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Abstract: This article is in continuation of the authors research attempts to derive
computational solutions of an unified reaction-diffusion equation of distributed order
associated with Caputo derivatives as the time-derivative and Riesz-Feller derivative as
space derivative. This article presents computational solutions of distributed order fractional
reaction-diffusion equations associated with Riemann-Liouville derivatives of fractional
orders as the time-derivatives and Riesz-Feller fractional derivatives as the space derivatives.
The method followed in deriving the solution is that of joint Laplace and Fourier transforms.
The solution is derived in a closed and computational form in terms of the familiar
Mittag-Leffler function. It provides an elegant extension of results available in the literature.
The results obtained are presented in the form of two theorems. Some results associated
specifically with fractional Riesz derivatives are also derived as special cases of the most
general result. It will be seen that in case of distributed order fractional reaction-diffusion,
the solution comes in a compact and closed form in terms of a generalization of the Kampé
de Fériet hypergeometric series in two variables. The convergence of the double series
occurring in the solution is also given.
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1. Introduction

Distributed order sub-diffusion is discussed by Naber [1]. Distributed order fractional diffusion
systems are studied, among others, by Saxton [2–4], Langlands [5], Sokolov et al. [6], Sokolov
and Klafter [7], Saxena and Pagnini [8] and Nikolova and Boyadijiev [9], and recent monographs
on the subject [10–13]. General models for reaction-diffusion systems are discussed by Wilhelmsson
and Lazzaro [14], Henry and Wearne [15,16]. Henry et al. [17], Mainardi et al. [18,19],
Haubold et al. [20–23], and Saxena et al. [24–27]. Stability in reaction-diffusion systems and nonlinear
oscillations have been discussed by Gafiychuk et al. [28,29]. Pattern formation in reaction-diffusion as
well as non-Gaussian, non-Markovian, and non-Fickian phenomena related to astronomical, physical,
chemical, and biological sciences can be found in the work of Cross and Hohenberg [30], Nicolis and
Prigogine [31], and Haubold et al. [23]. Recently, Engler [32] discussed the speed of spread of fractional
reaction-diffusion.

In a recent article, Chen et al. [33] have derived the fundamental and numerical solution of
a reaction-diffusion equation associated with the Riesz fractional derivative as the space derivative.
Reaction-diffusion models associated with Riemann-Liouville fractional derivative as the time derivative
and Riesz-Feller derivative as the space derivative are recently discussed by Haubold et al. [21]. Such
equations in case of Caputo fractional derivative are solved by Saxena et al. [27]. The main object of this
article is to investigate the computational solutions of fraction reaction-diffusion Equations (1) and (24)
below. The results are obtained in a closed and computational forms. Due to the general character of the
derived results, many known results given earlier by Chen et al. [33], Haubold et al. [22] and Pagnini
and Mainardi [34], Saxena et al. [27], readily follow as special cases of our derived results.

2. Solution of Fractional Reaction-Diffusion Equations

In this section, we will investigate a computational solution of the one-dimensional fractional
reaction-diffusion Equation (1) given below, containing Riemann-Liouville derivative as the
time-derivative and a finite number of Riesz-Feller derivative as the space derivatives. The results
obtained are in a compact and computational form in terms of the generalized Mittag-Leffler function,
defined by Equation (5) below in the form of the following theorem:
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Theorem 1. Consider the following one-dimensional non-homogeneous unified fractional
reaction-diffusion model associated with time-derivative 0D

α
t defined by Equation (A1), n ∈ N ,

and Riesz-Feller space-derivatives xD
γ1
θ1
, ..., xD

γn
θn

, defined by Equation (A3):

0D
α
t N(x, t) =

n∑
j=1

µj xD
γj
θj
N(x, t) + φ(x, t) (1)

where t > 0, x ∈ R;α, θ1, ..., θn, γ1, ..., γn are real parameters with the condition:

µj > 0, 0 < γj ≤ 2, j = 1, ..., n, |θj| ≤ min
1≤j≤n

(γj, 2− γj), 1 < α ≤ 2 (2)

with initial conditions

0D
α−1
t N(x, 0) = f(x), 0D

α−2
t N(x, 0) = g(x), x ∈ R, lim

x→±∞
N(x, t) = 0, t > 0 (3)

Here 0D
ν
tN(x, t) means the Riemann-Liouville fractional partial derivative of N(x, t) with respect

to t of order ν evaluated at t = 0, ν = α − 1, α − 2; xD
γ1
θ1
, ..., xD

γn
θn

are the Riesz-Feller space
fractional derivatives with asymmetries θ1, ..., θn respectively. Further, 0D

α
t is the Riemann-Liouville

time-fractional derivative of order α; µ1, ..., µn are arbitrary constants; f(x), g(x) and φ(x, t) are given
functions. Then for the solution of Equation (1), subject to the above conditions, there holds the formula

N(x, t) =
fα−1

2π

∫ ∞
−∞

t∗(k)Eα,α(−btα) exp(−ikx)dk

+
tα−2

2π

∫ ∞
−∞

g∗(k)Eα,α−1(−btα) exp(−ikx)dk

+
1

2π

∫ t

0

ξα−1

∫ ∞
−∞

φ∗(k, t− ξ)Eα,α(−bξα) exp(−ikx)dk dξ

(4)

where Eα,β(z) is the generalized Mittag-Leffler function, defined by Wiman (see Erdélyi et al. [35],
Dzherbashyan [36]) in the following form:

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, α, β ∈ C,<(α) > 0,<(β) > 0 (5)

and

b =
n∑
j=1

µj ψ
θj
γj

(k) (6)

Proof. In order to derive the solution of Equation (1), we introduce the joint Laplace-Fourier transform
in the form

Ñ∗(k, s) =

∫ ∞
0

∫ ∞
−∞

e−st+ikxN(x, t)d dt

where <(s) > 0, k > 0. If we apply the Laplace transform with respect to the time variable t, Fourier
transform with respect to space variable x, use the initial conditions given in Equations (2) and (3) and
the Equation (A2), then the given equation transforms into the form

sαÑ∗(k, s)− f ∗(k)− sg∗(k) = −
n∑
j=1

µj ψ
θj
γj

(k)Ñ∗(k, s) + φ̃∗(k, s)
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where, according to the conventions followed, the symbols ∼ will stand for the Laplace transform with
respect to time variable t and ∗ represents the Fourier transform with respect to space variable x. Solving
for Ñ∗(k, s) it yields

Ñ∗(k, s) =
f ∗(k)

sα + b
+
sg∗(k)

sα + b
+
φ̃∗(k, s)

sα + b
(7)

where b =
∑n

j=1 µjψ
θj
γj(k). On taking the inverse Laplace transform of Equation (7) by means of

the formula

L−1

[
sα−1

b+ sβ
; t

]
= tβ−αEβ,β−α+1(−btβ) (8)

where <(s) > 0,<(β) > 0,<(β − α) > −1; | b
sβ
| < 1 it is found that

N∗(k, t) = tα−1f ∗(k)Eα,α(−btα) + tα−2g∗(k)Eα,α−1(−btα)

+

∫ t

0

φ∗(k, t− ξ)ξα−1Eα,α(−bξα)dξ.
(9)

The required solution of Equation (4) is obtained by taking the inverse Fourier transform of
Equation (9). This completes the proof of Theorem 1.

3. Special Cases

(i) If we take θ1 = ... = θn = 0 then by virtue of the relation (A11), we obtain the following corollary.

Corollary 1. Consider the following one-dimensional non-homogeneous unified fractional
reaction-diffusion model associated with time derivative 0D

α
t obtained by Equation (A1), n ∈ N ,

and Riesz space derivatives xD
γ1
0 , ..., xD

γn
0 defined by Equation (A3):

0D
α
t N(x, t) =

n∑
j=1

µj xD
γj
0 N(x, t) + φ(x, t), (10)

where t > 0, x ∈ R;α, γ1, ..., γn are real parameters with the constraints

µj > 0, 0 < γj ≤ 2, j = 1, ..., n, 1 < α ≤ 2; (11)

with initial conditions

0D
α−1
t N(x, 0) = f(x), 0D

α−2
t N(x, 0) = g(x), x ∈ R, lim

x→±∞
N(x, t) = 0, t > 0 (12)

where the various terms are as defined in Equation (3). Then there holds the formula

