Next Issue
Volume 4, June
Previous Issue
Volume 3, December
 
 

Axioms, Volume 4, Issue 1 (March 2015) – 6 articles , Pages 1-119

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
429 KiB  
Article
A Model for the Universe that Begins to Resemble a Quantum Computer
by Stan Gudder
Axioms 2015, 4(1), 102-119; https://doi.org/10.3390/axioms4010102 - 09 Mar 2015
Viewed by 4142
Abstract
This article presents a sequential growth model for the Universe that acts like a quantum computer. The basic constituents of the model are a special type of causal set (causet) called a c-causet. A c-causet is defined to be a causet [...] Read more.
This article presents a sequential growth model for the Universe that acts like a quantum computer. The basic constituents of the model are a special type of causal set (causet) called a c-causet. A c-causet is defined to be a causet that has a unique labeling. We characterize c-causets as those causets that form a multipartite graph or equivalently those causets whose elements are comparable whenever their heights are different. We show that a c-causet has precisely two c-causet offspring. It follows that there are 2n c-causets of cardinality n + 1. This enables us to classify c-causets of cardinality n + 1 in terms of n-bits. We then quantize the model by introducing a quantum sequential growth process. This is accomplished by replacing the n-bits by n-qubits and defining transition amplitudes for the growth transitions. We mainly consider two types of processes, called stationary and completely stationary. We show that for stationary processes, the probability operators are tensor products of positive rank-one qubit operators. Moreover, the converse of this result holds. Simplifications occur for completely stationary processes. We close with examples of precluded events. Full article
(This article belongs to the Special Issue Quantum Statistical Inference)
Show Figures

Graphical abstract

267 KiB  
Review
Open and Dense Topological Transitivity of Extensions by Non-Compact Fiber of Hyperbolic Systems: A Review
by Viorel Nitica and Andrei Török
Axioms 2015, 4(1), 84-101; https://doi.org/10.3390/axioms4010084 - 04 Feb 2015
Cited by 2 | Viewed by 4765
Abstract
Currently, there is great renewed interest in proving the topological transitivity of various classes of continuous dynamical systems. Even though this is one of the most basic dynamical properties that can be investigated, the tools used by various authors are quite diverse and [...] Read more.
Currently, there is great renewed interest in proving the topological transitivity of various classes of continuous dynamical systems. Even though this is one of the most basic dynamical properties that can be investigated, the tools used by various authors are quite diverse and are strongly related to the class of dynamical systems under consideration. The goal of this review article is to present the state of the art for the class of Hölder extensions of hyperbolic systems with non-compact connected Lie group fiber. The hyperbolic systems we consider are mostly discrete time. In particular, we address the stability and genericity of topological transitivity in large classes of such transformations. The paper lists several open problems and conjectures and tries to place this topic of research in the general context of hyperbolic and topological dynamics. Full article
(This article belongs to the Special Issue Topological Groups: Yesterday, Today, Tomorrow)
241 KiB  
Article
Boas’ Formula and Sampling Theorem
by Tohru Morita and Ken-ichi Sato
Axioms 2015, 4(1), 71-83; https://doi.org/10.3390/axioms4010071 - 26 Jan 2015
Viewed by 4081
Abstract
In 1937, Boas gave a smart proof for an extension of the Bernstein theorem for trigonometric series. It is the purpose of the present note (i) to point out that a formula which Boas used in the proof is related with the Shannon [...] Read more.
In 1937, Boas gave a smart proof for an extension of the Bernstein theorem for trigonometric series. It is the purpose of the present note (i) to point out that a formula which Boas used in the proof is related with the Shannon sampling theorem; (ii) to present a generalized Parseval formula, which is suggested by the Boas’ formula; and (iii) to show that this provides a very smart derivation of the Shannon sampling theorem for a function which is the Fourier transform of a distribution involving the Dirac delta function. It is also shows that, by the argument giving Boas’ formula for the derivative f'(x) of a function f(x), we can derive the corresponding formula for f'''(x), by which we can obtain an upperbound of |f'''(x)+3R2f'(x)|. Discussions are given also on an extension of the Szegö theorem for trigonometric series, which Boas mentioned in the same paper. Full article
435 KiB  
Article
Azumaya Monads and Comonads
by Bachuki Mesablishvili and Robert Wisbauer
Axioms 2015, 4(1), 32-70; https://doi.org/10.3390/axioms4010032 - 19 Jan 2015
Viewed by 4021
Abstract
The definition of Azumaya algebras over commutative rings \(R\) requires the tensor product of modules over \(R\) and the twist map for the tensor product of any two \(R\)-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in [...] Read more.
The definition of Azumaya algebras over commutative rings \(R\) requires the tensor product of modules over \(R\) and the twist map for the tensor product of any two \(R\)-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category \(\mathbb{A}\) by considering a monad \((F,m,e)\) on \(\mathbb{A}\) endowed with a distributive law \(\lambda: FF\to FF\) satisfying the Yang–Baxter equation (BD%please define -law). This allows to introduce an opposite monad \((F^\lambda,m\cdot \lambda,e)\) and a monad structure on \(FF^\lambda\). The quadruple \((F,m,e,\lambda)\) is called an Azumaya monad, provided that the canonical comparison functor induces an equivalence between the category \(\mathbb{A}\) and the category of \(FF^\lambda\)-modules. Properties and characterizations of these monads are studied, in particular for the case when \(F\) allows for a right adjoint functor. Dual to Azumaya monads, we define Azumaya comonads and investigate the interplay between these notions. In braided categories (V\(,\otimes,I,\tau)\), for any V-algebra \(A\), the braiding induces a BD-law \(\tau_{A,A}:A\otimes A\to A\otimes A\), and \(A\) is called left (right) Azumaya, provided the monad \(A\otimes-\) (resp. \(-\otimes A\)) is Azumaya. If \(\tau\) is a symmetry or if the category V admits equalizers and coequalizers, the notions of left and right Azumaya algebras coincide. Full article
(This article belongs to the Special Issue Hopf Algebras, Quantum Groups and Yang-Baxter Equations 2014)
14 KiB  
Editorial
Acknowledgement to Reviewers of Axioms in 2014
by Axioms Editorial Office
Axioms 2015, 4(1), 30-31; https://doi.org/10.3390/axioms4010030 - 08 Jan 2015
Viewed by 2860
Abstract
The editors of Axioms would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2014:[...] Full article
1385 KiB  
Article
Positive-Operator Valued Measure (POVM) Quantization
by Jean Pierre Gazeau and Barbara Heller
Axioms 2015, 4(1), 1-29; https://doi.org/10.3390/axioms4010001 - 25 Dec 2014
Cited by 17 | Viewed by 8252
Abstract
We present a general formalism for giving a measure space paired with a separable Hilbert space a quantum version based on a normalized positive operator-valued measure. The latter are built from families of density operators labeled by points of the measure space. We [...] Read more.
We present a general formalism for giving a measure space paired with a separable Hilbert space a quantum version based on a normalized positive operator-valued measure. The latter are built from families of density operators labeled by points of the measure space. We especially focus on various probabilistic aspects of these constructions. Simple ormore elaborate examples illustrate the procedure: circle, two-sphere, plane and half-plane. Links with Positive-Operator Valued Measure (POVM) quantum measurement and quantum statistical inference are sketched. Full article
(This article belongs to the Special Issue Quantum Statistical Inference)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop