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Abstract: In this paper, we outline a method for constructing nonnegative scaling vectors on
the interval. Scaling vectors for the interval have been constructed in [1–3]. The approach
here is different in that the we start with an existing scaling vector Φ that generates a
multi-resolution analysis for L2(R) to create a scaling vector for the interval. If desired, the
scaling vector can be constructed so that its components are nonnegative. Our construction
uses ideas from [4,5] and we give results for scaling vectors satisfying certain support and
continuity properties. These results also show that less edge functions are required to build
multi-resolution analyses for L2 ([a, b]) than the methods described in [5,6].

Keywords: scaling functions; (compactly supported) scaling vectors

1. Introduction

Let φ be a compactly supported orthogonal scaling function generating a multi-resolution analysis,
{Vk}, for L2(R). In Walter and Shen [7], the authors show how to use this φ to construct a new
nonnegative scaling function P that generates the same multi-resolution analysis for L2(R). The
disadvantages of this construction is that orthogonality is lost (although the authors gave a simple
expression for the dual P ∗), and P is not compactly supported.

The results of [7] were generalized to the scaling vectors Φ =
(
φ1, . . . , φA

)T in [8]. In [9], the
authors show that it is possible to modify the construction of [8] and retain compact support. Since
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many applications require the underlying space to be L2([a, b]), rather than L2(R), it is worthwhile to
investigate extending the construction to the interval.

In this paper, we take a continuous, compactly supported scaling vector Φ and illustrate how it can
be used to construct a compactly supported scaling vector P that generates a multi-resolution analysis
for L2([a, b]). The resulting scaling vector for L2([a, b]) is nonnegative if at least one component φj

of the original scaling vector Φ is nonnegative on its support. Nonnegativity of the scaling vector may
be desirable in applications, such as density estimation (see [10] for density estimation by a single
nonnegative scaling function). The construction is motivated by the work of Meyer [5]. It is a goal of the
construction to produce a nonnegative scaling vector, preserve the polynomial accuracy of the original
scaling vector and to keep the number of edge functions as small as possible. We conclude the paper with
results that show, under certain circumstances, that it is possible to construct compactly scaling vectors
that require only m− 1 edge functions to preserve polynomial accuracy m. This is an improvement over
some methods (for example, [5,6]) that require m edge functions to preserve polynomial accuracy m.

In the next section, we introduce basic definitions, examples and results that are used throughout
the sequel. In the third section, we define the edge functions for our constructions and show that the
resulting scaling vector satisfies a matrix refinement equation and generates a multi-resolution analysis
for L2([a, b]). The final section consists of some constructions illustrating the results of Section 3, as well
as results in special cases that show the number of edge functions needed to attain a desired polynomial
accuracy is smaller than the number needed for similar methods.

2. Notation, Definitions and Preliminary Results

We begin with the concept of a scaling vector or set of multiscaling functions. This idea was first
introduced in [11,12]. We start withA functions, φ1, . . . , φA, and consider the nested ladder of subspaces,
· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · , where Vn = 〈{2n/2φ1(2n · −k), . . . , 2n/2φA(2n · −k)}k∈Z〉, n ∈ Z.

It is convenient to store φ1, . . . , φA as a vector:

Φ =
(
φ1, φ2, . . . , φA

)T
and define a multi-resolution analysis in much the same manner as in [4]:

(M1) ∪n∈ZVn = L2(R).
(M2) ∩n∈ZVn = {0}.
(M3) f(·) ∈ Vn ↔ f(2−n·) ∈ V0, n ∈ Z.
(M4) f(·) ∈ V0 → f(· − n) ∈ V0, n ∈ Z.
(M5) Φ generates a Reisz basis for V0.

In this case, Φ satisfies a matrix refinement equation:

Φ(t) =
∑

k

CkΦ(2t− k), Ck ∈ RA×A (1)

We will make the following two assumptions about Φ and its components:

(A1) Each φ`, ` = 1, . . . , A, is compactly supported and continuous;
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(A2) There is a vector c = (c1, . . . , cA) for which:

A∑
`=1

∑
k∈Z

c`φ
`(t− k) = 1 (2)

Condition (A2) tells us that Φ forms a partition of unity.
We will say that Φ has polynomial accuracy m if there exist constants f `

nk such that for
n = 0, . . . ,m− 1

tn =
A∑

`=1

∑
k∈Z

f `
n,kφ

`(t− k) =
∑
k∈Z

fn,k · Φ(t− k) (3)

where
fn,k = (f 1

n,k, . . . , f
A
n,k). (4)

Comparison of Equations (2) and (3) shows that

c = f0,k, k ∈ Z.

We have the following result from [13] involving the components of the vectors fn,k:

Lemma 2.1 ([13]). The components {f `
j,k} of the vectors fn,k in Equations (4) satisfy the

recurrence relation

f `
j,k+1 =

j∑
i=0

(
j

i

)
f `

i,k (5)

for ` = 1, . . . , A, and j = 0, . . . ,m− 1.

It will be convenient to reformulate Equation (5) in the following way:

Proposition 2.2. For the row vectors fn,k given in Equation (4), define the column vectors

E`
k =

(
f `

0,k, f
`
1,k, f

`
2,k, · · · , f `

m−2,k

)T
. (6)

Then
E`

k+1 = PLE
`
k (7)

where PL is the (m− 1)× (m− 1) lower triangular Pascal matrix, whose elements are defined by

(PL)j,k =

{
0, k > j(
j
k

)
, k ≤ j

(8)

for j, k = 0, . . . ,m− 2.

