
Citation: Yu, B.; Dong, N.; Hu, B.

Operator Smith Algorithm for

Coupled Stein Equations from Jump

Control Systems. Axioms 2024, 13, 249.

https://doi.org/10.3390/

axioms13040249

Academic Editor: Janis Bajars

Received: 9 March 2024

Revised: 3 April 2024

Accepted: 5 April 2024

Published: 10 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Operator Smith Algorithm for Coupled Stein Equations from
Jump Control Systems
Bo Yu , Ning Dong ∗ and Baiquan Hu

School of Science, Hunan University of Technology, Zhuzhou 412007, China; yubo@hut.edu.cn (B.Y.);
m23070100015@stu.hut.edu.cn (B.H.)
* Correspondence: dongning@hut.edu.cn

Abstract: Consider a class of coupled Stein equations arising from jump control systems. An operator
Smith algorithm is proposed for calculating the solution of the system. Convergence of the algorithm
is established under certain conditions. For large-scale systems, the operator Smith algorithm is
extended to a low-rank structured format, and the error of the algorithm is analyzed. Numerical
experiments demonstrate that the operator Smith iteration outperforms existing linearly convergent
iterative methods in terms of computation time and accuracy. The low-rank structured iterative
format is highly effective in approximating the solutions of large-scale structured problems.

Keywords: coupled Stein equations; operator Smith algorithm; jump control system; low rank;
large-scale problems

MSC: 65F45; 65F10

1. Introduction

Consider the discrete-time jump control systems given by

xj+1 = A(ti)xj + B(ti)uj, yj = C(ti)xj, i, j = 1, . . . , m,

where A(ti) ∈ RN×N, B(ti) ∈ RN×lb , and C(ti) ∈ Rlc×N with lb, lc ≪ N. Here, N represents
the scale of the jump control system. Efficient control in the analysis and design of jump systems
involves associating the observability Gramian Woi = ∑∞

k=0(A(ti)
⊤)kC(ti)

⊤C(ti)A(ti)
k and

controllability Gramian Wci = ∑∞
k=0 A(ti)

kB(ti)B(ti)
⊤(A(ti)

⊤)k [1], which are solutions of the
corresponding coupled discrete-time Stein equations (CDSEs):

Sci(X) = Xi − Qi − A⊤
i Ei(X)Ai = 0. (1)

Here, for i = 1, . . . , m, Ai ∈ RN×N is the input matrix, Qi ∈ RN×N is symmetric
and positive semi-definite, and Ei(X) = ∑m

j=1 pijXj ∈ RN×N with probability values pij

satisfying ∑m
j=1 pij = 1. Numerous methods, ranging from classical to state-of-the-art, have

been developed over the past decades to address the single Stein equation (i.e., m = 1
in (1)), particularly for special matrix structures. For example, Betser et al. investigated
solutions tailored to cases where coefficient matrices are in companion forms [2]. Hueso et
al. devised a systolic algorithm for the triangular Stein equation [3]. Li et al. introduced
an iterative method for handling large-scale (the term “large-scale” refers to the scale N of
the corresponding equations being large) Stein and Lyapunov equations with low-ranked
structures [4]. Fan et al. discussed generalized Lyapunov and Stein equations, deriving
connections from rational Riccati equations [5]. Yu et al. scrutinized large-scale Stein
equations featuring high-ranked structures [6].

