ε1

∑
~k

(|k|
~k

)
q

∣∣∣{k}2ε′1+α+β−2
q

∣∣∣ n∏
m=1

[[√
|xm| ⊕q

√
|ym|

]km]2

(126)

and we get the estimate for the convergence of ΦA4 in the conjecture.

Conjecture 29. In this conjecture, we have two convergence regions in R2n: Equations (127) and (128).
We have Equation (127) ⊂ Equation (128).∑

m

(max{|xm|, |ym|}) < 1 (127)

⊕nq,m=1 max{|xm|, |ym|} < 1 (128)

The convergence region for the function ΦA1 is somewhere between Equations (127) and (128).
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Proof. The coefficient of ~x~i~y~j in ΦA1 is equal to:

A ~i,j ≡ Γq

[
a+ i+ j, ~b+ i, ~b′ + j,~c,~1,~1

a,~b, ~b′, ~c+ i+ j, ~1 + j

]
(129)

According to the q−Stirling formula, lim ~i,j→ ~∞:

A ~i,j ∼ Γq

[
~c

a,~b, ~b′

]
lim
~i,j→ ~∞

~{i}
b−1

q
~{j}

b′−1

q {i+ j}a−1
q

~{i+ j}
1−c
q(|i+ j|

~i+ j

)
q

(130)

The maximum values of the real parts of a,~b, ~b′,~c are α, β, β′, γ, and N is a number, such that:

N >

∣∣∣∣∣Γq
[

~c

a,~b, ~b′

]∣∣∣∣∣ (131)

For ~i, j big enough, we have:

|A ~i,j~x
~i~y
~j| < N

(|i+ j|
~i+ j

)
q

{i}β−1
q {j}β

′−1
q {i+ j}α−1

q { ~i+ j}1−γ
q |~x

~i~y
~j| (132)

If ε1 denotes a positive number bigger than the greatest of β− 1 and β′− 1 and ε′1 is a sufficiently big
number, we have:

{i}β−1
q {j}β

′−1
q < {i}ε1q {j}

ε1
q <

{i+ j}2ε′1
q

4ε1
(133)

Therefore:

∑
~i,j

|A ~i,j~x
~i~y
~j| < N

4ε1

∑
~i,j

∣∣∣∣∣
(|i+ j|

~i+ j

)
q

{i+ j}2ε′1+α−γ
q ~x

~i~y
~j

∣∣∣∣∣ =
N

4ε1

∑
~k

∣∣∣∣∣
(|k|
~k

)
q

∏
m

∑
im+jm=km

{i+ j}2ε′1+α−γ
q xm

imym
jm

∣∣∣∣∣ by lemma (15)∼ N

4ε1∑
~k

(|k|
~k

)
q

n∏
m=1

[max{|xm|, |ym|}]km {km}2ε′1+α−γ
q

∼ N

4ε1

[
⊕nq,m=1max{|xm|, |ym|}

]
(134)

and the series converges for⊕nq,m=1max{|xm|, |ym|} < 1, and we get the estimate for the convergence of
ΦA1 in the conjecture.
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5. Conclusions

We have found a new type of convergence region of the vector type. To visualize these regions, one
should start with the case q = 1 and imagine the q-deformed regions as slightly larger, increasing with
the inverse of q. We have not found convergence regions for all functions, and there are other ways to
describe the convergence regions in Section 4. There are also ways to describe where the series diverge.

The connection to quantum groups comes from the q-Lie algebras and q-Lie groups, which have been
presented at the Group 30 meeting in Ghent 2014. Further articles of this type are in progress.
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