Proof. Computing the inner product of row j, j = 0, . . . ,m− 2, with E`
k gives:

(PL)j · E
`
k =

j∑
i=0

(
j

i

)
f `

i,k

This is exactly f `
j,k+1 by Equation (5).

The following corollary is immediate:
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Corollary 2.3. For j ∈ Z, we have:
E`
−j = P−j

L E`
0 (9)

Note: We have defined the vectors E`
k without including the term f `

m−1,k. While Proposition 2.2
certainly holds if this term is included in the definition of E`

k, our results in Section 4 use E`
k as defined

by Equation (6).
With regards to (A1), we will further assume that for M` ∈ N, ` = 1, . . . , A,

supp
(
φ`
)

= [0,M`] . (10)

We will denote by M the maximum value of M`:

M = Max{M1, . . . ,MA} (11)

As stated in Section 1, our construction of scaling vector Φ[a,b] for L2[a, b] uses an existing scaling
vector Φ for L2(R). It is possible to perform our construction, so that the components of Φ[a,b] are
nonnegative. If the components of Φ are nonnegative, then the components of Φ[a,b] will be nonnegative,
as well. In the case where not all the components of Φ are nonnegative, it still may be possible to
construct a nonnegative Φ[a,b]. Theorem 2.5 from [9] illustrates that in order to do so, we must first
modify Φ. To this end, Φ must be bounded and compactly supported, possess polynomial accuracy,
p ≥ 1, and satisfy Condition B below.

Definition 2.4 (Condition B). Let Φ =
(
φ1, . . . , φA

)T . We say Φ satisfies Condition B if for some
j ∈ {1, . . . , A}, φj(t) ≥ 0 for t ∈ R and there exist finite index sets Λi and constants cik for i 6= j,
such that:

(B1) φ̃i(t) := φi(t) +
∑

k∈Λi

cikφ
j(t− k) ≥ 0, ∀t ∈ R,

(B2) dj := cj −
∑
i 6=j

∑
k∈Λi

cicik ≥ 0,

(B3) ci ≥ 0 for i 6= j

Here, the ci are the coefficients from (A2).

Theorem 2.5 ([9]). Suppose a scaling vector Φ =
(
φ1, . . . , φA

)T , is bounded, compactly supported, has
accuracy, p ≥ 1, and satisfies Condition B. Then the nonnegative vector

Φ̃ =
(
φ̃1, . . . , φ̃j−1, φj, φ̃j+1, . . . , φ̃A

)T

where φ̃i is given by (B1) and is a bounded, compactly supported scaling vector with accuracy p ≥ 1

that generates the same space, V0.

We now give two examples of multiscaling functions that we will use in the sequel.

Example 2.6 (Donovan,Geronimo,Hardin,Massopust). In [14], the authors constructed a scaling vector

with A = 2 that satisfies the four-term matrix refinement equation, Φ(t) =
3∑

k=0

CkΦ(2t− k), where

C0 =

[
3
5

4
√

2
5

−
√

2
20
− 3

10

]
, C1 =

[
3
5

0
9
√

2
20

1

]

C2 =

[
0 0

9
√

2
20
− 3

10

]
, C3 =

[
0 0

−
√

2
20

0

]
.
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The scaling functions φ1, φ2 (shown in Figure 1), satisfy
(
φj(t− n), φ`(t−m)

)
= δmnδj`, m,n ∈ Z,

j, ` = 1, 2. They also have polynomial accuracy two are continuous, symmetric and compactly supported
with supp (φ1) = [0, 2] and supp (φ2) = [0, 1]. Φ also satisfies the partition of unity condition (A2) with

c = f0,k =
(

1 +
√

2
)−1 (

1,
√

2
)
, k ∈ Z. (12)

We can satisfy Theorem 2.5 by choosing φ̃2 = φ2, since φ2(t) ≥ 0, t ∈ R. We create φ̃1 by taking
Λ = {0, 1} with c10 = c11 = 1

2
, so that φ̃1(t) = φ1(t)+ 1

2
(φ2(t)+φ2(t−1)) ≥ 0 for t ∈ R. The partition

of unity coefficients for Φ̃(t) are d1 = c1 and d2 = c2 − c1(c10 + c11) = c2 − c1 > 0. The new scaling
vector, Φ̃(t), is shown in Figure 1.

Figure 1. The scaling vector Φ (left) and the new scaling vector Φ̃ from Example 2.6 (right).

Our next example uses a scaling vector constructed by Plonka and Strela in [15].

Example 2.7 (Plonka,Strela). Using a two-scale similarity transform in the frequency domain, Plonka
and Strela constructed the following scaling vector Φ in [15]. It satisfies a three-term matrix
refinement equation

Φ(t) =
2∑

k=0

CkΦ(2t− k)

where

C0 =
1

20

[
−7 15

−4 10

]
, C1 =

1

20

[
10 0

0 20

]
, C2 =

1

20

[
−7 −15

4 10

]
.

This scaling vector (shown in Figure 2) is not orthogonal, but it is compactly supported on [0, 2] with
polynomial accuracy three. φ2 is nonnegative on its support and symmetric about t = 1, while φ1 is
antisymmetric about t = 1. Φ satisfies (A2) with c = f0,k = (0, 1), k ∈ Z. The authors also show that

f1,0 =

(
−1

6
, 1

)
. (13)

We can satisfy Theorem 2.5 by choosing φ̃2 = φ2 since φ2(t) ≥ 0, t ∈ R. We create φ̃1 by taking
c10 = 1.6, so that φ̃1(t) = φ1(t) + 1.6φ2(t) ≥ 0 for t ∈ R. The partition of unity coefficients for Φ̃ are
d1 = c1 = 0 and d2 = c2 − c1

∑
k

cik = c2 − 0 > 0. The new scaling vector Φ̃ is shown in Figure 2.
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Figure 2. The scaling vector Φ (left) and the the new scaling vector Φ̃ from
Example 2.7 (right).

3. Nonnegative Scaling Vectors on the Interval

The construction of scaling vectors on the interval has been addressed in [1–3]. In these cases,
the authors constructed scaling vectors on the interval from scratch. It is our intent to show how to
modify a given scaling vector that generates a multi-resolution analysis for L2(R), so that it generates
a (nonorthogonal) multi-resolution analysis for L2([0, 1]). Moreover, the components of the new vector
will be nonnegative. In particular cases, our procedure requires fewer edge functions than in the single
scaling function constructions of [5,6].

Our task then is to modify an existing scaling vector and create a nonnegative scaling vector that
generates a multi-resolution analysis for L2([0, 1]) that preserves the polynomial accuracy of the original
scaling vector and avoids the creation of “too many” edge functions.

We begin with a multi-resolution analysis forL2(R) generated by scaling vector Φ and we also assume
our scaling vector has polynomial accuracy m with fnk given by Equation (4).

Finally, assume that the set S = {φ̄`
k, ` = 1, . . . , A, k ∈ Z} of non-zero functions defined by

φ̄`
k(t) = φ`(t − k)

∣∣
[0,∞)

are linearly independent, and let n(S) denote the number of functions in S.
Note that, due to the support restriction of Φ in Equation (10), φ̄`(t) = φ`(t).

Note that S consists of all the original scaling functions φ`, ` = 1, . . . , A, plus those left shifts, φ`

(·+ k), k > 0, whose support overlaps [0, 1]. Since each scaling function φ` is supported on [0,M`], we
can compute

n(S) = M1 + · · ·+MA. (14)

We work only on the left edge [0,∞) in constructing V0[0,∞). We begin with φ`(· − k), k ≤ 0 and
then add left edge functions to preserve polynomial accuracy.

Define the left edge functions, φL,n, by

φL,n(t) =
A∑

`=1

0∑
k=1−M`

f `
n,kφ

`(t− k)
∣∣
[0,∞)

=
A∑

`=1

0∑
k=1−M`

f `
n,kφ̄

`
k(t) (15)
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for n = 0, . . . ,m − 1. Observe that since the φ` are compactly supported, so is φL,n and also note that
by Equation (3), φL,n(t) = tn on [0, 1]. Right edge functions can be defined similarly.

Our next proposition shows that the left edge functions (and, in an analogous manner, the right edge
functions) satisfy a matrix refinement equation.

Proposition 3.1. Suppose that Φ is a scaling vector satisfying (A1)–(A2) with polynomial accuracy m
with f `

n,k, given in Equation (3). Further assume that the set S defined above is linearly independent.
Then the set of edge functions φL,n, n = 0, . . . ,m− 1, satisfies a matrix refinement equation.

Proof. Φ satisfies a matrix refinement Equation (1), and since Φ is supported on [0,M ], the number of
refinement terms is finite. So there is a minimal positive integer N such that

Φ(t) =
N∑

j=0

CjΦ(2t− j)

with Cj = 0 for j < 0 or j > N . Now for k ∈ Z we have

Φ(t− k) =
N∑

j=0

CjΦ(2(t− k)− j) =
2k+N∑
j=2k

Cj−2kΦ(2t− j).

Note that for each n = 0, . . . ,m− 1 and t ∈ [0,∞):

φL,n(t)− 2−nφL,n(2t)

=
0∑

k=1−M

fn,kΦ(t− k)− 2−n

0∑
k=1−M

fn,kΦ(2t− k)

=
0∑

k=1−M

fn,k

2k+N∑
j=2k

Cj−2kΦ(2t− j)− 2−n

0∑
k=1−M

fn,kΦ(2t− k)

=
N∑

j=2−2M

0∑
k=1−M

fn,kCj−2kΦ(2t− j)− 2−n

0∑
k=1−M

fn,kΦ(2t− k)

We are able to leave the summation limits on the inner sum in the above line unchanged, since Cj−2k = 0

for j − 2k < 0 or j − 2k > N . Thus we have

φL,n(t)− 2−nφL,n(2t) =
N∑

j=2−2M

qn,jΦ(2t− j)

with

qn,j =


0∑

k=1−M

fnkCj−2k − 2−nfnj, j ∈ {1−M, . . . , 0}
0∑

k=1−M

fnkCj−2k, j ∈ {2− 2M, . . . ,−M} ∪ {1, . . . , N}.

Recall that φL,n(t) = 2−nφL,n(2t) = tn on
[
0, 1

2

]
and that the functions φ`(2t − j) are linearly

independent, so qnj = 0 for j = 2− 2M, . . . , 0. Thus

φL,n(t) = 2−nφL,n(2t) +
N∑

j=1

qn,jΦ(2t− j) (16)

on [0,∞). This is the desired dilation equation for the nth edge function, φL,n.
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Refinement equations for the right edge functions are derived in a similar manner.

Example 3.2. We return to the scaling vector of Strela and Plonka [15] introduced in Example 2.7. This
scaling vector has polynomial accuracy three with f0,0 = (0, 1) and f1,0 =

(
−1

6
, 1
)
.

Both φ1 and φ2 are supported on [0, 2]. The refinement equation matrices, C0, C1 and C2, are given
in Example 2.7. We calculate q0,1 and q0,2 as:

q0,1 =
0∑

k=1−2

f0,kC1−2k = (0, 1) · C1 = (0, 1)

and

q0,2 =
0∑

k=1−2

f0,kC2−2k = (0, 1) · C2 =

(
1

5
,
1

2

)
.

The dilation equation for φL,0 is

φL,0(t) = φL,0(2t) + (0, 1) · Φ(2t− 1) +

(
1

5
,
1

2

)
Φ(2t− 2)

= φL,0(2t) + φ2(2t− 1) +
1

5
φ1(2t− 2) +

1

2
φ2(2t− 2).

In a similar manner, we can use Equations (13) and (16) to find that

q1,1 = f1,0C1 =

(
− 1

12
, 1

)
q1,2 = f1,0C2 =

(
31

120
,
5

8

)
.

We thus compute the dilation equation for φL,1:

φL,1(t) = 2−1φL,1(2t) + q1,1Φ(2t− 1) + q1,2Φ(2t− 2)

= 2−1φL,1(2t)− 1

12
φ1(2t− 1) + φ2(2t− 1)

+
31

120
φ1(2t− 2) +

5

8
φ2(2t− 2)

In order to construct a scaling vector for V0([0,∞)), we need for our edge functions not only to satisfy
a matrix refinement equation, but also to join with {Φ(· − k)}k≥0 and form a Riesz basis for V0([0,∞)).
We will next show that the set of edge functions we constructed above does indeed preserve the Riesz
basis property. We need the following result.

Lemma 3.3. Suppose H is a separable Hilbert space with closed subspaces, V ,Ṽ ,W and W̃ , such that
V ∩ W = Ṽ ∩ W̃ = {0}. Assume further that V and Ṽ are topologically isomorphic with Riesz
bases, {vi}, {ṽi}, respectively, and W and W̃ are topologically isomorphic with Riesz bases, {wi},
{w̃i}, respectively. Then, V

⊕
W and Ṽ

⊕
W̃ are topologically isomorphic with Riesz bases, {vi, wi},

{ṽi, w̃i}, respectively.

Proof. First we present a useful fact to simplify the proof. As stated in [4] (page xix), every Riesz basis
is a homeomorphic image of an orthonormal basis. Since V and Ṽ are homeomorphic images of each
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other, we can assume without loss of generality, that the bases {vi} and {ṽi} are orthonormal bases of V
and Ṽ , respectively. Similarly we may assume that the bases {wj} and {w̃j} are orthonormal bases of
W and W̃ , respectively.

Now, to show that {vi, wj} is a Riesz basis of V
⊕

W , we need to verify the stability condition:

A

(∑
i

|αi|2 +
∑

j

|βj|2
)
≤

∥∥∥∥∥∑
i

αivi +
∑

j

βjwj

∥∥∥∥∥
2

≤ B

(∑
i

|αi|2 +
∑

j

|βj|2
)

(17)

for some A,B > 0 and for all sequences, {ck} ∈ `2, where, for convenience, we partition {ck} as
{ai, bj}.

Use the orthonormality of the sets {vi} and {wj} to obtain

0 ≤

∥∥∥∥∥∑
i

αivi −
∑

j

βjwj

∥∥∥∥∥
2

=
∑

i

|αi|2 − 2
∑

i

∑
j

αiβj 〈vi, wj〉+
∑

j

|βj|2

so
2
∑

i

∑
j

αiβj 〈vi, wj〉 ≤
∑

i

|αi|2 +
∑

j

|βj|2 . (18)

Now we use Equation (18) to see that∥∥∥∥∥∑
i

αivi +
∑

j

βjwj

∥∥∥∥∥
2

=
∑

i

|αi|2 + 2
∑

i

∑
j

αiβj 〈vi, wj〉+
∑

j

|βj|2

≤ 2

(∑
i

|αi|2 +
∑

j

|βj|2
)

which proves the upper bound on the stability condition of Equation (17) with B = 2.
We use Bessel’s inequality with each orthonormal set {vi} and {wj} to obtain∥∥∥∥∥∑

i

αivi +
∑

j

βjwj

∥∥∥∥∥
2

≥
∑

i

|αi|2 and

∥∥∥∥∥∑
i

αivi +
∑

j

βjwj

∥∥∥∥∥
2

≥
∑

j

|βj|2 .

Adding these inequalities, we find the lower stability bound for Equation (17) with A = 1/2:

1

2

(∑
i

|αi|2 +
∑

j

|βj|2
)
≤

∥∥∥∥∥∑
i

αivi +
∑

j

βjwj

∥∥∥∥∥
2

This completes the proof that {vi, wj} is a Riesz basis of V
⊕

W and an identical argument shows that
{ṽi, w̃j} is a Riesz basis of Ṽ

⊕
W̃ .

It is now easy to see that the map T : V
⊕

W → Ṽ
⊕

W̃ , which maps each vi to ṽi and each wj to
w̃j , is a homeomorphism.

We are now ready to state and prove our next result.

Theorem 3.4. Let Φ =
(
φ1, . . . , φA

)T be a scaling vector that satisfies (A1) and generates a
multi-resolution analysis for L2(R). For some index set B, let {Li}i∈B be a finite set of edge functions
with supp (Li) = [0, δi] and assume that {Li, φ

`(· − k)}i,`,k≥0 is a linearly independent set. Then
{Li(2

j·), φ`(2j · −k)}i,`,k≥0 is a Riesz basis of Vj , where L2([0,∞)) = ∪jVj .
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Proof. Without loss of generality, set j = 0, and let C be the set of integer indices for which supp (Li)∩
supp

(
φ`(· − k)

)
6= ∅ for all i ∈ B, `, k ≥ 0. For ease of notation, denote by {fn}n∈C those {φ`(· − k)}

corresponding to C, and for integer index set D, let {gm}m∈D denote the other {φ`(· − k)}. For ease of
presentation, assume that B,C and D are mutually disjoint and note that Z = B ∪ C ∪ D. Now, since
{Li, fn} is a linearly independent and a finite set, it must be a Riesz basis of its span. We then use the
Gram-Schmidt process to orthogonalize it and thus obtain {L̃i, f̃n}. In the process, we begin with the Li

and then move on to the {fn}. This ensures that supp
(
L̃i

)
⊂ [0,max(δj)], whence

∫
L̃i(t)gn(t) dt = 0

for all i, n.
If we set V =

〈
{f̃n}

〉
and W = 〈{gm}〉, we have V ∩

W = {0}, so by Lemma 3.3, V
⊕

W =
〈
{f̃n, gm}

〉
has Riesz basis {f̃n, gm}. Hence there

exist A0, B0 > 0, such that

A0

∥∥{dk}
∥∥2

2
≤
∥∥∥∑

n∈C

dnf̃n(t) +
∑
m∈D

dmgm(t)
∥∥∥2

2
≤ B0

∥∥{dk}
∥∥2

2
, ∀{dk} ∈ `2(Z)

Assuming without loss of generality that A0 ≤ 1, we use the line above,
∥∥L̃i

∥∥ = 1, the orthogonality of
the {L̃i, f̃n} and the disjoint support of the L̃i and gn to see that

A0

∥∥{dk}
∥∥2

2
= A0

[∑
i∈B

d2
i +

∑
n∈C

d2
n +

∑
m∈D

d2
m

]

≤
∑
i∈B

d2
i +
∥∥∥∑

n∈C

dnf̃n +
∑
m∈D

dmgm

∥∥∥2

2

=

∫
R

∑
i∈B

(
diL̃i(t)

)2

dt+

∫
R

∑
n∈C

(
dnf̃n(t)

)2

dt+

∫
R

∑
m∈D

(dmgm(t))2 dt

+ 2

∫
R

∑
n∈C,m∈D

dndmf̃n(t)gm(t) dt

=

∫
R

( ∑
i∈B,n∈C,m∈D

diL̃i(t) + dnf̃n(t) + dmgm(t)

)2

dt

=
∥∥∥∑

i∈B

diL̃i(t) +
∑
n∈C

dnf̃n(t) +
∑
m∈D

dmgm(t)
∥∥∥2

2
.

A similar proof shows that∥∥∥∑
i∈B

diL̃i(t) +
∑
n∈C

dnf̃n(t) +
∑
m∈D

dmgm(t)
∥∥∥2

2
≤ B0

∥∥∥{dk}
∥∥∥2

2

so {L̃i, f̃n, gm} is a Riesz basis of its span. Finally, to see that {L̃i, f̃n, gm} is a Riesz basis for V0, set
V = 〈{Li, fn}〉 and Ṽ =

〈
{L̃i, f̃n}

〉
and W = W̃ = 〈{gm}〉. Since V = Ṽ has finite dimension and

V ∩W = {0}, Lemma 3.3 holds so that {Li, fn, gm} is a Riesz basis for V
⊕

W = Ṽ
⊕

W̃ = V0.

4. Edge Function Construction

We begin this section by constructing the left edge function needed to build the interval scaling vector
Φ[0,1] from the scaling vector of Example 2.6.
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Example 4.1. We return to the scaling vector of Example 2.6. Note that m = 2,M1 = 2,M2 = 1 and

f0,0 = (c1, c2) =
(

1 +
√

2
)−1 (

1,
√

2
)
.

It is known (see for example [16]) that Φ can be restricted to any interval, [a, b], where a, b ∈ Z and
the set

S =
{

supp
(
φ`(· − k)

)
∩ [a, b] 6= ∅

∣∣ k ∈ Z, ` = 1, 2
}

constitutes an orthogonal set of functions on [a, b] and reproduces constant functions on [a, b]. We
nevertheless construct the edge function φL,0 to illustrate the computation and provide motivation for
Theorem 4.2.

We use Equation (15) to construct φL,0:

φL,0(t) =
0∑

k=−1

f 1
0,kφ̄

1(t− k) + f 2
0,0φ̄

2(t)

= f 1
0,0

(
φ̄1(t+ 1) + φ̄1(t)

)
+ f 2

0,0φ
2(t)

=
(

1 +
√

2
)−1 (

φ̄1(t+ 1) + φ̄1(t) +
√

2φ2(t)
)
.

If we want a nonnegative edge function, then we need to use Φ̃(t) = (φ̃1(t), φ2(t))T from Example 2.6.
In this case

f̃0,0 = (d1, d2) = (c1, c2 − c1) =
(

1 +
√

2
)−1 (

1,
√

2− 1
)
.

Using Equation (15), we see that

φ̃L,0(t) = d1

(
¯̃φ1(t) + ¯̃φ1(t+ 1)

)
+ d2φ

2(t)

The edge functions are plotted in Figure 3.

Figure 3. The edge function using φL,0 (left) and the nonnegative edge function using φ̃L,0

(right) from Example 4.1.

Although m = 2 for the scaling vector in Example 4.1, we only computed φL,0. There is a good
reason for this: it turns out that φL,1 can be written as a linear combination of Φ and φL,0. Indeed, we
can use Equation (3) and the supports of φ1 and φ2 to write

t = f 1
1,0φ

1(t) + f 2
1,−1φ̄

2(t+ 1) + f 2
1,0φ

2(t), t ∈ [0, 1],
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and then ask if there exists constants αi, i = 0, 1, 2, such that

α0φL,0(t) + α1φ
1(t) + α2φ

2(t) = f 1
10φ

1(t) + f 2
1,−1φ̄

2(t+ 1) + f 2
1,0φ

2(t). (19)

Expanding this system and equating coefficients for φ1(t), φ2(t) and φ̄1(t+ 1) gives

α0f
1
0,0 + α1 = f 1

1,0

α0f
1
0,0 + α2 = f 2

1,0

α0f
1
0,0 = f 1

1,−1.

To motivate further results we write the above system as the matrix equation
f 1

0,0 1 0

f 1
0,0 0 1

f 1
0,0 0 0

 ·
 α0

α1

α2

 =

 f 1
1,0

f 2
1,0

f 1
1,−1


Note that the uniqueness of a solution to this system is completely determined by the fact that f 1

0,0 =

c1 =
(
1 +
√

2
)−1 6= 0.

Thus for the scaling vector of Example 4.1, we need only one left (right) edge function to form a
multi-resolution analysis for L2 ([0, 1]). This is one fewer left (right) edge functions than required by the
constructions of multi-resolution analyses described in [5,6].

The preceding discussion provides motivation for the following result.

Theorem 4.2. Suppose Φ =
(
φ1, . . . , φA

)T forms a multi-resolution analysis for L2(R) with polynomial
accuracy m ≥ 2. Suppose that each φi is continuous on R, i = 1, . . . , A, supp (φ1) = [0,m] and
supp (φi) = [0, 1] for i = 2, . . . , A. Then for t ∈ [0, 1], tm−1 can be written as a linear combination of
φL,j , j = 0, . . . ,m−2 and φ`, ` = 1, . . . , A. That is, only the φL,0, . . . , φL,m−2 left (right) edge functions
defined by Equation (15) are needed in conjunction with Φ to construct a multi-resolution analyses of
L2[0, 1].

Proof. It suffices to show that there exists α0, . . . , αm−2+A, such that

tm−1 =
m−2∑
j=0

αjφL,j(t) +
A∑

`=1

α`+m−2φ
`(t) (20)

for t ∈ [0, 1].
From Equation (15) and the support properties of Φ, we know that tm−1, t ∈ [0, 1] can be expressed as

tm−1 =
−1∑

k=1−m

f 1
m−1,kφ̄

1(t− k) +
A∑

`=1

f `
m−1,0φ̄

`(t). (21)

Expanding the right-hand side of Equation (20) gives

tm−1 =
m−2∑
j=0

αjφL,j(t) +
A∑

`=1

α`+m−2φ
`(t)

=
m−2∑
j=0

αj

(
−1∑

k=1−m

f 1
j,kφ̄

1(t− k) +
A∑

`=1

f `
j,0φ

`(t)

)
+

A∑
`=1

α`+m−2φ
`(t)

=
−1∑

k=1−m

(
m−2∑
j=0

αjf
1
j,k

)
φ̄1(t− k) +

A∑
`=1

(
m−2∑
j=0

αjf
`
j,0 + α`+m−2

)
φ`(t). (22)
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Equating coefficients for φ̄1(t − k), k = 1 −m, . . . ,−1, and φ`(t), ` = 1, . . . , A, in Equations (21)
and (22) gives rise to the following system of (m− 1 + A)× (m− 1 + A) linear equations

m−2∑
j=0

f 1
j,kαj = f 1

m−1,k, k = 1−m, . . . ,−1

m−2∑
j=0

αjf
`
j,0 + α`+m−2 = f `

m−1,0, ` = 1, . . . , A. (23)

We can reformulate Equation (23) as a matrix equation, Pα = b, where

α = (α0, α1, · · · , αA+m−2]T

b =
(
f 1

m−1,0, f
2
m−1,0, · · · , fA

m−1,0, f
1
m−1,1−m, f

1
m−1,2−m, · · · , f 1

m−1,−1

)T
P =

[
F IA
Q Zm−1,A

]
with IA the A × A identity matrix, Zm−1,A the (m − 1) × A zero matrix, F the A × (m − 1) matrix
defined component-wise by F`,j = f `

j,0, and Q the (m− 1)× (m− 1) matrix given by

Q =


f 1

0,−1 f 1
1,−1 f 1

2,−1 · · · f 1
m−2,−1

f 1
0,−2 f 1

1,−2 f 1
2,−2 · · · f 1

m−2,−2

f 1
0,−3 f 1

1,−3 f 1
2,−3 · · · f 1

m−2,−3
... . . . ...

f 1
0,1−m f 1

1,1−m f 1
2,1−m · · · f 1

m−2,1−m

 . (24)

The proof is complete if we can show Q is a nonsingular matrix.
Using Equation (6) and Corollary 2.3, we see that

QT =
[

E1
−1 E1

−2 · · · E1
2−m E1

1−m

]
=
[
P−1

L E1
0 P−2

L E1
0 · · · P 2−m

L E1
0 P 1−m

L E1
0

]
= P−1

L

[
E1

0 P−1
L E1

0 · · · P 3−m
L E1

0 P 2−m
L E1

0

]
where PL is the lower-triangular Pascal matrix given by Equation (8). Thus

Q =


v

vP−1
U

vP−2
U
...

vP 2−m
U

 · P
−1
U (25)

where we have introduced the row vector v = (E1
0)

T for ease of notation, and PU is the upper-triangular
Pascal matrix defined by PU = P T

L .
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We can perform the following row operations on the right-hand side of Equation (25), and the result
has the same determinant as Q


v

vP−1
U

vP−2
U
...

vP 2−m
U

 ∼



v

vP−1
U − v

vP−2
U − 2vP−1

U + v

vP−3
U − 3vP−2

U + 3vP−1
U − v

...

v

(
m−2∑
j=0

(−1)j
(

m−2
j

)
P−j

U

)



∼


v

v
(
P−1

U − Im−1

)
v
(
P−1

U − Im−1

)2

...
v
(
P−1

U − Im−1

)m−2

 . (26)

An identity given in [17] leads to P−1
U = DPUD

−1, where D = D−1 is the diagonal matrix, whose
diagonal entries are dj,j = (−1)j−1, j = 1, . . . ,m− 1, so that(

P−1
U − Im−1

)k
= D (PU − Im−1)k D. (27)

The matrix (PU − Im−1)k is strictly upper triangular with zeros in every diagonal until the kth upper
diagonal. Denote by pk the first element in this diagonal, and note that pk > 0, since every element in
the kth diagonal and above in (PU − Im−1) is positive. Pre- and post-multiplication by D only serves
to change signs of various elements of (PU − Im−1)k. In particular, the first element in the kth upper
diagonal of Equation (27) is (−1)kpk 6= 0. Thus the matrix on the right-hand side of Equation (26) is
upper triangular with with diagonal elements, λj = (−1)j−1pj−1v1 = (−1)j−1pj−1f

1
0,0, j = 1, . . . ,m−1.

HenceQ is non-singular if f 1
0,0 6= 0. However Φ(t) is a continuous scaling vector that forms a partition of

unity. Since sup (φi(t)) = [0, 1] for i = 2, . . . , A, the only way to satisfy the partition of unity condition
at the nonzero integers is if f 1

0,0 6= 0.

We return to Example 2.7 to motivate our next result.

Example 4.3. The scaling vector Φ from Example 2.7 has polynomial accuracy m = 3 and
supp (φi) = [0, 2]. We construct the edge functions φL,0 and φL,1. Noting that f0,0 = (0, 1) and
f1,0 =

(
−1

6
, 1
)
, we have

φL,0(t) =
2∑

`=1

0∑
k=−1

f `
0,kφ̄

`(t− k)

= f 1
0,0φ̄

1(t+ 1) + f 1
0,0φ

1(t) + f 2
0,0φ̄

2(t+ 1) + f 2
0,0φ

2(t)

= φ̄2(t+ 1) + φ2(t)

and



Axioms 2013, 2 385

φL,1(t) =
2∑

`=1

0∑
k=−1

f `
1,kφ̄

`(t− k)

= f 1
1,−1φ̄

1(t+ 1) + f 1
1,0φ

1(t) + f 2
1,−1φ̄

2(t+ 1) + f 2
1,0φ

2(t)

=
(
f 1

1,0 − f 1
0,0

)
φ̄1(t+ 1) + f 1

1,0φ
1(t) +

(
f 2

1,0 − f 2
0,0

)
φ̄2(t+ 1) + f 2

1,0φ
2(t)

= −1

6
φ̄1(t+ 1)− 1

6
φ1(t) + φ2(t)

where we have used Lemma 2.1 to compute f 1
1,−1 and f 2

1,−1. The edge functions are plotted in Figure 4.

Figure 4. The edge functions, φL,0 and φL,1, from Example 4.3.

We did not construct φL,2 because it can be constructed as a linear combination of φL,0, φL,1, φ1 and
φ2. We know φL,2(t) = t2 for t ∈ [0, 1]. For t ∈ [0, 1], we have

t2 = φL,2(t) =
A∑

`=1

0∑
k=−1

f `
2,kφ̄

`(t− k)

= f 1
2,−1φ̄

1(t+ 1) + f 1
2,0φ

1(t) + f 2
2,−1φ̄

2(t+ 1) + f 2
2,0φ

2(t). (28)

We seek α0, . . . , α3, so that

t2 = α0φL,0(t) + α1φL,1(t) + α2φ
1(t) + α3φ

2(t)

= α0

(
φ̄2(t+ 1) + φ2(t)

)
+ α1

(
−1

6
φ̄1(t+ 1) + φ2(t)

)
+ α2φ

1(t) + α3φ
2(t) (29)

for t ∈ [0, 1]. We can regroup the terms in Equation (29) as follows:

t2 = −1

6
α1φ̄

1(t+ 1) + α2φ
1(t) + α0φ̄

2(t+ 1) + (α0 + α1 + α3)φ2(t).

Comparing this Equation to (28) leads to the following system of equations

α2 = f 1
2,0

α0 + α1 + α3 = f 2
2,0

− 1

6
α1 = f 1

2,−1

α0 = f 2
2,−1.
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This system is easily seen to have a unique solution.
We can generalize the preceding discussion with the following proposition:

Theorem 4.4. Suppose Φ =
(
φ1, . . . , φA

)T forms a multi-resolution analysis for L2(R) with polynomial
accuracy A + 1. Suppose that each φi is continuous on R and supp (φi) = [0, 2], i = 1, . . . , A. Assume
further that {f0,0, f1,0, . . . , fA−1,0} is a linearly independent set of vectors. Then for t ∈ [0, 1], tA can
be written as a linear combination of φL,j , j = 0, . . . , A − 1, and φ`, t = 1, . . . , A. That is, only the
φL,0, . . . , φL,A−1 left (right) edge functions defined by Equation (15) are needed in conjunction with Φ to
construct a multi-resolution analyses of L2[0, 1].