For CDSEs (1), the parallel iteration [7], essentially a stationary iteration for linear
systems, is a commonly used method to compute the desired solution. This approach

Axioms 2024, 13, 249. https://doi.org/10.3390/axioms13040249 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13040249
https://doi.org/10.3390/axioms13040249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-4742-4364
https://orcid.org/0000-0003-1515-8225
https://doi.org/10.3390/axioms13040249
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13040249?type=check_update&version=1

Axioms 2024, 13, 249 2 of 19

has been extended to an implicit sequential format [8], leveraging the latest information
from obtained solutions to accelerate the iteration of the left part. The gradient-based
iterative algorithm, introduced for solving CDSEs, explicitly determines the optimal step
size to achieve the maximum convergence rate [9]. By utilizing positive operator theory, two
iterative algorithms were established for solving CDSEs [10], later extended to Itô stochastic
systems. The continuous-time Lyapunov equations can be transformed into CDSEs via the
Cayley transformation [11], although determining the optimal Cayley parameter remains
a challenge. For other related iterative methods of continuous-time Lyapunov equations,
consult [12–16] and the corresponding references.

CDSEs also arise from solving sub-problems of coupled discrete-time Riccati equa-
tions from optimized control systems. The difference method [17] and CM method [18]
were proposed to tackle the sub-problems of CDSEs. Ivanov [19] developed two Stein
iterations that also exploit the latest information of previously derived solutions for accel-
eration. Notably, the iteration schemes provided in [8] are almost identical to these two
Stein iterations [19], essentially corresponding to the Gauss–Jacobi and the Gauss–Seidel
iterations applied to coupled matrix equations. Successive over-relaxation (SOR) iterations
and their variants for CDSEs were explored in [20,21], though determining the optimal
SOR parameter remains challenging. One limitation of the aforementioned methods is
that they are linearly convergent, and the potential structures (such as the low rank and
sparseness) of the matrices are not fully exploited. To enhance the convergence rate of
iterative methods, the Smith method was employed to solve the single Stein equation [22]
and extended to structured large-scale problems [4,11]. This method offers the advantage
of being parameter-free and converging quadratically to the desired symmetric solution. A
similar idea was extended to address some stochastic matrix equations in [5]. In this paper,
we adapt the Smith method to an operator version to compute the solution of CDSEs and
subsequently construct the corresponding low-ranked format for large-scale problems. The
main contributions encompass the following significant aspects:

• We introduce the operator defined as

(F)i(X) = A⊤
i Ei

(
A⊤E

(
. . . A⊤E(X)A

)
. . . A

)
Ai. (2)

This operator formulation enables us to adapt the Smith iteration [4,11,22] to an
operator version, denoted as the operator Smith algorithm (OSA). By doing so, the
iteration maintains quadratic convergence for computing the symmetric solution
of CDSEs (1). Our numerical experiments demonstrate that the OSA outperforms
existing linearly convergent iterations in terms of both the CPU time and accuracy.

• To address large-scale problems, we structure the OSA in a low-ranked format with
twice truncation and compression (TC). One TC applies to the factor in the constructed
operator (2), while the other TC applies to the factor in the approximated solution.
This approach effectively reduces the column dimensions of the low-rank factors in
symmetric solutions.

• We redesign the residual computation to suit large-scale computations. We incorporate
practical examples from industries [23] to validate the feasibility and effectiveness of
the presented low-ranked OSA. This not only demonstrates its practical utility but
also lays the groundwork for exploring various large-scale structured problems.

This paper is structured as follows. Section 2 outlines the iterative scheme of the
OSA for CDSEs (1), along with a convergence analysis. Comparative results on small-
scale problems highlight the superior performance of the OSA compared to other linearly
convergent iterations. Section 3 delves into the development of the low-ranked OSA,
providing details on truncation and compression techniques, residual computations, as
well as complexity and error analysis. In Section 4, we present numerical experiments from
industrial applications to illustrate the effectiveness of the introduced low-ranked OSA in
real-world scenarios.

Axioms 2024, 13, 249 3 of 19

Throughout this paper, Im (or simply I) is the m × m identity matrix. For a matrix
A ∈ RN×N , ρ(A) is the spectral radius of A. Unless stated otherwise, the norm ∥ · ∥ is
the ∞-norm of a matrix. For matrices A and B ∈ RN×N , the direct sum A ⊕ B means the

block diagonal matrix
[

A 0
0 B

]
. For symmetric matrices A and B ∈ RN×N , we say A > B

(A ≥ B) if A − B is a positive definite (semi-definite) matrix.

2. Operator Smith Iteration for CDSEs
2.1. Iteration Scheme

The operator Smith algorithm (OSA) represents a generalization of the Smith iteration
applied to a single matrix equation [4].

For each i = 1, . . . , m, the operator F in (2) at k-th iteration is defined as

(F)i,k(·) = A⊤
i Ei

(2k−1︷ ︸︸ ︷
A⊤E

(
. . . A⊤E(·)

2k−1︷ ︸︸ ︷
A
)

. . . A
)

Ai := A⊤
i Ei

(
(A⊤E)2k−1(·)A2k−1

)
Ai. (3)

With the initial Xi,0 = Qi, the OSA for CDSEs (1) is given by

Xi,k+1 = Xi,k + (F)i,k(X·,k), k = 0, 1, 2, . . . , (4)

where X·,k represents the k-th iteration satisfying Ei(X·,k) = ∑m
s=1 pi,sXs,k.

Remark 1. By the definition of the operator (F)i,k, it is not difficult to see that (F)i,k+1 doubles
the former operator (F)i,k for k = 1, 2, Specifically, the operator (F)i,k+1 acting on a matrix is
equivalent to applying the former operator (F)i,k twice on that matrix. To illustrate, let us consider
m = 2 as an example. For Q = (Q1, Q2), the operator (F)i,0 on Q (i.e., k = 0 in (3)) is

(F)i,0(Q) = A⊤
i Ei(Q)Ai = A⊤

i (pi1Q1 + pi2Q2)Ai.

Similarly, the operator (F)i,1 on Q (i.e., k = 1 in (3)) takes the form

(F)i,1(Q) = A⊤
i Ei(A⊤E(Q)A)Ai

= A⊤
i (pi1 A⊤

1 E1(Q)A1 + pi2 A⊤
2 E2(Q)A2)Ai

= A⊤
i (pi1 A⊤

1 (p11Q1 + p12Q2)A1 + pi2 A⊤
2 (p21Q1 + p22Q2)A2)Ai.

.

Thus, the effect of (F)i,1(Q) is equivalent to (F)i,0
(
(F)·,0(Q)

)
, demonstrating that (F)i,1

effectively doubles (F)i,0. This doubling property extends the concept of Smith iteration for a single
equation [4,11]. In this sense, (4) is referred to as the OSA.

The following proposition indicates the concrete form of Xi,k, (i = 1, . . . , m) in the
OSA (4):

Proposition 1. Let Ei(Q) = ∑m
s=1 pi,sQs. The k-th iteration Xi,k generated by (4) admits a representation

Xi,k = Qi + A⊤
i Ei

(2k−2

∑
j=0

(
A⊤E

)j
(Q)Aj

)
Ai (5)

for i = 1, . . . , m.

Proof. We prove (5) by induction. It is obvious from the OSA that Xi,1 = Xi,0 +Fi,0(Q) =
Qi + A⊤

i Ei(Q)Ai. Then, (5) holds for k = 1.
Assume that (5) holds for k = l. Then, one has

Axioms 2024, 13, 249 4 of 19

Xi,l+1 = Xi,l +Fi,l(X·,l)

= Xi,l + A⊤
i Ei

(
(A⊤E)2l−1(X·,l)A2l−1)Ai

= Xi,l + A⊤
i Ei

{
(A⊤E)2l−1

[
∑m

s=1 p·,s
(

Qs

+A⊤
s Es

(
∑2l−2

j=0 (A⊤E
)j
(Q)Aj)As

)]
A2l−1

}
Ai

= Xi,l + A⊤
i Ei

{
(A⊤E)2l−1

[
Q + ∑2l−2

j=0 (A⊤E
)j+1

(Q)Aj+1
]

A2l−1
}

Ai

= Xi,l + A⊤
i Ei

(
∑2l+1−2

j=2l−1
(A⊤E

)j
(Q)Aj

)
Ai

= Qi + A⊤
i Ei

(
∑2l+1−2

j=0 (A⊤E
)j
(Q)Aj

)
Ai,

indicating (5) is true for k = l + 1.

To obtain the convergence of the OSA, we further assume that all Ai for i = 1, . . . , m
are d-stable, i.e.,

ρ(Ai) < 1.

The following theorem concludes the convergence of the OSA:

Theorem 1. Let ρ := maxm
i=1 ρ(Ai) and p := maxm

i,j=1 pij such that 2pρ2 < 1. Then, the
sequence {Xi,k} generated by (4) is convergent to the solution

Xi,∞ = Qi + A⊤
i Ei

(∞

∑
j=0

(
A⊤E

)j
(Q)Aj

)
Ai (6)

of the CDSEs when Ai is d-stable. Moreover, one has

∥Xi,k − Xi,∞∥ ≤ (2pρ2)2k

1 − 2pρ2 ∥Q∥,

where ∥Q∥ := maxm
i=1 ∥Qi∥ for i = 1, . . . , m.

Proof. It follows from Proposition 1 that the solution of CDSEs has the form of (6) when
the assumption holds. Subtracting (5) from (6) and taking the norm, one then has

∥Xi,k − Xi,∞∥ = ∥A⊤
i Ei

(∞

∑
j=2k−1

(A⊤E
)j
(Q)Aj

)
Ai∥

≤ (2pρ2)2k∥Q∥(1 + 2pρ2 + (2pρ2)2...)

=
(2pρ2)2k

1 − 2pρ2 ∥Q∥.

Remark 2. It is evident from Theorem 1 that the OSA admits the quadratic convergence rate when
2pρ2 < 1. This highlights its superiority over the prevailing linearly convergent iterations [8,19,21,24]
both on accuracy and CPU time, as elaborated in the next subsection.

2.2. Examples

In this subsection, we present several examples that highlight the superior perfor-
mance of the OSA compared to linearly convergent iterations [8,19,21,24]. Notably, the
iteration method outlined in [8] is identical to the one in [19]. Additionally, other linearly
convergent iterations exhibit similar numerical behaviors. Therefore, for accuracy and CPU
time comparisons, we select the iteration method from [8,19], referred to as “FIX” in this

Axioms 2024, 13, 249 5 of 19

subsection. It is important to note that the discrete-time Lyapunov equation in “FIX” was
solved using the built-in function “dlyap” in Matlab 2019a [25].

Example 1. This example is from a slight modification of the all-pass SISO system [26], where
the controllability and observability Gramians are quasi-inverse to each other, i.e., WciWoi = σi I
for some σi > 0. This property indicates that the system has a single Hankel singular value of
multiplicity equal to the system’s order. The derived system matrices are as follows:

A1 = 0.4[(I + G1)
−1 Ā1], A2 = 0.5[(I + G2)

−1 Ā2], Q1 = LQ
1 (LQ

1)
⊤, Q2 = LQ

2 (LQ
2)

⊤,

where G1 and G2 are matrices with zero elements except for the last row of 0.1g1 and 0.3g2,
respectively (both g1 and g2 are random row vectors with elements from the interval (0, 1)); Ā1 and
Ā2 are both tri-diagonal matrix tridiag(−1, 0, 1) but with Ā1(1, 1) = −0.5 and Ā2(1, 1) = −0.8,
respectively; (LQ

1)
⊤ = [1, 0, . . . , 0, 1]; and (LQ

2)
⊤ = [0, 1, 0, . . . , 0, 1, 0]. We consider m = 2

and select the probability matrix Π =

(
0.26 0.74
0.53 0.47

)
.

We evaluate the OSA and FIX for dimensions N = 400 and N = 800 and present
their numerical behaviors in Table 1. Here, δtk and tk record the CPU time of the current
iteration and accumulated iterations, respectively. The Rel_Res column exhibits the relative
residual of CDSEs in each iteration. From Table 1, it is evident that the OSA achieves
equation residuals of O(10−16) within five iterations for different dimensions. The CPU
time required for the OSA is significantly less than that required for FIX. Conversely, FIX
maintains equation residuals at the level of O(10−13) even after 11 iterations. The symbol
“∗” in the table indicates that, despite resuming the iteration, it can not further reduce the
equation residuals to terminate the FIX.

Table 1. History of CPU time and residual for OSA and FIX in Example 1.

It. δtk tk Rel_Res δtk tk Rel_Res

N = 400 N = 800

1 0.045 0.045 1.38 × 10−1 0.156 0.156 2.50 × 10−1

2 0.070 0.115 1.04 × 10−2 0.275 0.431 2.00 × 10−2

OSA 3 0.139 0.254 8.59 × 10−5 0.434 0.865 1.88 × 10−4

4 0.173 0.427 6.15 × 10−9 0.705 1.571 1.59 × 10−8

5 0.284 0.711 2.66 × 10−16 1.244 2.814 2.47 × 10−16

1 0.495 0.495 4.10 × 10−1 2.276 2.276 7.77 × 10−1

2 0.483 0.979 1.26 × 10−1 2.021 4.297 2.51 × 10−1

3 0.471 1.450 4.68 × 10−3 2.049 6.346 9.85 × 10−3

4 0.452 1.902 1.65 × 10−4 2.078 8.424 3.66 × 10−4

5 0.479 2.381 6.00 × 10−6 2.051 10.503 1.40 × 10−5

FIX 6 0.606 2.986 2.27 × 10−7 2.051 12.553 5.58 × 10−7

7 0.630 3.617 8.87 × 10−9 2.031 14.584 2.42 × 10−8

8 0.450 4.067 4.02 × 10−10 2.055 16.639 1.21 × 10−9

9 0.462 4.529 1.90 × 10−11 2.053 18.693 6.05 × 10−11

10 0.470 4.998 9.11 × 10−13 2.046 20.738 3.05 × 10−12

11 0.474 5.472 1.19 × 10−13 * 2.076 22.814 2.05 × 10−13 *

To visualize the residuals of each equation (here, m = 2) for different iteration methods,
we plot the history of the equation residuals in Figure 1. Here, “S-Resi” and “F-Resi”
(i = 1, 2) represent the residuals of equations obtained by the OSA and FIX, respectively.
The figure illustrates that the OSA has quadratic convergence. Interestingly, although FIX
converges rapidly for solving the second equation, it maintains linear convergence for
solving the first equation, resulting in an overall linear convergence for FIX.

Axioms 2024, 13, 249 6 of 19

5 10 15

Iteration

-16

-14

-12

-10

-8

-6

-4

-2

0

N
or

m
al

iz
ed

 R
es

id
ua

l (
lo

g
10

)

 N=400

S-Res1
S-Res2
F-Res1
F-Res2

5 10 15

Iteration

-16

-14

-12

-10

-8

-6

-4

-2

0

N
or

m
al

iz
ed

 R
es

id
ua

l (
lo

g
10

)

 N=800

S-Res1
S-Res2
F-Res1
F-Res2

Figure 1. Residual history in each equation for OSA and FIX.

We further consider modified system matrices

A1 = 0.48[(I + G1)
−1 Ā1], A2 = 0.98[(I + G2)

−1 Ā2],

where G1 and G2 are matrices with zero elements except for the last row of 0.6g1 and 0.8g2,
respectively. In this case, the spectral radii of matrices A1 and A2 are 0.96 and 0.95, respectively.
We rerun the OSA and FIX algorithm, and the obtained results are recorded in Figure 2. From
the plot, it can be observed that for N = 400, the OSA requires nine iterations to achieve
equation residuals at the O(10−15) level, with a total time of 10.17 s. Conversely, FIX, after
consuming 51.31 s over 90 iterations, only achieves equation residuals at the scale of O(10−13).
Further numerical experiments demonstrate that even by increasing the number of iterations,
FIX fails to further reduce the residual level. Similar numerical results are obtained for the scale
of N = 800.

20 40 60 80

Iteration

-16

-14

-12

-10

-8

-6

-4

-2

0

N
or

m
al

iz
ed

 R
es

id
ua

l (
lo

g 10
)

 N=400

S-Res1
S-Res2
F-Res1
F-Res2

20 40 60 80

Iteration

-16

-14

-12

-10

-8

-6

-4

-2

0

N
or

m
al

iz
ed

 R
es

id
ua

l (
lo

g 10
)

 N=800

S-Res1
S-Res2
F-Res1
F-Res2

Figure 2. Residual history in each equation for OSA and FIX when ρ(A1) = 0.96 and ρ(A2) = 0.95.

Example 2. Consider a slight modification of a chemical reaction by a convection reaction partial
differential equation on the unit square [27], given by

∂x
∂t

=
∂2x
∂y2 +

∂2x
∂z2 + 20

∂x
∂z

− 180x + f (y, z)x(t),

Axioms 2024, 13, 249 7 of 19

where x is a function of time (t), vertical position (v), and horizontal position (z). The boundaries
of interest in this problem lie on a square with opposite corners at (0, 0) and (1, 1). The function
x(t, v, z) is zero on these boundaries. This PDE is discretized using centered difference approxima-
tions on a grid of nv × nz points. The dimension N of A is the product of the state space dimension
nvnz, resulting in a sparsity pattern of A as

7︷ ︸︸ ︷

A =

−734 171 0 · · · 0 196

−9 −734
. . .

. . .
. . .

. . .

0
. . .

. . .
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .
. . . 196

0
. . .

. . .
. . .

. . .
. . . 0

196
. . .

. . .
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .
. . . 0

. . .
. . .

. . .
. . .

. . . 171
196 0 · · · 0 −9 −734

.

Here we take

A1 = 10−3 × ξ1 A, A2 = 10−3 × ξ2 A, Q1 = LQ
1 (LQ

1)
⊤, Q2 = LQ

2 (LQ
2)

⊤,

where

(LQ
1)

⊤ = [

7︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0,

7︷ ︸︸ ︷
1, . . . , 1], (LQ

2)
⊤ = [

7︷ ︸︸ ︷
0, . . . , 0,

7︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0,

7︷ ︸︸ ︷
1, . . . , 1,

7︷ ︸︸ ︷
0, . . . , 0].

The parameter m = 2 and the probability matrix Π =

(
0.244 0.756
0.342 0.658

)
.

Similarly, we applied the OSA and FIX iterations to CDSEs with dimensions N = 350
and N = 700, and the results are presented in Table 2. It is evident that the OSA can achieve
equation residuals of O(10−14) within five iterations, with the required CPU time approximately
one-ninth of that needed for the FIX iterations. However, FIX only attains equation residuals of
O(10−13) after 10 iterations. We also depict the residuals of the two different iteration methods
for their respective m equations (here m = 2) in Figure 3. The figure illustrates that the OSA
exhibits quadratic convergence, while FIX demonstrates only linear convergence.

2 4 6 8 10

Iteration

-15

-10

-5

0

N
or

m
al

iz
ed

 R
es

id
ua

l (
lo

g 10
)

 N=350

S-Res1
S-Res2
F-Res1
F-Res2

2 4 6 8 10 12

Iteration

-15

-10

-5

0

N
or

m
al

iz
ed

 R
es

id
ua

l (
lo

g 10
)

 N=700

S-Res1
S-Res2
F-Res1
F-Res2

Figure 3. Residual history in each equation for OSA and FIX in Example 2.

Axioms 2024, 13, 249 8 of 19

Table 2. History of CPU time and residual for OSA and FIX in Example 2.

