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Abstract: The Yang-Baxter equation first appeared in a paper by the Nobel laureate, C.N.
Yang, and in R.J. Baxter’s work. Later, Vladimir Drinfeld, Vaughan F. R. Jones and Edward
Witten were awarded Fields Medals for their work related to the Yang-Baxter equation. After
a short review on this equation and the Yang-Baxter systems, we consider the problem of
constructing algebra factorizations from Yang-Baxter systems. Our sketch of proof uses
braided categories. Other problems are also proposed.
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1. Introduction

The Yang-Baxter equation first appeared in a paper by the Nobel laureate, C.N. Yang, and in R.J.
Baxter’s work. At the 1990 International Mathematics Congress, Vladimir Drinfeld, Vaughan F. R. Jones
and Edward Witten were awarded Fields Medals for their work related to the Yang-Baxter equation.

This equation plays a crucial role in many areas of mathematics, physics and computer science.
Many scientists have used the axioms of various algebraic structures or computer calculations in order
to produce solutions for it, but the full classification of its solutions remains an open problem.

In our previous special issue on Hopf algebras, quantum groups and Yang-Baxter equations, several
papers [1–6], as well the feature paper [7], covered many topics related to the Yang-Baxter equation.

The interest in the Yang-Baxter equation is also motivated by its many applications and
interpretations. As an example of categorical interpretation, let us consider the following extension
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for the duality between finite dimensional algebras and coalgebras to the category of finite dimensional
Yang–Baxter structures (from [8] and, also, [4]). That duality can be illustrated by the following diagram:

f.d.Yang-Baxter (YB) str. ooD=()∗

D=()∗
// f.d. YB str.

f.d. k-alg. oo ()∗

()∗
//

F

OO

f.d. k-coalg.

G

OO

The previous duality extension resembles the duality extension from [9]. Furthermore, the extension of
the duality between finite dimensional algebras and coalgebras could lead to further developments of the
current paper.

The following list of recent papers could be an introduction and a motivation to study Yang-Baxter
systems: [10–14].

The next section provides a mathematical background on Yang-Baxter systems, and Section 3
contains the main problems and results.

2. Preliminaries

We work over the field k, and all the unadorned tensor products are tensor products over k.
The identity map on a k-vector space V is denoted by I = IV .
All the algebras considered are k-algebras, and they are associative and with a unity; the product in a

k-algebra A is denoted by µ : A⊗ A→ A, while the unit map is denoted by ι : k → A.

For any vector spaces V and W , τ = τV,W : V ⊗W → W ⊗ V denotes the natural bijection defined
by τV,W (v ⊗ w) = w ⊗ v.

Let R : V ⊗ V → V ⊗ V be a k-linear map. Define R12 = R ⊗ I , R23 = I ⊗ R and R13 =

(I ⊗ τ) ◦ (R⊗ I) ◦ (I ⊗ τ). Each of the Rij is thus a linear endomorphism of V ⊗ V ⊗ V .

Definition 2.1 An invertible k-linear map, R : V ⊗ V → V ⊗ V , is called a Yang-Baxter operator (or,
simply, a YB operator) if it satisfies the equation:

R12 ◦R23 ◦R12 = R23 ◦R12 ◦R23 (1)

Equation (1) is usually called the braid equation. It is a well-known fact that the operator R satisfies
(1) if and only if R ◦ τV,V satisfies the quantum Yang-Baxter equation:

R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12 (2)

Example 2.2 ([15]) If A is a k-algebra, then for all non-zero r, s ∈ k, the linear map:

RA
r,s : A⊗ A→ A⊗ A, a⊗ b 7→ sab⊗ 1 + r1⊗ ab− sa⊗ b (3)

is a Yang-Baxter operator.
This construction played an important role in the construction of Yang-Baxter systems from algebra

factorizations (see [16]).
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Yang-Baxter systems were introduced in [17], as a spectral-parameter independent generalization of
quantum Yang-Baxter equations related to non-ultralocal integrable systems, previously studied in [18].

Yang-Baxter systems are conveniently defined in terms of Yang-Baxter commutators. Consider three
vector spaces, V, V ′, V ′′, and three linear maps, R : V ⊗ V ′ → V ⊗ V ′, S : V ⊗ V ′′ → V ⊗ V ′′ and
T : V ′⊗V ′′ → V ′⊗V ′′. Then, a Yang-Baxter commutator is a map [R, S, T ] : V⊗V ′⊗V ′′ → V⊗V ′⊗V ′′

defined by:
[R, S, T ] = R12 ◦ S13 ◦ T23 − T23 ◦ S13 ◦R12 (4)

In terms of a Yang-Baxter commutator, the quantum Yang-Baxter Equation (2) is expressed simply as
[R,R,R] = 0.

Definition 2.3 Let V and V ′ be vector spaces. A system of linear maps,

W : V ⊗ V → V ⊗ V, Z : V ′ ⊗ V ′ → V ′ ⊗ V ′, X : V ⊗ V ′ → V ⊗ V ′,

is called a WXZ-system, or a Yang-Baxter system, provided the following equations are satisfied:

[W,W,W ] = 0 (5)

[Z,Z, Z] = 0 (6)

[W,X,X] = 0 (7)

[X,X,Z] = 0 (8)

The next remark plays an important role in this paper.

Remark 2.4 Given a WXZ-system as in Definition 2.3, one can construct a Yang-Baxter operator on
V ′′ = V ⊕ V ′, provided the maps W, X, Z are invertible. This is a special case of a gluing procedure
described in ([19], (Theorem 2.7)) (cf. [19], (Example 2.11)). Let R = W ◦ τV,V , R′ = Z ◦ τV ′,V ′ ,
U = X ◦ τV ′,V . Then, the linear map:

R′′ = R⊕U R′ : V ′′ ⊗ V ′′ → V ′′ ⊗ V ′′

given by: R⊕U R′|V⊗V = R, R⊕U R′|V ′⊗V ′ = R′ and for all x ∈ V , y ∈ V ′,

(R⊕U R′)(y ⊗ x) = U(y ⊗ x), (R⊕U R′)(x⊗ y) = U−1(x⊗ y)

is a Yang-Baxter operator.

Definition 2.5 An algebra A is said to be entwined with an algebra B if there exists a linear map
φ : B ⊗ A→ A⊗B satisfying the following four conditions:

(1) φ ◦ (IB ⊗ µA) = (µA ⊗ IB) ◦ (IA ⊗ φ) ◦ (φ⊗ IA),
(2) φ ◦ (µB ⊗ IA) = (IA ⊗ µB) ◦ (φ⊗ IB) ◦ (IB ⊗ φ),
(3) φ ◦ (IB ⊗ ιA) = ιA ⊗ IB,
(4) φ ◦ (ιB ⊗ IA) = IA ⊗ ιB,
The map φ is known as an algebra factorization map, and the triple (A,B)φ is called an

algebra factorization.
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3. Algebra Factorizations, Yang-Baxter Systems and Braided Categories

Let R : V ⊗ V → V ⊗ V be a Yang-Baxter operator on V .
For an integer n ≥ 2, let Ri = Ri,i+1 = Rn

i,i+1 = I⊗(i−1) ⊗R⊗ I⊗(n−i−1), i = 1, · · · , n− 1.
On the tensor algebra, T (V ), we consider the following product:
for: x = x1 ⊗ · · · ⊗ xn ∈ T n(V ), n ≥ 1, and y = y1 ⊗ · · · ⊗ yp ∈ T p(V ), p ≥ 1,

µ(x⊗ y) = xy = (Rp · · ·Rn+p−1) · · · (R1 · · ·Rn)(x⊗ y)

1x = x = x1 ∀x ∈ T (V )

Although the invertibility of R is not essential for the following theorem, we assume that R is
invertible in order to give a proof for it using braided categories.

Theorem 3.1 Starting with a WXZ-system as in Definition 2.3 and Remark 2.4, using the above notations
and denoting by R = W ◦ τV,V , R′ = Z ◦ τV ′,V ′ , U = X ◦ τV ′,V , we have the following properties.

(i) ( T (V ), µ, 1k ) and ( T (V ′), µ′, 1k ) are k-algebra structures.
(ii) There exists an algebra factorization, φ : T (V ′) ⊗ T (V ) → T (V ) ⊗ T (V ′), defined by φn,m :

T n(V ′)⊗ Tm(V )→ Tm(V )⊗ T n(V ′),

x⊗ y 7→ (Um,m+1 · · ·Un+m−1,n+m) · · · (U12 · · ·Un,n+1)(x⊗ y)

x⊗ 1k 7→ 1k ⊗ x , 1k ⊗ y 7→ y ⊗ 1k .

Proof. A direct proof was presented in [20].
Another approach to this problem could be via braided algebras, and this was done in the revision

of [20].
Now, we would like to prove it using the properties of a braided category. We start by proving (ii).
We use Remark 2.4 in order to obtain a new Yang-Baxter operator defined over V ′′ = V ⊕ V ′, which

will generate the braiding of a monoidal category.
The objects of this category are: { k, V ′′, V ′′ ⊗ V ′′, V ′′ ⊗ V ′′ ⊗ V ′′, · · · }.
The morphisms of this category are endomorphisms of V ′′ and their tensor products.
Now: R′′ = R⊕U R′ : V ′′ ⊗ V ′′ → V ′′ ⊗ V ′′ can be extended to a braiding.
The restrictions of the braiding generated by R′′ to subspaces of the form:
V ⊗m ⊗ V ⊗n ⊗ V ⊗p, V ⊗m ⊗ V ⊗n ⊗ (V ′)⊗p, (V ′)⊗m ⊗ V ⊗n ⊗ V ⊗p, (V ′)⊗m ⊗ (V ′)⊗n ⊗ (V ′)⊗p ⊂

(V ′′)⊗m ⊗ (V ′′)⊗n ⊗ (V ′′)⊗p

imply that φ is an algebra factorization.
The proof of part (ii) includes the proof for part (i). �

Remark 3.2 From the previous theorem, TR(V )⊗TR′(V ′) has an algebra structure associated with that
algebra factorization. It is an open problem to study the relation between that structure and TR⊕UR′(V ⊕
V ′) (see Remark 2.4).

Remark 3.3 In a natural way, ( T (V ), µ, 1k ) gets a bialgebra structure (if R is invertible).
The map, ∆(v) = v ⊗ 1k + 1k ⊗ v ∀v ∈ V , extends naturally to T(V). This can be done using the

fact that any x ∈ V ⊗n can be thought of as a sum of products of n elements from V and requesting that
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∆(v1...vn) = ∆(v1)...∆(vn). The fact that R is invertible is essential here. The associativity of µ implies
∆(xy) = ∆(x)∆(y) ∀x, y ∈ T (V ).

The coassociativity of ∆ follows from the fact that (∆ ⊗ I) ◦∆(v) = (I ⊗∆) ◦∆(v) ∀v ∈ V . For
x ∈ V ⊗n, (∆⊗ I) ◦∆(x) = (I ⊗∆) ◦∆(x) follows from the definition of ∆.

We define ε(1k) = 1k , ε(v) = 0 ∀v ∈ V , and by a similar argument we have ε(x) = 0 ∀x ∈
V ⊗n, n ≥ 1 (because ε is an algebra morphism).

The compatibility between ∆ and ε follows, because ε(1k) = 1k and ε(x) = 0 ∀x ∈ V ⊗n, n ≥ 1.

Remark 3.4 From the previous theorem, Remarks 3.2 and 3.3 and the assumption that U is invertible,
it follows that TR(V ) ⊗ TR′(V ′) inherits a bialgebra structure. This can be done in the same spirit as
Remark 3.3. (The invertibility of U is a key ingredient.)

This new bialgebra structure is different from any kind of bicrossed product of bialgebras presented
in Section IX.2 of [21].
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