N(x, t) =
tα−1

2π

∫ ∞
−∞

f ∗(k)Eα,α(−ctα) exp(−ikx)dk

+
tα−2

2π

∫ ∞
−∞

g∗(k)Eα,α−1(−ctα) exp(−ikx)dk

+
1

2π

∫ t

0

ξα−1

∫ ∞
−∞

φ∗(k, t− ξ)Eα,α(−ctα) exp(−ikx)dk dξ

(13)

where Eα,β(z) is the generalized Mittag-Leffler function, defined by Equation (5) and c =
∑n

j=1 µj|k|γj .
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Note that when g(x) = 0 then Theorem 1 yields Equation (9) where the middle term involving g∗(k)

will be absent.

Corollary 2. Consider the same equation in Equation (10) under the conditions

µj > 0, 0 < γj ≤ 2, j = 1, ..., n, |θj| ≤ min
1≤j≤n

(γj, 2− γj), 0 < α ≤ 1 (14)

with the initial conditions

0D
α−1
t N(x, 0) = δ(x), 0D

α−2
t N(x, 0) = 0, x ∈ R, lim

x→±∞
N(x, t) = 0, t > 0 (15)

where δ(x) is Dirac delta function. Then for the fundamental solution there holds the formula

N(x, t) =
tα−1

2π

∫ ∞
−∞

Eα,α(−btα) exp(−ikx)dk

+
1

2π

∫ t

0

ξα−1

∫ ∞
−∞

φ∗(k, t− ξ)Eα,α(−bξα) exp(−ikx)dk dξ

(16)

where Eα,β(z) is the generalized Mittag-Leffler function defined by Equation (5) and b is given in
Equation (6).

(ii) If we further set φ = 0, n = 1, µ1 = µ, θ1 = θ, γ1 = γ and apply the formula (A14) then we have
the following result:

Corollary 3. Consider the following reaction-diffusion model

0D
α
t N(x, t) = µ xD

γ
θN(x, t) (17)

with the initial conditions

0D
α−1
t N(x, 0) = δ(x), x ∈ R, 0 < α ≤ 1, lim

x→±∞
N(x, t) = 0, t > 0 (18)

where µ is a diffusion constant, µ, t > 0;α, β, θ are real parameters with the constraint

0 < γ ≤ 2, |θ| ≤ min(γ, 2− γ) (19)

and δ(x) is a Dirac delta function. Then the fundamental solution of Equation (17) with initial
conditions, there holds the formula

N(x, t) =
tα−1

γ|x|
H2,1

3,3

[
|x|

(µtα)1/γ

∣∣∣∣(1,1/γ),(α,α/γ),(1,ρ)

(1,1/γ),(1,1),(1,ρ)

]
, γ > 0 (20)

where H2,1
3,3 (·) is the H-function defined by Equation (A12), also see [13]; ρ = α−θ

2α
.

For θ = 0, Equation (20) reduces to the result given by Saxena et al. [8] in a slightly different form.
On the other hand, if we further set α = 1 we obtain the following result given by Chen et al. [33] in a
different form:
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Corollary 4. Consider the following reaction-diffusion model

d

dt
N(x, t) = µ xD

γ
0N(x, t) (21)

with the initial conditions

N(x, 0) = δ(x), x ∈ R, lim
x→±∞

N(x, t) = 0, t > 0, 0 < β ≤ 2 (22)

where µ is a diffusion constant, µ, t > 0, β are real parameters and δ(x) is Dirac delta function. Then for
the fundamental solution of Equation (21) with initial conditions Equation (22) there holds the formula

N(x, t) =
1

γ|x|
H1,1

2,2

[
|x|

(µt)1/γ

∣∣∣∣(1,1/γ),(1,1/2)

(1,1),(1,1/2)

]
, γ > 0 (23)

Remark 1. The result obtained by Chen et al. [33] is in terms of the Fourier transform of the
Mittag-Leffler function, whereas our Equation (23) is in terms of the H-function in a closed and
computable form. It is interesting to observe that for n = 1, Theorem 1 reduces to one given by
Haubold et al. [22].

4. Further Results on Distributed Order Reaction-Diffusion Systems

In this section we will investigate a computational solution of a distributed order reaction-diffusion
equation containing two Riemann-Liouville derivatives. The solution is obtained in terms of generalized
Mittag-Leffler function due to Prabhakar [37]. The main result can be expressed in terms of
Srivastava-Daoust hypergeometric function of two variables [38].

Theorem 2. Consider the following unified one-dimensional non-homogeneous reaction-diffusion
equation of fractional order:

0D
α
t N(x, t) + a 0D

β
t N(x, t) =

n∑
j=1

µj xD
γj
θj
N(x, t) + φ(x, t) (24)

where t > 0, a, x ∈ R;α, β, θ1, ..., θn are real parameters with the constraints

µj > 0, 0 < γj ≤ 2, j = 1, ..., n, |θj| ≤ min
1≤j≤n

(γj, 2− γj), 1 < α ≤ 2, 1 < β ≤ 2 (25)

with the initial conditions

0D
α−1
t N(x, 0) = f1(x), 0D

α−2
t N(x, 0) = g1(x),

0D
β−1
t N(x, 0) = f2(x), 0D

β−2
t N(x, 0)

= g2(x), x ∈ R, lim
x→±∞

N(x, t) = 0, t > 0

(26)
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where the various quantities are as defined in Theorem 1, and f1(x), f2(x), g1(x), g2(x) and φ(x, t)

are given functions. Then for the solution of Equation (24), subject to the above conditions in
Equations (25) and (26), there holds the formula

N(x, t) =
tα−1

2π

∫ ∞
−∞

(f ∗1 (k) + af ∗2 (k))
∞∑
r=0

(−a)rt(α−β)rEr+1
α,α+(α−β)r(−bt

α) exp(−ikx)dk

+
tα−2

2π

∫ ∞
−∞

(g∗1(k) + ag∗2(k))
∞∑
r=0

(−a)rt(α−β)rEr+1
α,α+(α−β)r−1(−btα) exp(−ikx)dk

+
1

2π

∫ t

0

ξα−1

∫ ∞
−∞

∞∑
r=0

(−a)ru(α−β)r

∫ ∞
−∞

φ∗(p, t− ξ)Er+1
α,α+(α−β)r(−bξ

α) exp(−ikx)dk dξ

(27)

where Eγ
α,β(z) is the generalized Mittag-Leffler function ([37])

Eγ
α,β(z) =

∞∑
n=0

(γ)nz
n

Γ(αn+ β)n!
, <(α) > 0,<(β) > 0 (28)

where b =
∑n

j=1 µjψ
θj
γj(k).

Proof. If we apply the Laplace transform with respect to the time variable t, Fourier transform with
respect to space variable x and use the initial conditions in Equations (25) and (26) and the Equation (28),
then the given equation transforms into the form

sαÑ∗(k, s)− f ∗1 (k)− sg∗1(k) + asβÑ∗(k, s)− af ∗2 (k)− asg∗2(k)

= −
n∑
j=1

µjψ
θj
γj

(k)Ñ∗(k, s) + φ̃∗(k, s)
(29)

Solving for Ñ∗(k, s) it yields

Ñ∗(k, s) =
f ∗1 (k) + af ∗2 (k)

sα + asβ + b
+
s(g∗1(k) + ag∗2(k))

sα + asβ + b
+

φ̃∗(k)

sα + asβ + b
(30)

where b is defined in Equation (6). To invert the Equation (30), we first invert the Laplace transform and
then the Fourier transform. Thus to invert the Laplace transform we use the formula given in [2]:

L−1

[
sρ−1

sα + asβ + b

]
= tα−ρ

∞∑
r=0

(−a)rt(α−β)rEr+1
α,α+(α−β)r−ρ+1(−btα) (31)

where <(s) > 0,<(α) > 0,<(β) > 0,<(α − ρ) > −1,<(α − β) > 0, | asβ
b+sα
| < 1; and the convolution

theorem of the Laplace transform to obtain

N∗(k, t) = tα−1[f ∗1 (k) + af ∗2 (k)]
∞∑
r=0

(−a)rt(α−β)rEr+1
α,α+(α−β)r(−bt

α)

+ tα−2[g∗1(k) + ag∗2(k)]
∞∑
r=0

(−a)rt(α−β)rEr+1
α,α+(α−β)r−1(−btα)

+
∞∑
r=0

(−a)r
∫ t

0

φ∗(k, t− ξ)ξα+(α−β)r−1Er+1
α,α+(α−β)r(−bξ

α)dξ.

