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Abstract: Consider a supercritical Galton–Watson process with immigration (Xn; n ≥ 0). The
Lotka–Nagaev estimator Xn+1

Xn
is a common estimator for the offspring mean. In this work, we used

the Martingale method to establish several types of Cramér moderate deviation results for the Lotka–
Nagaev estimator. To satisfy our needs, we employed the well-known Cramér approach for our proofs,
which establishes the moderate deviation of the sum of the independent variables. Simultaneously,
we provided a concrete example of its applicability in constructing confidence intervals.
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1. Introduction

Consider a series of identically distributed (i.i.d) random variables with a mean of 0
and positive variance, σ2, denoted as (Zi)i≥1. By Ln = ∑n

i=1 Zi, denote the partial sums of
(Zi)i≥1. Assume E

(
exp[C0|Z1|]

)
< ∞ for some constant C0 > 0. Cramér [1] established the

following asymptotic moderate deviation for all 0 ≤ x = o(n
1
2 ):∣∣∣ ln

P(Ln > xσ
√

n)
1 − ϕ(x)

∣∣∣ = O(
1 + x3
√

n
) (1)

as n → ∞, where ϕ(x) = 1√
2π

∫ x
−∞ exp(−t2

2 )dt is the standard normal distribution. The mod-
erate deviation results of type (1) are typically referred to as Cramér moderate deviations.

Let (Xn)n≥0 be a series of random variables taking non-negative integer values, where
Xn is the number of particles in the nth generation of the Galton–Watson process with
immigration (i.e., GWIP). Then, a GWIP can be defined as follows:

X0 = 1, Xn+1 =
Xn

∑
i=1

Zn
i + Yn+1, f or ∀n ≥ 0, (2)

where (Zn
i )i,n≥1 is a sequence of non-negative integer-valued random variables that are

independently and identically distributed for i, n ≥ 1 as follows:

P(Zn
i = j) = pj(j ≥ 0).

Yn represents the number of immigrant particles arriving in the nth generation, and
(Yn)n≥1 is also a series of independently and identically distributed random variables.
Simultaneously, we assume that branches and immigrants are independent of each other.

Axioms 2024, 13, 272. https://doi.org/10.3390/axioms13040272 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13040272
https://doi.org/10.3390/axioms13040272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms13040272
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13040272?type=check_update&version=1


Axioms 2024, 13, 272 2 of 12

Indicate an individual’s offspring mean by m, then

m = EX1. (3)

By µ, denote the standard variance of X1; then, we have

µ2 = E(X1 − m)2 = VarX1. (4)

To avoid triviality, and for convenience, we can take µ to be positive. A popular
estimator for the offspring mean m is the Lotka–Nagaev estimator Xn+1

Xn
. Since we will

be assuming p0 = 0 throughout this study, the Lotka–Nagaev estimator Xn+1
Xn

has a well-
defined P-a.s.

In the literature, researchers have shown a great deal of interest in the topic of moderate
and large deviations in the branching process. Athreya [2] researched large deviations for
branching processes in the single-type case in 1994, investigating them for the normalized
Lotka–Nagaev estimator. Moreover, Athreya et al. [3] extended these results to investigate
the large deviation of different types of branching processes, including both supercritical
and critical ones, showing geometric decay in the multi-type supercritical case and algebraic
decay in the critical single-type case. Fleischmann and Wachtel [4] explored large deviations
for sums of independent and identically distributed random variables for the Galoton–
Watson process. Other relevant studies from the literature can be found in [5–11].

On the other hand, moderate deviations have been studied extensively for supercriti-
cal, subcritical and critical Galton–Watson processes. The Lotka–Nagaev estimator Zn+1

Zn
is a widely used estimator for offspring means. For instance, Ney and Vidyashanka [12]
estimated the sharp rate for the large deviation behavior of the Lotka–Nagaev estima-
tor. Bercu and Touati [13] demonstrated exponential inequalities for the Lotka–Nagaev
estimator through self-normalized Martingale methods. Chen and Zhang [14] examined
a nearly unstable sub-critical Galton–Watson process with immigration, exploring the
moderate deviations for the total population. Doukhan et al. [15] focused on establish-
ing Cramér moderate deviation results for the Lotka–Nagaev estimator in a supercritical
Galton–Watson process using the Martingale method. Fan et al. [16] established self-
normalized Cramér-type moderate deviations for a supercritical Galton–Watson process,
specifically focusing on the Lotka–Nagaev estimator. Furthermore, Fan and Shao [17,18]
introduced self-normalized Cramér-type moderate deviations and Berry–Esseen bounds
for the Lotka–Nagaev estimator. These studies collectively contribute to the understanding
and application of moderate deviations in various statistical scenarios.

Additionally, branching process models in a random environment have been intro-
duced as an extension of the Galton–Watson process. Grama et al. [19] proved a Kesten–
Stigum-type theorem for supercritical multitype branching processes in a random environ-
ment. Other influential contributions include [20–24]. Overall, these studies contribute to
the understanding of moderate deviations in the context of Galton–Watson processes.

Different from the above studies, which mainly focus on the classical Galton–Watson
process, in this paper, we research the same processes with immigration, introducing a range
of Cramér moderate deviation outcomes for the Lotka–Nagaev estimator by employing
a Martingale approach. For our proofs, we utilize the well-known Cramér method to
demonstrate the moderate deviation of the sum of independent variables to satisfy our
requirements. Moreover, we provide a further application as a by-product.

The remainder of this paper is structured as follows. In Section 2, we first outline some
basic preliminaries and then provide the moderate deviations for a supercritical GWIP. On
the basis of this, we present the Cramér moderate deviation results for a supercritical GWIP
in Section 3, while Section 4 provides some applications for the moderate deviation results.
Further discussions are presented in Section 5.
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2. Preliminaries

For the purpose of engaging in discourse and facilitating a comprehensive analysis,
we shall present the following lemmas.

Lemma 1. Let (Xn)n≥0 be a GWI process. Then,

P(Xn ≤ n) ≤ C1 exp(−C0n) (5)

where C0 > 0.

Proof. This is implied by (6.8) in [18],

P(Xn ≤ n) = P(
Xn−1

∑
i=1

Zi ≤ n − Yn−1)

≤ P(
Xn−1

∑
i=1

Zi ≤ n)

≤ C1 exp(−C0n).

(6)

The proof is complete.

Theorem 1. Let E exp(C0|X1|) < ∞ for some constant C0 > 0. Then, for all 0 ≤ x = o(n
1
2 ),∣∣∣ ln

P(Ln > xµ
√

n)
1 − ϕ(x)

∣∣∣ = O
(C1 + C2x + C3x2 + x3

√
n

)
, (7)

where Ln = ∑n
i=1 Xi, (Xi)i≥1 are independent and identically distributed and centred random

variables, µ2 = VarX1.

Proof. According to the total probability formula, we derive the following comprehensive
expression:

P(Ln > xµ
√

n) = P(
n

∑
i=1

Zi + Yn > xµ
√

n)

=
∞

∑
j=1

P(Yn = j)P(
n

∑
i=1

Zi > xµ
√

n − j)

=
∞

∑
j=1

P(Yn = j)P
( n

∑
i=1

Zi > µ
√

n · xµ
√

n − j
µ
√

n

)
=:

∞

∑
j=1

P(Yn = j)Pn(x − j
µ
√

n
).

(8)

It can be inferred from (1) in [18] that

Pn(x − j
µ
√

n
) < C1

(
1 − ϕ(x − j

µ
√

n
)
)

exp
(1 + [x − j

µ
√

n ]
3

√
n

)
, (9)

and

Pn(x − j
µ
√

n
) > C2

(
1 − ϕ(x − j

µ
√

n
)
)

exp
(
−

1 + [x − j
µ
√

n ]
3

√
n

)
. (10)
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Combine this with the following inequalities:

1√
2π(1 + x)

e
−x2

2 ≤ 1 − ϕ(x) ≤ 1√
π(1 + x)

e
−x2

2 , x ≥ 0 (11)

Then, for x ≥ 0,

1
√

2π(1 + x − j
µ
√

n )
exp

(−[x − j
µ
√

n ]
2

2

)
≤ 1 − ϕ(x − j

µ
√

n
)

≤ 1
√

π(1 + x − j
µ
√

n )
exp

(−[x − j
µ
√

n ]
2

2

)
.

(12)

By leveraging expressions (11) and (12), in conjunction with the substitution t = j
µ
√

n ,
we can further advance our analysis:

1 − ϕ(x − t)
1 − ϕ(x)

<

√
2(1 + x)

1 + x − t
exp(xt − t2

2
), (13)

and

1 − ϕ(x − t)
1 − ϕ(x)

>
(1 + x)√

2(1 + x − t)
exp(xt − t2

2
). (14)

By (9) and (13), we obtain

P(
n

∑
i=1

Zi > xµ
√

n − j) < C1

√
2(1 + x)

1 + x − t

(
1 − ϕ(x)

)
exp

(1 + [x − t]3√
n

+ x
j

µ
√

n
− j2

2µ2n

)
< C4

(
1 − ϕ(x)

)
exp

(C1 + C2x + C3x2 + x3
√

n

) (15)

and

P(
n

∑
i=1

Zi > xµ
√

n − j) > C5

(
1 − ϕ(x)

)
exp

(
− C1 + C2x + C3x2 + x3

√
n

)
. (16)

Finally, we can arrive at the following conclusion:∣∣∣ ln
P(Ln > xµ

√
n)

1 − ϕ(x)

∣∣∣ = O
(C1 + C2x + C3x2 + x3

√
n

)
. (17)

3. Main Results

To establish our arguments and meet our analytical needs, we leveraged the renowned
Cramér method to showcase the moderate deviation of the sum of independent variables.

In this section, our primary focus is on exploring the moderate deviations related
to the weighted Lotka–Nagaev estimator utilizing the data (Xk)n0≤k≤n0+n. Let n, n0 ∈ N
and denote

m̂n =
1

∑n0+n−1
k=n0

√
Xk +

1√
Xk

n0+n−1

∑
k=n0

√
Xk(

Xk+1
Xk

) (18)
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as the random weighted Lotka–Nagaev estimator. Typically, n0 is set to 0. However, we
will now explore the broader case where n0 can be dependent on n. Denote

Hn0,n =
1

µ
√

n

n0+n−1

∑
k=n0

(√
Xk

[Xk+1
Xk

− m
]
− m√

Xk

)
(19)

Subsequently, Hn0,n can be reformulated as follows:

Hn0,n =
m̂n − m

µ
√

n

n0+n−1

∑
k=n0

(√
Xk +

1√
Xk

)
. (20)

This provides an appropriate normalization of the error term m̂n − m. Verifying the
following result is thus straightforward.

Lemma 2. Hn0,n is a standardized Martingale.

Proof. It can be easily seen that

E
(√

Xn[
Xn+1

Xn
− m]− m√

Xn

∣∣∣X0, ..., Xn

)
=E

( Xn

∑
i=1

[Zi − m] + Yn|X0, ..., Xn

)
− m√

Xn

=
E(Yn)√

Xn
− m√

Xn
= 0

(21)

and

Var
(√

Xn[
Xn+1

Xn
− m]− m√

Xn

)
= v2. (22)

Therefore, Hn0,n is a standardized Martingale, and (Hn0,n)n≥1 hence represents the
normalized process for the estimator, m̂n.

We further derive the subsequent Cramér moderate deviation result concerning
the Martingale, Hn0,n. Our analysis sheds light on the behavior of moderate devia-
tions in relation to this crucial variable, giving valuable perspectives on the underlying
stochastic process.

Denote

Rn =

√
Xn

µ

(Xn+1

Xn
− m

)
− m

µ
√

Xn
. (23)

Theorem 2. Let E
(

exp[k0Z1]
)
< ∞ for a constant k0 > 0. Then,

∣∣∣ ln
P(Rn > x)
1 − ϕ(x)

∣∣∣ = O
(C1 + C2x + C3x2 + x3

√
n

)
. (24)

Proof. By examining the definition of Rn, it becomes apparent that Rn can be reformulated
as follows:

Rn =
Xn+1 − mXn − m

µ
√

Xn
=

1
µ
√

Xn

( Xn

∑
i=1

[Zi
n − m] + Yn − m

)
. (25)
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By the total probability formula, we have

P(Rn ≥ x) =
∞

∑
j=1

P(Yn = j)P
( 1

µ
√

Xn

Xn

∑
i=1

[Zi
n − m] > x − j − m

µ
√

Xn

)
=

∞

∑
k=1

P(Xn = k)
∞

∑
j=1

P(Yn = j)P
( 1

µ
√

k

k

∑
i=1

[Zi
n − m] > x − j − m

µ
√

k

)
=:

∞

∑
k=1

P(Xn = k)
∞

∑
j=1

P(Yn = j)Fk(x − j − m
µ
√

k
)

(26)

According to the results of the Galton–Watson process without immigration, one has

Fk(x − j − m
µ
√

k
) < C1

(
1 − ϕ(x − j − m

µ
√

k
)
)

exp
(1 + [x − j−m

µ
√

k
]3

√
n

)
, (27)

Fk(x − j − m
µ
√

k
) > C2

(
1 − ϕ(x − j − m

µ
√

k
)
)

exp
(
−

1 + [x − j−m
µ
√

k
]3

√
n

)
, (28)

This is a consequence of (12):

1
√

2π(1 + x − j−m
µ
√

k
)

exp
(−[x − j−m

µ
√

k
]2

2

)
≤ 1 − ϕ(x − j − m

µ
√

k
)

≤ 1
√

π(1 + x − j−m
µ
√

k
)

exp
(−[x − j−m

µ
√

k
]2

2

) (29)

Combining (12) and (29), we obtain

1 + x√
2(1 + x − t1)

exp(xt1 −
t1

2

2
) <

1 − ϕ(x − j−m
µ
√

k
)

1 − ϕ(x)

<

√
2(1 + x)

1 + x − t1
exp(xt1 −

t1
2

2
), t1 =

j − m
µ
√

k
.

(30)

By (27) and (30), we have

P
( 1

µ
√

Xn

Xn

∑
i=1

[Zi
n − m] > x − j − m

µ
√

Xn

)
<C′

4
(
1 − ϕ(x)

)
exp

(1 + [x − t1]
3

√
n

+ x
j − m
µ
√

k
− [j − m]2

2µ2k

)
<C4

(
1 − ϕ(x)

)
exp

(C1 + C2x + C3x2 + x3
√

n

)
(31)

and

P
( 1

µ
√

Xn

Xn

∑
i=1

[Zi
n − m] > x − j − m

µ
√

Xn

)
> C5

(
1 − ϕ(x)

)
exp

(
− C1 + C2x + C3x2 + x3

√
n

)
(32)

Finally, for all k ≥ 1, we obtain the conclusion.

Based on the above Theorem 2, we can directly obtain the following conclusion.
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Remark 1. Let E
(

exp[k0Z1]
)
< ∞ for a constant k0 > 0. Then, the following equality

P(Rn > x)
1 − ϕ(x)

= 1 + o(1). (33)

naturally holds as n → ∞ for 0 ≤ x = o(n
1
6 ).

Theorem 3. Let

E|Z1 + Y1 − m|p ≤ 1
2

p!(p − 1)−
l
2 Cp−2E(Z1 + Y1 − m)2, p ≥ 2. (34)

hold for some positive constant, c. Then, the following equalities∣∣∣ ln
P(Hn0,n ≥ x)

1 − ϕ(x)

∣∣∣ = O
(C1x2 + x3

√
n

+ [C2 + C3x]
ln n√

n

)
(35)

and ∣∣∣ ln
P(Hn0,n ≤ −x)

1 − ϕ(x)

∣∣∣ = O
(C1x2 + x3

√
n

+ [C2 + C3x]
ln n√

n

)
. (36)

hold for all 0 ≤ x = o(
√

n) as n → ∞.

Proof. Condition (34) is also satisfied by a sub-Gaussian random variable, provided that
there exists a positive constant C1 > 0,

P(Z1 + Y1 − m ≥ x) = P(Z1 − m ≥ x − Y1)

≤ C1 exp
(
− [x − Y1]

2

C1

)
< C1 exp(− x2

C1
), Y1 > x

(37)

Indeed, it is evident that, for all p ≥ 2,

E|(Z1 + Y1)− m|p ≤
∫ ∞

0
pxp−1P(Z1 + Y1 − m ≥ x)dx + mp · P(Z1 + Y1 − m < 0)

≤
∫ ∞

0
pxp−1C1 exp(− x2

C1
)dx + mp

= C1(

√
C1

2
)p−1

∫ ∞

0
pyp−1 exp(−y2

2
)dy + mp

= C1(

√
C1

2
)p−1 p!! + mp

(38)

According to Remark 2.1 in [18],

E|Z1 + Y1 − m|p ≤ p!(p − 1)−
l
2 C2(

√
C2

2
)p−1(p − 1)

l
2 e

p+1
2 (39)

which implies (34) holds for sufficiently large c and p ≥ 3.
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On the other hand, for the case of p = 2, condition (34) obviously holds. It is clear
from the definition of Hn0,n that it can be expressed as follows:

Hn0,n =
1

µ
√

n

n0+n−1

∑
k=n0

(√
Xk[

Xk+1
Xk

− m]− m√
Xk

)

=
1

µ
√

n

n0+n−1

∑
k=n0

( Xk

∑
i=1

Zi
k − m√

Xk
+

Yk − m√
Xk

)
(40)

According to the formula for the total probability, we have

P(Hn0,n ≥ x) =
∞

∑
j=1

P(Yn = j)P
( n0+n−1

∑
k=n0

Xk

∑
i=1

Zi
n − m

µ
√

nXk
≥ x − j − m

µ
√

nXk

)

=
∞

∑
q=1

P(Xk = q)
∞

∑
j=1

P(Yn = j)P
( n0+n−1

∑
k=n0

Xk

∑
i=1

Zi
n − m

µ
√

nq
≥ x − j − m

µ
√

nq

)
=:

∞

∑
q=1

P(Xk = q)
∞

∑
j=1

P(Yn = j)F́k(x − j − m
µ
√

nq
)

(41)

By Theorem 2.1 in [18], we have

Fk(x − j − m
µ
√

nq
) < C1

(
1 − ϕ(x − j − m

µ
√

nq
)
)

exp
( [x − j−m

µ
√

nq ]
3

√
n

+ [1 + x − j − m
µ
√

nq
]
ln n√

n

)
, (42)

Fk(x − j − m
µ
√

nq
) > C2

(
1 − ϕ(x − j − m

µ
√

nq
)
)

exp
( [x − j−m

µ
√

nq ]
3

√
n

+ [1 + x − j − m
µ
√

nq
]
ln n√

n

)
, (43)

By (12), we have

1
√

2π(1 + x − j−m
µ
√

nq )
exp

(−[x − j−m
µ
√

nq ]
2

2

)
≤ 1 − ϕ

(
x − j − m

µ
√

nq
)

≤ 1
√

π(1 + x − j−m
µ
√

nq )
exp

(−[x − j−m
µ
√

nq ]
2

2

) (44)

Combining (12) and (44), we have

1 + x√
2(1 + x − t2)

exp
(
xt2 −

t2
2

2
)
<

1 − ϕ(x − j−m
µ
√

nq )

1 − ϕ(x)

<

√
2(1 + x)

1 + x − t2
exp(xt2 −

t2
2

2
), t2 =

j − m
µ
√

nq

(45)

Based on (42) and (45), we have
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P
( 1

µ
√

nXk

Xk

∑
i=1

[Zi
n − m] > x − j − m

µ
√

nXk

)
<C4

(
1 − ϕ(x)

)
exp

( [x − t2]
3

√
n

+ [1 + x − t2]
ln n√

n
+ xt2 −

t2
2

2

)
<C4

(
1 − ϕ(x)

)
exp

( x3
√

n
+ [1 + x]

ln n√
n
+ x

j − m
µ
√

nk
− [j − m]2

2µ2nk

)
<C4

(
1 − ϕ(x)

)
exp

(C1x2 + x3
√

n
+ [C2 + C3x]

ln n√
n

)
(46)

and

P
( 1

µ
√

nXk

Xn

∑
i=1

[Zi
n − m]

)
> C5

(
1 − ϕ(x)

)
exp

(
−

[C1x2 + x3
√

n
+ {C2 + C3x} ln n√

n
])

(47)

Finally, for all k ≥ 1, we have∣∣∣ ln
P(Hn0,n ≥ x)

1 − ϕ(x)

∣∣∣ = O
(C1x2 + x3

√
n

+ [C2 + C3x]
ln n√

n

)
.

The proof is complete.

According to Theorem 3, we can further obtain the following conclusions, and we give
the relevant results in the form of remarks.

Remark 2. Let

E|Z1 + Y1 − m|p ≤ 1
2

p!(p − 1)−
l
2 Cp−2E(Z1 + Y1 − m)2, p ≥ 2.

hold for some positive constant, c. Then,

P(Hn0,n ≥ x)
1 − ϕ(x)

= 1 + O
(C1x2 + x3

√
n

+ [C2 + C3x]
ln n√

n

)
(48)

and

P(Hn0,n ≤ −x)
1 − ϕ(x)

= 1 + O
(C1x2 + x3

√
n

+ [C2 + C3x]
ln n√

n

)
(49)

hold for all 0 ≤ x ≤ n
1
6 and n ≥ 3 .

In particular, we can also naturally conclude the following result.

Remark 3. Let

E|Z1 + Y1 − m|p ≤ 1
2

p!(p − 1)−
l
2 Cp−2E(Z1 + Y1 − m)2, p ≥ 2.

hold for some positive constant, c. Then,

P(Hn0,n ≥ x)
1 − ϕ(x)

= 1 + o(1) (50)
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and

P(Hn0,n ≤ −x)
1 − ϕ(x)

= 1 + o(1) (51)

hold for all 0 ≤ x = o(n
1
6 ) as n → ∞.

4. Applications

Moderate deviation plays a crucial role in statistics. In this section, we will present
an empirical analysis that applies our proposed methodology to statistically significant
domains. This will not only demonstrate the practical relevance of the work but also
provide a concrete example of its applicability in solving real-world problems.

Cramér moderate deviations can be utilized in constructing confidence intervals for
m. Specifically, we can employ the findings from Theorem 3 to establish the following
confidence intervals.

Proposition 1. Let

E|Z1 + Y1 − m|p ≤ 1
2

p!(p − 1)−
l
2 Cp−2E(Z1 + Y1 − m)2, p ≥ 2.

hold for some positive constant c and | ln cn| = o(n
1
3 ). If cn ∈ (0, 1), then for sufficiently large n,

[an, bn] is a 1 − cn confidence interval for m, where

an = m̂n −
µn

1
2 ϕ−1(1 − cn

2 )

∑n
i=1

√
Xi

and

an = m̂n +
µn

1
2 ϕ−1(1 − cn

2 )

∑n
i=1

√
Xi

,

where ϕ−1 is the inverse function of ϕ.

Proof. It follows from Theorem 3 that we can derive the confidence interval for m under
the assumptions.

5. Discussions

For Galton–Watson processes, the generational evolution of population size and the
branching structure are the typical topics of discussion. Analyzing the Cramér moderate
deviations in these systems is an important area of interest, since it can provide insight into
the behavior of extreme population growth variations and small probability events.

Different from previous research, in this study, we introduced immigration into the
classical Galton–Watson process. The inclusion of immigration introduces additional com-
plexity to the population dynamics, potentially impacting the growth rate and offspring
distribution. Such changes can lead to differences in the occurrence and magnitude of mod-
erate deviations, influencing the overall stability and variability of the population sizes.

Furthermore, exploring the Cramér moderate deviations of the GWIP provides valu-
able insights into the role of external factors, such as immigration, in shaping the population
dynamics. By examining moderate deviations in the branching processes with immigration,
researchers can obtain a deeper understanding of how different mechanisms influence the
long-term behavior and resilience of populations.
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In conclusion, the investigation of Cramér moderate deviations for the GWIP provides
an interesting perspective on the interplay between intrinsic reproduction dynamics and
external influences. This analysis not only enriches our theoretical understanding of
population processes but also has practical implications for modeling and predicting
population behaviors in various biological and ecological systems.
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