Proof. We seek constants, α0, . . . , α2A, such that for t ∈ [0, 1], we have

tA =
A−1∑
j=0

αjφL,j(t) +
A∑

`=1

αj+A−1φ
`(t). (30)

Substituting the edge functions

φL,j(t) =
A∑

`=1

0∑
k=−1

f `
j,kφ̄

`(t− k) =
A∑

`=1

f `
j,−1φ̄

`(t+ 1) +
A∑

`=1

f `
j,0φ

`(t)

j = 0, . . . , A− 1 into Equation (30) gives, for t ∈ [0, 1]

tA =
A−1∑
j=0

αj

(
A∑

`=1

f `
j,−1φ̄

`(t+ 1) +
A∑

`=1

f `
j,0φ

`(t)

)
+

A∑
`=1

αj+A−1φ
`(t)

=
A∑

`=1

(
A−1∑
j=0

αjf
`
j,−1

)
φ̄`(t+ 1) +

A∑
`=1

(
A−1∑
j=0

αjf
`
j,0 + αA+`−1

)
φ`(t). (31)

However for t ∈ [0, 1] we have

tA = φL,A(t) =
A∑

`=1

0∑
k=−1

f `
A,kφ̄

`(t− k)

=
A∑

`=1

f `
A,−1φ̄

`(t+ 1) +
A∑

`=1

f `
A,0φ

`(t). (32)

Setting Equations (31) and (32) equal to each other gives rise to the following system of equations

A−1∑
j=0

f `
j,0αj + αA+`−1 = f `

A,0, ` = 1, . . . A

A−1∑
j=0

f `
j,−1αj = f `

A,−1, ` = 1, . . . A. (33)

We can reformulate Equation (33) as a matrix equation, Pα = b, where

α = (α0, · · · , αA−1, αA, · · · , α2A−1)
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b =
(
f 1

A,0, · · · , fA
A,0, f

1
A,−1, · · · , fA

A,−1

)
and

P =

[
F IA
Q ZA

]
with IA andZA theA×A identity and zero matrices, respectively, F theA×Amatrix defined component-
wise by F`,j = f `

j,0 and Q the A× A matrix given by

Q =


f 1

0,−1 f 1
1,−1 f 1

2,−1 · · · f 1
A−1,−1

f 2
0,−1 f 2

1,−1 f 2
2,−1 · · · f 2

A−1,−1
... . . . ...

fA
0,−1 fA

1,−1 fA
2,−1 · · · fA

A−1,−1

 . (34)

The proof is complete if we can show Q is a nonsingular matrix.
Using Equation (6) and Corollary 2.3, we see that

QT =
[

E1
−1 E2

−1 · · · EA
−1

]
=
[
P−1

L E1
0 P−1

L E2
0 · · · P 0

LEA
0

]
= P−1

L

[
E1

0 E2
0 · · · EA

0

]

= P−1
L


f 1

0,0 f 2
0,0 · · · fA

0,0

f 1
1,0 f 2

1,0 · · · fA
1,0

... . . . ...
f 1

A−1,0 f 2
A−1,0 · · · fA

A−1,0



= P−1
L


f0,0

f1,0

...
fA−1,0

 .
Since it is assumed that {f0,0, f1,0, . . . , fA−1,0} is a linearly independent set of vectors, QT is nonsingular
and the proof is complete.

Propositions 4.2 and 4.4 in some sense represent the extreme cases for the supports of scaling
functions in Φ. In the general case, supp

(
φ`
)

= [0,M`], and in order to consider a square system,
like Equations (23) or (33), we need the number of functions in S =

{
φ̄`(· − k)

}
contributing to tm−1

for t ∈ [0, 1], which should be the sum of m − 1 (the number of edge functions) and A (the number of
scaling functions). From Equation (14), we have

A∑
`=1

M` = n(S) = m− 1 + A

so that n(S) − A = m − 1. Using an argument similar to those used in the proofs of Propositions 4.2
and 4.4, we would arrive at the n(S)× n(S) system Pα = b, where

α =
(
α0, . . . , αn(S)−1

)T
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b =
(
fm−1,0,g

1,g2, · · · ,gA
)T

with g` =
(
f `

m−1,1−m, f
`
m−1,2−m, · · · , f `

m−1,−1

)
and

P =

[
F IA
Q Zm−1,A

]
where IA is the A×A identity matrix, Zm−1,A is the m−1×A zero matrix, F is the A× (m−1) matrix
defined component-wise by F`,k = f `

k,0, ` = 1, . . . , A, k = 0, . . . ,m− 2 and Q is the (m− 1)× (m− 1)

matrix given in block form by

Q =


Q1

Q2

· · ·
QA

 with Q` =


(
E`

0

)T
P−1

U(
E`

0

)T
P−2

U
...(

E`
0

)T
P 1−M`

U


for ` = 1, . . . , A.

It remains an open problem to determine the conditions necessary to ensure Q is nonsingular. A
reasonable assumption is that {f0,0, . . . , fm−2,0} (or equivalently, the set

{
E1

0, . . . ,E
A
0

}
) is a set of linearly

independent vectors, but the proof has not been established. For those instances when M` > 2, it must
be true that E`

0 6= (0, 0, . . . , 1)T , since this vector is an eigenvector of P−1
U .

It is also unclear whether or not nonnegative scaling vectors can be created that possess certain (anti-
)symmetry properties. If the underlying scaling vector possesses (anti-)symmetry properties, then the
only modifications needed would be for the edge functions. We have yet to consider the problem of
creating (anti-)symmetric edge functions.
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