(32)
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Now, the application of the inverse Fourier transform gives the following solution:

N(x, t) =
tα−1

2π

∫ ∞
−∞

[f ∗1 (k) + ag∗2(k)]
∞∑
r=0

(−a)rt(α−β)rEr+1
α,α+(α−β)r(−bt

α) exp(−ikx)dk

+
tα−2

2π

∫ ∞
−∞

[g∗1(k) + ag∗2(k)]
∞∑
r=0

(−a)rt(α−β)rEr+1
α,α+(α−β)r−1(−btα) exp(−ikx)dk

+
∞∑
r=0

(−a)r

2π

∫ t

0

ξα+(α−β)r−1

∫ ∞
−∞

φ∗(k, t− ξ) exp(−ikx)

× Er+1
α,α+(α−β)r(−bξ

α)dk.

(33)

Alternative form of the solution of Equation (27)

By virtue of the series representation of the generalized Mittag-Leffler function Eα
β,γ(z) defined in

Equation (28), the expression

tα−ρ
∞∑
r=0

(−a)rt(α−β)rEr+1
α,α+(α−β)r−ρ+1(−btα) (34)

can be written as

tα−ρ
∞∑
r=0

∞∑
u=0

(1)r+u
r!u!

(−atα−β)r(−btα)u

Γ(α− ρ+ 1 + (α− β)r + au)

= tα−ρS1:0;0
1:0;0

[
−atα−β,−btα

∣∣∣∣[1:1;1]:−;−

[α−ρ+1:α−β;α]:−;−

] (35)

where S(·) is the Srivastava-Daoust generalization of the Kampé de Fériet hypergeometric series in two
variables [14], for its definition, see (B2) in Appendix B. Hence, Theorem 2 can now be stated in terms
of the Srivastava-Daoust hypergeometric function of two variables in the following form: Under the
conditions of Theorem 2, the unified one-dimensional fractional reaction-diffusion equation

0D
α
t N(x, t) + a 0D

β
t N(x, t) = λ xD

γ
θN(x, t) + φ(x, t) (36)

has the solution given by

N(x, t) =
tα−1

2π

∫ ∞
−∞

[f ∗1 (k) + af ∗2 (k)] exp(−ikx)

× S1:0;0
1:0;0

[
−atα−β,−btα

∣∣∣∣[1:1;1]:−:−

[α:α−β;α]:−:−

]
dk

+
tα−2

2π

∫ ∞
−∞

[g∗1(k) + ag∗2(k)]S1:0;0
1:0;0

[
−atα−β,−btα

∣∣∣∣[1:1;1]:−;−

[α−1:α−β;α]:−;−

]
dk

+
1

2π

∫ t

0

ξα−1

∫ ∞
−∞

φ∗(k, t− ξ) exp(−ikx)

× S1:0;0
1:0;0

[
−auα−β,−bξα

∣∣∣∣[1:1;1]−;−

[α:α−β;α]:−;−

]
dk dξ

(37)
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where <(α) > 0,<(β) > 0,<(α− β) > 0 and b is defined in Equation (6).

Note 4.1. By virtue of the lemma given in the Appendix B, the double infinite power series occurring
in Theorem 2 converges for <(α) > 0,<(α− β) > 0.

5. Special Cases of Theorem 2

If we set g1(x) = g2(x) = 0 in Theorem 2 then it reduces to the following:

Corollary 5. Consider the following unified one-dimensional non-homogeneous reaction-diffusion
equation of fractional order:

0D
α
t N(x, t) + a 0D

β
t N(x, t) =

n∑
j=1

µj xD
γj
θj
N(x, t) + φ(x, t) (38)

where t > 0, a, x ∈ R;α, β, θ1, ..., θn, γ1, ..., γn are real parameters with the constraint

µj > 0, 0 < γj ≤ 2, j = 1, ..., n, |θj| ≤ min
1≤j≤n

(γj, 2− γj), 1 < α ≤ 2, 1 < β ≤ 2 (39)

with the initial conditions

0D
α−1
t N(x, 0) = f1(x), 0D

α−2
t N(x, t) = 0, 0D

β−1
t N(x, 0) = f2(x),

0D
β−2
t N(x, 0) = 0, x ∈ R, lim

x→±∞
N(x, t) = 0, t > 0

(40)

where the various quantities are as defined in Theorem 2. Then we have a special case of
Equations (33) and (35) with the corresponding changes.

Other special cases of interest are the situations (i) n = 1, (ii) θ1 = ... = θn = 0,
(iii) f1(x) = f2(x) = δ(x) in Theorem 2. We get the corresponding results from Equations (33) and (37)
by substitution.
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Appendix A: Riemann-Liouville and Riesz-Feller fractional derivatives

The Riemann-Liouville fractional derivative of order α > 0 is defined as (Samko et al. ([37], p.37);
also see, Kilbas et al. [11])

0D
α
t f(x, t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− τ)n−α−1f(x, τ)dτ, n = [α] + 1, n ∈ N, t > 0 (A1)
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where [α] means the integral part of the number α.

The Laplace transform of the Riemann-Liouville fractional derivative is given by the following:
(see Oldham and Spanier ([39], Kilbas et al. [11], Podlubny [40], Samko et al. [41], Mainardi [12],
Diethelm [10])

{0D
α
t N(x, t); s} =

sαÑ(x, s)−
∑n

r=1 s
r−1

0D
α−r
t N(x, t)|t=0, n− 1 < α < n

∂n

∂tn
N(x, t), α = n.

(A2)

This derivative is useful in deriving the solutions of integral equations of fractional order governing
certain physical problems of anomalous reaction and anomalous diffusion. In this connection, one
can refer to the monograph by Dzherbashyan [36], Podlubny [40], Samko et al.[41], Oldham and
Spanier [39], Kilbas et al. [11], Mainardi [12], Diethelm [10] and a recent paper on the subject [9].
Following Feller [42,43], it is convenient to define the Riesz-Feller space-fractional derivative of order
α and skewness θ in terms of its Fourier transform as

F{xDα
θ f(x); k} = −ψθα(k)f ∗(k) (A3)

where
ψθα(k) = |k|α exp[i(sign k)

θπ

2
], 0 < α ≤ 2, |θ| ≤ min{α, 2− α} (A4)

Further, when θ = 0, we have a symmetric operator with respect to x that can be interpreted as

xD
α
0 = −

[
− d2

dx2

]α/2
(A5)

This can be formally deduced by writing −(k)α = −(k2)α/2. For 0 < α < 2 and |θ| ≤ min{α, 2− α},
the Riesz-Feller derivative can be shown to possess the following integral representation in x domain:

xD
α
θ f(x) =

Γ(1 + α)

π

{
sin[(α + θ)π/2]

∫ ∞
0

f(x+ ξ)− f(x)

ξ1+α
dxi

+ sin[(α− θ)π/2]

∫ ∞
0

f(x− ξ)− f(x)

ξ1+α
dξ

}
.

(A6)

For θ = 0 the Riesz-Feller fractional derivative becomes the Riesz fractional derivative of order α for
1 < α ≤ 2 defined by analytic continuation in the whole range 0 < α ≤ 2, α 6= 1 (see Gorenflo and
Mainardi [44]) as

xD
α
0 = −λ[I−α+ − I−α− ] (A7)

where

λ =
1

2 cos(απ/2)
; I−α± =

d2

dx2
I2−α
± (A8)

The Weyl fractional integral operators are defined in the monograph by Samko et al. [41] as

(Iβ+N)(x) =
1

Γ(β)

∫ ∞
−∞

(x− ξ)β−1N(ξ)dξ, β > 0

(Iβ−N)(x) =
1

Γ(β)

∫ ∞
x

(ξ − x)β−1N(ξ)dξ, β > 0.

