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Abstract: This paper outlines and qualitatively compares the implementations of seven
different methods for solving Poisson’s equation on the disk. The methods include two
classical finite elements, a cotan formula-based discrete differential geometry approach and
four isogeometric constructions. The comparison reveals numerical convergence rates and,
particularly for isogeometric constructions based on Catmull–Clark elements, the need to
carefully choose quadrature formulas. The seven methods include two that are new to
isogeometric analysis. Both new methods yield O(h3) convergence in the L2 norm, also
when points are included where n 6= 4 pieces meet. One construction is based on a polar,
singular parameterization; the other is a G1 tensor-product construction.
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1. Introduction

In classical analysis, physical laws are described by a set of (partial) differential equations from
which the qualitative behavior of physical systems is deduced. The differential operators used in these
equations are continuous in the sense that they are based on infinitesimal change. To obtain quantitative
information, one has to typically rely on computational methods. Computational methods may discretize
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the operator or discretize the underlying solution space of the equations. An alternative is the theory of
discrete differential geometry (DDG), which starts with a discrete description and tries to preserve key
properties of the underlying continuous systems in the form of important invariants.

This paper compares the convergence rates of the implementations of seven different approaches for
solving Poisson’s equation on the disk. Besides the DDG approach [1,2], the comparison includes two
classical C0 and C1 finite (Hsieh–Clough–Tocher) elements and four flavors of isogeometric analysis
(IgA). IgA is a form of isoparametric analysis (see Section 3) using higher-order elements, such
as tensor-product B-splines, both to describe the domain and the approximate solution of a partial
differential equation. IgA currently has some limitations, foremost being the sub-optimal numerical
convergence rate, where the spline elements are not laid out regularly, i.e., where they are not arranged
as quad-grids or a hierarchical refinement thereof [3–6]. Choosing Poisson’s equation on the disk as the
model problem forces the introduction of irregular mesh points.

The paper’s contributions to the state-of-the-art are:

• a qualitative comparison between classical finite elements, a DDG approach and four isogeometric
constructions;

• an investigation of quadrature formulas for subdivision IgA finite elements;

• implementation of an IgA method for C1 functions on complex domains that is based on G1

constructions and yields O(h3) convergence, also at irregular points; this improved convergence is
confirmed for an L-shaped domain and for an elastic plate with a circular hole;

• implementation of an IgA method with singular parameterization at irregular points that yields
O(h3) convergence also at irregular points.

Overview

Section 2 gives an overview of the two classical finite element spaces and the canonical DDG
approach to Poisson’s equation. Section 3 describes four partly new approaches to constructing C1

functions over complex domains by using singular, respectively, geometrically continuous splines.
Section 4 succinctly reviews the classical variational framework for the Poisson equation. Section 5
compares numerical convergence rates, as summarized in Figure 10.

2. Classical Finite and DDG Elements

This section briefly reviews standard non-linear finite elements and the cotan formula-based
DDG approach.

2.1. C0 Quadratic Triangular Elements

Also known as the linear strain triangle (LST) or Veubeke triangle, theC0 quadratic triangular element
was developed by B. M. Fraeijs de Veubeke [7]. The six degrees of freedom of a polynomial of a total
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degree two in two variables can be expressed as the coefficients, cijk, of the polynomial in total degree
Bernstein-Bézier form (BB-form; see, e.g., [8]):

b4(u, v) :=
∑

i+j+k=2

cijk
2!

i!j!k!
(1− u− v)iujvk, i, j, k ∈ N0, 0 ≤ u, v ≤ 1, 0 ≤ u+ v ≤ 1 (1)

Figure 1 shows the two types of C0 quadratic elements, one associated with a vertex, the other with
the mid-edge of a triangle.

Figure 1. C0 quadratic basis functions. (a,c) top view with height scale. (a) Nodal basis
function; (b) BB-piece of (a); (c) mid-edge basis function; (d) BB-piece of (c).

(a) (b)

(c) (d)

2.2. Hsieh–Clough–Tocher Elements

The Hsieh–Clough–Tocher (HCT) element is a classical C1 finite element (see, e.g., [9]). The
HCT-element is piecewise polynomial of degree three. It is constructed over a triangle domain split into
three sub-triangles by connecting the vertices to the barycenter. The resulting three-piece C1 function
has 12 degrees of freedom, which one may choose as the value and first derivatives at each vertex, plus
normal derivatives on the midpoint of each edge. The twelve basis functions overlapping a triangle
are constructed by setting one of the degrees of freedom to one and all others to zero. This is most
conveniently expressed in total-degree three Bernstein–Bézier basis functions b4k . We associate three
basis functions b43i+j, j = 0, 1, 2 with the value and the partial derivatives at each vertex vi, i = 1 . . . n

and one basis function, b43n+k, with each edge, ek. The functions b43i+j have support on the triangles with
common vertex vi, and the functions b43n+k have support on the triangles sharing ek (see Figure 2).
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There are other methods of building smooth finite elements on split triangles, for example the
Powell–Sabin construction [10]. The general theory is presented by Lai and Schumaker [11]. Recently,
these classical elements have been applied to IgA, for example [12] or [13].

Figure 2. Hsieh–Clough–Tocher (HCT) basis functions (top view with height scale). (a)
b43i: nodal basis function; (b) b43i+1: x-derivative basis function; (c) b43N+k: mid-edge normal
derivative function.

(a) (b) (c)

2.3. The Discrete Differential Geometry Approach

The theory of discrete differential geometry (DDG), starts with a discrete formulation that strives to
preserve key properties of the underlying continuous systems in the form of important invariants. An
example of a DDG operator is the cotangent formula for modeling the Laplace–Beltrami operator (see,
e.g., Pinkall and Polthier [1]). In applications, DDG generalizes the principles underlying the continuous
operator to make methods directly applicable to the data and to improve robustness over just discretizing
the continuous operators.

The cotangent formula discretizes the Laplace–Beltrami operator on a triangular mesh. Among
the desirable properties for discrete Laplacians enumerated in [14], we are mainly concerned with
convergence in the sense that the discretization solves, in the limit under refinement, the PDEs correctly.
In [15], Desbrun et al. (see also [16]) define the cotan operator, for a function, f , at a vertex, vi, of a
triangular mesh, M , as:

∆Mf(vi) :=
3

A(v)

∑
j∈N1(i)

cotαij + cot βij
2

[f(vj)− f(vi)] (2)

where A(v) is the area of all the triangles of the one-ring neighbors of vi, N1(i) is the set of the vertex
indices of one-ring neighbors and αij and βij are the two angles opposite to the edge in the two triangles
having the edge, eij , in common (see Figure 3a). In [17], G. Xu proved that Equation (2) converges to
second order to the continuous operator if each vi has valence six and vi and vj lie on a sufficiently smooth
surface. More general convergence guarantees appeared in [18]. In [19], K. Crane et al. derive the
cotangent formula from linear finite element methods, whose a basis function is shown in Figure 3b and,
alternatively, via discrete exterior calculus. For higher order PDEs, such as thin shell simulation [20],
energy methods have been adopted.
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DDG has found use in computer graphics and computing for architectural geometry [20,21] and is
at the heart of discrete exterior calculus (see, e.g., [22]). Formula (2) has been successfully applied to
geometry processing and simulation on mesh models (see, e.g., [23]).

Figure 3. Discrete differential geometry (DDG) notation and linear functions. (a) Notation
of Equation (2); (b) top view of the linear “hat” function.
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3. The Isogeometric Approach

The next four methods model both the physical domain, Ω (the disk), and the PDE discretization
space by tensor-product spline-like functions:∑

i

cib
�
i (s, t) =

∑
j,k

cjkNj(s)Nk(t) (3)

where b�i := NjNk is the i-th tensor-product basis function defined on a standard domain, such as the
unit square, T . We will use polynomial splines, except at the domain boundary, where the circle is
exactly expressed in rational Bernstein–Bézier form.

The four methods will be used in the framework of IgA. IgA is a special case of the classical
isoparametric analysis. The term, isogeometric analysis (IgA) was coined by T. Hughes et al. [24]
in an effort to eliminate the representation gap between computer aided design and engineering analysis.
In particular, IgA proponents have advocated the B-spline representation [25], both for modeling the
geometry of Ω and for presenting the bases, b�i , of the differential geometric analysis.

To define basis functions bi on Ω, one first represents the physical domain as the image of copies of
T under the spline maps, xα : T → Ω (cf. Figure 4a):

Ω := ∪nα=1xα(T ) T ( R2 (4)

Then, the space of functions on Ω(T ) are obtained by composing test functions, also defined on T , with
the inverse of xα (see Figure 4b). In IgA, we use test functions (b�i )α : T → R, where (b�i )α is the part of
the i-th basis function, b�i , on the domain piece defined by Ωα. That is, the test functions are drawn from
the same space as xα. Then, the discretization space on Ω is the span of the functions (see Figure 4b).

bi|xα(T ) := (b�i )α ◦ x−1
α , 1 ≤ α ≤ n (5)
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A main open challenge of IgA are extraordinary points, where more or less than four tensor-product
patches join. (The analogue in the case of three-sided patches is to have more or less than six elements
meet at a point.) Such points occur for topological reasons, by Euler’s count, and are often inserted to
better adjust the mesh to the local geometry. This is illustrated in Figure 5b, where a central n = 5-valent
(five-neighbor) point is surrounded by n three-valent points. Without a sophisticated treatment of
extraordinary points, the advantage of high-order methods in IgA may be nullified by slow convergence
near these points. There is an ongoing, vigorous discussion of the proper choice of refinement space for
hierarchical adaptive modeling [3–6], but this does not address the modeling at extraordinary points.

Figure 4. A basis function, bi, is the composition of the basis function, b�i , on the
tensor-product parameter domain, T , and the inverse of the geometry mapping, x. (a) The
union of 4× 4 domains T and its image, Ω, under 4× 4 maps xα. (a) (left) Union domains
T and (right) the physical domain Ω; (b) basis function b�i on T , respectively on Ω.
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Figure 5. The non-smooth C0 bi-3 basis function: (a, left) A quad mesh of points associated
with B-spline-like functions, for n = 5. (a, right) The coefficients of the patches in
tensor-product BB-form defined by the C2 extension of the regular spline complex towards
the extraordinary point (see [29]). Note the n = 5 points of valence three surrounding the
central n-valent point. (a) Control net and C2 extension in BB-form; (b) C0 bi-3 basis
function.

(a) (b)

Our four constructions represent alternative approaches to deal with the extraordinary points. We
focus on higher-order spline-like representations that mimic bi-cubic (bi-3) tensor-product splines. Our
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first choice is the space of polynomials of degree bi-3 that are C2, except near the extraordinary points,
where they are only continuous. We will see that this simple space has good convergence except at
the extraordinary point. This flaw motivates and makes the case for our other three constructions.
Our second construction leverages Catmull–Clark subdivision. This is inspired by the seminal work of
F. Cirak et al. [26,27], who used subdivision surface functions over triangulations for thin shell analysis.
The challenge, not emphasized in the original work, is the choice of integration rules (see Section 5.1).
Our remaining constructions come from geometric modeling and are new to IgA. The third construction
leverages everywhere G1 functions (that are C1 when considered over the physical domain). Here, G1

refers to geometric continuity, i.e., the matching of derivatives after the reparametrization of one or both
of the adjacent function pieces (see [28]). Just as for Catmull–Clark subdivision, the space of generating
functions consists of C2 polynomial splines of degree bi-3 away from extraordinary points. Finally,
we introduce C1 functions with a polar layout, i.e., with a central pole or singularity. The last three
constructions allow us to address high-order PDEs, such as the Kirchhoff–Love shell model or buckling
analysis, which are not the focus of the present exposition.

3.1. Bi-3 Elements That Are C0 at Extraordinary Points

A single Catmull–Clark refinement step converts any mesh into a mesh that consists of only
quadrilateral facets, short quads. When all four vertices of a quad have valence four, i.e., are surrounded
by four quads, then each 3 × 3 submesh can be interpreted as the control net of one bi-3 (bi-cubic)
polynomial piece in tensor-product B-spline representation. A regular grid pattern of quads then defines
a bi-3 C2 tensor-product spline.

At extraordinary points, this interpretation of the quad mesh breaks down. Assuming that
extraordinary points are isolated, in the sense that no two extraordinary points share a quad, we can
still construct a bi-3 C2 tensor-product spline complex with “holes”, where n 6= 4 quads meet. A simple
way to complete the spline complex is to extend the existing spline patches, C2, into the holes, as n
patches in bi-3 tensor-product BB-form (see Figure 5a, right). These patches are defined up to just one
BB-coefficient, corresponding to the position at the center of the hole and common to all n patches.
This coefficient is trivially set to the average of the surrounding coefficients. The result is bi-3 elements
that form a standard C2 bi-3 spline complex away from the extraordinary pointand that join C0 at the
extraordinary point (see Figure 5b).

3.2. Catmull–Clark Elements

Subdivision splines are piecewise polynomial splines with singularities at the extraordinary
points [30]. The neighborhood of an extraordinary point is an infinite sequence of nested spline rings
(where “ring” indicates the connectivity, not an algebraic ring). Subdivision splines have been used for
finite element analysis well before the advent of IgA (see [26]), but did not receive the attention from the
engineering community that IgA is currently generating. A more complicated framework for adaptive
simulation with subdivision splines was introduced by E. Grinspun et al. in [31]. Subdivision-based
functions for IgA on solid models were presented in [32,33]. The Catmull–Clark subdivision has been
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used in [34], the similar bi-2 spline-based Doo-Sabin subdivision in [35] and Loop’s subdivision in [36],
for large deformation and anisotropic growth.

Among a myriad of subdivision schemes, Catmull–Clark dominates in industrial implementations.
The Catmull–Clark subdivision refines a mesh by binary split in each direction (see Figure 6). The basis
function associated with a vertex not on the boundary has support on two-ring neighbors. (For spline
surfaces with a boundary, we apply “natural end conditions”, i.e., we do not evaluate under-defined outer
quadrilaterals, after extrapolating the existing mesh.) Recently, Barendrecht performed experiments of
the numerical convergence of IgA with Catmull–Clark surfaces and observed poor convergence near
extraordinary points [37]. He conjectured that this is due to the well-known unbounded Gaussian
curvature of the Catmull–Clark subdivision at these points. Based on our experiments in Section 5,
Table 1, we think that the poor numerical convergence can be the result of of applying Gauss quadrature
rules with respect to the original quads, rather than choosing quadrature points for each sub-polynomial
of sufficiently many levels of refinement (see Figure 6a,b).

Figure 6. Catmull–Clark elements. (a) Refinement Level 3; (b) refinement Level 7; (c) a
Catmull–Clark subdivision function.
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Table 1. Error (scaled by 10−5) of the computed solution of Poisson’s equation by
Catmull–Clark subdivision on Disk 1 (see Figure 6), for different levels of subdivision when
applying the Gauss quadrature. The subdivision is localized to not refine the overall mesh.

Depth L2 L∞

3 893.063 476.26
5 100.44 81.193
7 70.395 47.004
9 70.073 43.992

3.3. Higher-Order G1 Elements

A technique from the applied mathematics area of geometric design allows the gluing together of
function pieces with “geometric continuity”. The result is a Ck manifold. The designation, Gk, is used
to emphasize that derivatives of adjacent patches match only after reparametrization [28]. Geometric
continuity then allows smoothly join n 6= 4 tensor-product pieces (often called patches) in the sense of
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parametric surfaces. Composition of a G1 construction with the inverse of a G1 construction that share
the same reparametrization yields a C1 function. There are many G1 constructions in the literature.
Some naturally complete a bi-3 C2 tensor-product spline complex with bi-3 patches to a G1 structure.
To avoid splitting quadrilateral domains, we chose [38], a simplified version of [29] that deploys n
bi-5 patches at the extraordinary point. The corresponding basis functions are shown in Figure 7. The
resulting G1 elements are C2 at the extraordinary point. The additional smoothness at the extraordinary
points guarantees high polynomial reproduction and, hence, high numerical convergence also at the
extraordinary points.

Figure 7. G1 element at an extraordinary point. (a) Two G1 bi-3/bi-5 basis functions; (b) G1

bi-3/bi-5 basis function with onepatch in BB-form lifted up.
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3.4. Polar C1 Elements

The polar parametric surface construction of [39] provides a simple element that is smooth and
particularly well-behaved at points where many surfaces join in a triangle fan at the center of the disk
(see Figure 8). To match the tensor-product standard, the triangle of the fan can be interpreted as
quadrilaterals that have one edge collapsed. Analogous to the G1 edges in the previous construction,
the central singularity is no cause for concern for the shape. Note that this observation matches the
recent results of Takacs and Jüttler [40], who analyze singularities at domain boundaries, where the test
functions by themselves are not well-defined.
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Figure 8. Polar elements for polar configurations. (a) Modeling with C1 polar functions;
(b) a C1 polar basis function.
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4. Solving the Poisson Equation

We are solving Poisson’s equation on the domain, Ω, subject to zero boundary conditions on the
boundary, ∂Ω, of Ω:

−∆u = f, u(∂Ω) = 0 (6)

The DDG method discretizes this formulation directly as−∆Mu = f , where the operator, ∆M , has been
defined in Equation (2).

For all six methods other than DDG, we solve the equation numerically by considering its weak form:
find u ∈ H1

0 , such that for all v ∈ H1
0 :∫

Ω

∇u · ∇v d Ω =

∫
Ω

fv d Ω (7)

We seek an approximate solution in terms of the generating functions bi : Ω→ R defined in Equation (5)
by determining the coefficients, ci ∈ R, in:

uh :=
N∑
1

cibi (8)

Using Galerkin’s method, we set v = bi in Equation (7) and obtain the constraints:∫
Ω

∇(
N∑
1

cjbj) · ∇bi d Ω =

∫
Ω

fbi d Ω (7*)

This yields a system of linear equations:

Kc = f , where Kij :=

∫
Ω

∇bi · ∇bj d Ω, and fi :=

∫
Ω

fbi d Ω (9)

and the vector of unknown coefficients is c := [c1, · · · , cn]t.
For all isogeometric methods, we define the physical domain, Ω, as in Equation (4) and write the

integrals in Equation (9) as a sum of integrals restricted to some xα(T ). Using Equation (5) and dropping
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the subscript, α, we can, by the change of variables, express the local integrals with respect to each
parameter domain, T , as:

Kij =

∫
x(T )

∇(b�i ◦ x−1) · ∇(b�j ◦ x−1) d Ω =

∫
T

(J−1∇b�i ) · (J−1∇b�j )| det J | dT

=

∫
T

(∇b�i )t[J−1]tJ−1(∇b�j )| det J | dT

where J is the transpose of the Jacobian of the mapping x : (s, t) ∈ T → [x(s, v) y(s, v)]t. For
implementation, we collect:

J :=

[
xs ys

xt yt

]
, det J = xsyt − xtys, J−1 =

1

det J

[
yt −ys
−xt xs

]
(10)

[J−1]tJ−1| det J | = 1

| det J |

[
x2
t + y2

t −xsxt − ysyt
−xsxt − ysyt x2

s + y2
s

]
(11)

Similarly, for the right-hand side term,∫
Ω

fbi d Ω =

∫
T

(f ◦ x)b�i | det J | dT (12)

5. Numerical Results and Comparison

Before we compare the convergence rates of the methods for Poisson’s equation on the disk, we need
to look in more detail at the quadrature rules that are used for Catmull–Clark functions in the IgA setting
to compute Equations (10) and (12).

5.1. Correct Gauss Quadrature for Catmull–Clark Subdivision

The p-point Gaussian quadrature rule is known to exactly calculate the integral of polynomials of
degree up to 2p − 1. For piece-wise polynomials, Gaussian quadrature only gives approximate results.
Table 1 shows that in order to obtain good integration results at irregular points, one needs to apply
exact Gauss quadrature on many subdivision layers to obtain convergence. We found that subdivision
of depth seven was necessary for results to stabilize. A more principled approach is to take advantage
of the recursive nature of subdivision and compute the quadrature rules via eigendecomposition, as in
Halstead et al. in ([41], Appendix B).

5.2. Convergence Rates

Figure 9 shows the three types of meshes that one might naturally associate with the methods. For
C0 quadratic, HCT and DDG elements, we optimized the aspect ratio of the triangles to guarantee
numerical stability. These elements are non-conforming while the iso-geometric elements reproduce
the boundary circle exactly. For bi-3 C0, Catmull–Clark and G1 bi-3/bi-5 elements, we chose a central
extraordinary point with valence n = 5, surrounded by n satellites of valence three. Other n can be
tested or the singularities can be distributed to the boundary, as in Takacs and Jüttler’s approach [40].
Finally, the polar configuration is natural for the polar C1 elements. The convergence of polar elements
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is remarkably unaffected by the valence of the central point. We choose f := 1 in Equation (6). Then,
the exact solution is u := (1− x2 − y2)/4, and we can display the exact error.

Figure 10 confirms at least an O(h2) convergence for all higher-order methods, as well as for DDG.
The graphs are in log-scale with smaller mesh spacing displayed to the left. That is, the entries to the
left correspond to more elements. Figure 10 displays O(h3) L2-norm convergence of the isogeometric
approaches. The spread factor between the polar and the other three methods is five. That is, in the L2

sense, the easily implemented C1 polar isogeometric approach (that is natural for the disk) is superior.
Remarkably, though, the more general G1 construction excels in minimizing the L∞ norm. The spread
in the error between the four O(h3)-convergent methods is more than a factor of eight.

The higher L∞ error of Catmull–Clark elements (Figure 11a) and C0 bi-3 elements (Figure 11c) is
concentrated at the central point, as large spikes. This is to be expected, since neither method reproduces
all quadratic expansions at the central point, a fact that is also reflected in their lack of C1, respectively
C2 smoothness at the central point.

5.3. Complexity

We do not compare execution times, since implementation details, such as memory management on
the GPU, pre-tabulation of basis functions or sparsity (taking advantage of finite support), etc., strongly
influence the performance. However, we can state the size of the matrix, K, in Equation (9) for the IgA
methods. For Disk 1, the mesh (Figure 9e) used by bi-3 C0, Catmull–Clark and G1 bi-3/bi-5 elements
K is a matrix of size 151 × 151 for 120 patches. For Disk 1, the mesh (Figure 9f) used by C1 polar
elements K is a matrix of size 101× 101 for 80 patches. The relative times for solving Equation (9) by
our unoptimized implementations showed a ratio of roughly 4:6:8:26 for C1 polar, bi-3 C0, G1 bi-3/bi-5
and Catmull–Clark elements, respectively. We surmise that, in the natural disk setting, C1 polar elements
can achieve good results with fewer elements and fast computation. Remarkably, the quality of the polar
method does not depend on the valence of the center point: the polar method’s L2 error decreases with
order of O(h3), even though the valence of the center point is doubled with each refinement step.

The three non-IgA-methods, and the DDG method in particular, have lower memory requirements.
This allowed us to add very fine meshes for the comparison in Figure 10. For Disk 3, the mesh of type
Figure 9d has 6,144 triangles, and 3,169, 12,481 and 18,819 degrees of freedom for DDG, C0 elements
and HCT elements, respectively. We observed solution times with a ratio of 2:10:37, making DDG
attractive in comparison to the classical HCT elements.
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Figure 9. Three types of meshes specific to each of the three classes of methods. (d) C0

quadratic, HCT, DDG elements: 384, 384×4, 384×16 elements; (e) bi-3C0, Catmull–Clark
and G1 bi-3/bi-5 elements: 120, 120 × 4, 120 × 16 elements; (f) polar C1 elements: 100,
100× 4, 100× 16 elements. Columns a, b, c correspond to refinement by halving h, hence
quadrupling the number of elements, i.e. to (a) Disk 1; (b) Disk 2; (c) Disk 3;
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Figure 10. Convergence comparison between methods. Note that the graphs are in log-scale
(the triangle indicates the convergence exponent in log-scale) and that higher mesh density
is to the left, as the mesh spacing on the abscissa decreases. (a) Error in L2; (b) error in L∞.
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5.4. The G1 bi-3/bi-5 Elements on the L-shape and on the Elastic-Plate-with-Hole

We confirm the high-order convergence of the newG1 bi-3/bi-5 elements by computing two additional
well-known benchmark problems. The first is Laplace’s equation on the:

L-shaped domain: (−1, 1)2 \ (−1, 0)2 (13)

The exact solution is u(x, y) = r
2
3 sin(2a/3 + π/3), where r(x, y) :=

√
x2 + y2 and a(x, y) :=

atan(x/y). We use this exact solution to provide non-homogeneous Dirichlet boundary conditions for
the numerical problem formulation. Figure 12b shows the difference between the known exact and
the computed solution when solving the Laplace problem on the three mesh resolutions of Figure 12a.
Predictably, the largest errors occur at the corner singularity. Figure 12c,d show the convergence in the
L2 and in the L∞ norm, respectively.

As a second challenge, the G1 bi-3/bi-5 elements are used for structural analysis of the infinite plate
with a circular hole under in-plane tension in the x-direction; see ([24], p. 4151). The exact solution is
σxx(r, θ) = T −T R2

r2
(3/2 cos(2θ)+cos(4θ))+T 3R4

2r4
cos(4θ) where r(x, y) :=

√
x2 + y2 and θ(x, y) :=

atan(y/x). Figure 13b plots the stress, σxx, computed at the three mesh resolutions of Figure 13a.
Figure 13c,d shows the convergence with respect to the L2 and the L∞ norm.

6. Conclusions

When starting our work on IgA methods, we found reports on many individual implementations and
applications. To get a sense of how IgA methods stack up against each other, as well as against some of
the more classical and the DDG methods, we implemented these methods. Our goal here was to confirm
qualitative behavior, since performance comparisons would likely depend on implementation details.
Moreover, methods with the O(h3) convergence at the extraordinary point are currently missing in the
IgA literature. By introducing two methods with improved polynomial reproduction and smoothness at
the irregular points, we were able to improve L∞ convergence at the extraordinary point. The purpose
of the paper is to share our experience concerning the qualitative behavior of implementations of the
seven methods.

While neither of the two classical approaches can directly be applied to surfaces as physical domains,
four of the remaining five generalize directly. Of the four IgA constructions, the C0 bi-3 and the G1

bi-3/bi-5 construction need additional work to guarantee compatible surface representations. We applied
the methods to generate geodesics on surfaces by solving the heat equation. These applications confirmed
the convergence characterization of Figure 10.

Three of the IgA approaches, subdivision, G1 bi-3/bi-5 and C1 polar, as well as some extensions of
the DDG approach span the correct space to solve thin shell and biharmonic equations. Here, we are
collecting further comparative data.
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Figure 12. The G1 bi-3/bi-5solution of Laplace’s equation on the L-shape. (a) h-refinement
of the L-shape; (b) the difference between the exact solution and the computed solution; (c)
L2-error; (d) L∞-error.
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Figure 13. The G1 bi-3/bi-5elements on the elastic plate with a circular hole. (a)
h-refinement; (b) contour plots of σxx; (c) L2-error; (d) L∞-error.
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