(A9)
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Note A1. We note that xDα
0 is a pseudo differential operator. In particular, we have

xD
2
0 =

d2

dx2
but xD1

0 6=
d

dx
(A10)

For θ = 0 we have
F{xDα

0 f(x); k} = −|k|αf ∗(k) (A11)

The H-function is defined by means of a Mellin-Barnes type integral in the following manner [13]:

Hm,n
p,q (z) = Hm,n

p,q

[
x

∣∣∣∣(ap,Ap)

(bq ,Bq)

]

= Hm,n
p,q

[
z

∣∣∣∣(a1,A1),...,(ap,Ap)

(b1,B1),...,(bq ,Bq)

]
=

1

2πi

∫
Ω

Θ(ξ)z−ξdξ

(A12)

where i =
√
−1 and

Θ(ξ) =

{∏m
j=1 Γ(bj +Bjξ)

}{∏n
j=1 Γ(1− aj − Ajξ)

}
{∏q

j=m+1 Γ(1− bj −Bjξ)
}{∏p

j=n+1 Γ(aj + Ajξ)
} (A13)

and an empty product is interpreted as unity; m,n, p, q ∈ N0 with 0 ≤ n ≤ p, 1 ≤ m ≤ q, Ai, Bj ∈ R+,
ai, bj ∈ C, i = 1, ..., p, j = 1, ..., q such that the poles of Γ(bj + Bjξ), j = 1, ...,m are separated
from those of Γ(1 − aj − Ajξ), j = 1, ..., n, where N0 = {0, 1, 2, ...};R = (−∞,∞), R+ = (0,∞)

and C being the complex number field. A comprehensive account of the H-function is available from
Mathai et al. [13] and Kilbas et al. [11]. We also need the following result in the analysis that follows:
Haubold et al. [21] have shown that

F−1[Eβ,γ(−atβψθα(k);x] =
1

α|x|
H2,1

3,3

[
|x|

(atβ)1/α

∣∣∣∣(1,1/α),(γ,β/α),(1,ρ)

(1,1/α),(1,1),(1,ρ)

]
(A14)

where <(α) > 0,<(β) > 0,<(γ) > 0.

Appendix B: Convergence of the double power series

The following lemma given by the authors is needed in the analysis.

Lemma. (Saxena et al. [45]). For all a, α, β > 0 there holds the formula
∞∑
m=0

∞∑
n=0

(1)m+n

m!n!

xmyn

(a)αm+βn

= Γ(a)S1:0;0
1:0;0

[
x, y

∣∣∣∣[1:1;1]:−;−

[a:α;β]:−;−

]
(B1)

where S stands for the Srivastava-Daoust function (Srivastava et al. [38]), defined by Equation (B2).

Definition B1. Srivastava-Daoust generalization of the Kampé de Fériet hypergeometric series in two
variables is defined by the double hypergeometric series as [38]:

SA:B;B′

C:D;D′(x, y) = SA:B;B′

C:D;D′

[
x, y

∣∣∣∣[(a):θ,φ]:[(b):ψ]:[(b′):ψ′]

[(c):δ,ε]:[(d):η]:[(d′):η′]

]

=
∞∑
m=0

∞∑
n=0

{
∏A

j=1 Γ(aj +mθj + nφj)}{
∏B

j=1 Γ(bj +mψj)}{
∏B′

j=1 Γ(b′j + nψ′j)}xmyn

{
∏C

j=1 Γ(cj +mδj + nεj)}{
∏D

j=1 Γ(dj +mηj)}{
∏D′

j=1 Γ(d′j + nη′j)}m!n!

(B2)
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where the coefficients θ1, ..., θA, ..., η
′
1, ..., η

′
D′ > 0. For the sake of brevity (a) is taken to denote

the sequence of A parameters a1, ..., aA with a similar interpretation for (b), ..., (d′). Srivastava and
Daoust [38] have shown that the series (B2) converges for all x, y ∈ C when

∆ = 1 +
C∑
j=1

δj +
D∑
j=1

ηj −
A∑
j=1

θj −
B∑
j=1

ψj > 0 (B3)

and

∆′ = 1 +
C∑
j=1

εj +
D′∑
j=1

η′j −
A∑
j=1

φj −
B′∑
j=1

ψ′j > 0. (B4)

For a detailed account of the convergence conditions of the double series, see Srivastava and Daoust [38].
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