It. δtk tk Rel_Res δtk tk Rel_Res

N = 350 N = 700

1 0.001 0.001 4.37 × 10−2 0.003 0.003 4.37 × 10−2

2 0.005 0.06 3.54 × 10−3 0.003 0.006 3.54 × 10−3

OSA 3 0.009 0.015 3.27 × 10−5 0.015 0.865 3.27 × 10−5

4 0.032 0.047 1.85 × 10−8 0.036 0.051 1.85 × 10−8

5 0.235 0.281 5.01 × 10−14 0.331 0.382 5.01 × 10−14

1 0.291 0.291 1.91 × 10−1 1.252 1.252 1.91 × 10−1

2 0.231 0.523 1.27 × 10−2 1.246 2.499 1.27 × 10−2

3 0.234 0.757 2.45 × 10−4 1.294 3.793 2.45 × 10−4

4 0.240 0.997 7.50 × 10−6 1.231 5.024 7.50 × 10−6

5 0.227 1.224 2.99 × 10−7 1.242 6.266 2.99 × 10−7

FIX 6 0.254 1.478 1.62 × 10−8 1.215 7.482 1.62 × 10−8

7 0.240 1.718 1.25 × 10−9 1.302 8.784 1.25 × 10−9

8 0.228 1.946 1.02 × 10−10 1.255 10.039 1.02 × 10−10

9 0.231 2.177 8.55 × 10−12 1.243 11.281 8.55 × 10−12

10 0.244 2.421 6.89 × 10−13 1.231 12.513 6.90 × 10−13

3. Structured Algorithm for Large-Scale Problems

In numerous practical scenarios [23], matrix Ai is often sparse, and Qi is typically of a
low-ranked structure. Therefore, in this section, we adapt the OSA to a low-ranked format,
well-suited for large-scale computations.

3.1. Structured Iteration Scheme

Given the initial matrices Xi,0 = Qi = LQ
i (LQ

i)
⊤ for i = 1, . . . , m, we show that the

iteration (4) can be organized as the following format:

Xi,k = LQ
i,kKQ

i,k(LQ
i,k)

⊤, Fi,k(X·,k) = L
F2k
i,k K

F2k
i,k (L

F2k
i,k)⊤, k = 0, 1, 2, . . . , (7)

where L
F2k
i,k , K

F2k
i,k , LQ

i,k, and KQ
i,k are of forms in the following proposition.

Proposition 2. Let LQ
i ∈ RN×li in Xi,0 be the initial factor with li ≪ N. The sequences Fi,k(X·,k)

and Xi,k generated by (4) are factorized as in (7), where

L
F2k
i,k = A⊤

i [L
F2k−1
1,k , . . . , L

F2k−1
m,k], K

F2k
i,k = pi,1K

F2k−1
1,k ⊕ . . . ⊕ pi,mK

F2k−1
m,k , (8)

LQ
i,k = [LQ

i,k−1, L
F2k−1
i,k−1], KQ

i,k = KQ
i,k−1 ⊕ K

F2k−1
i,k−1 (9)

and

LF1
i,k = A⊤

i [L
Q
1,k, . . . , LQ

m,k], KF1
i,k = pi,1KQ

1,k ⊕ . . . ⊕ pi,mKQ
m,k, KQ

i,0 = I, LQ
i,0 = LQ

i .

Proof. Given the initial matrix Xi,0 = Qi = LQ
i (LQ

i)
⊤ = LQ

i,0KQ
i,0(LQ

i,0)
⊤, it then follows from

(3) that

Fi,0(X·,0) = A⊤
i Ei(X·,0)Ai = A⊤

i (
m

∑
s=1

pi,sQs)Ai = LF1
i,0KF1

i,0(LF1
i,0)

⊤.

So (7) holds for k = 0. Assume (7) is true for k = l. It follows from the iteration scheme
(4) that

Xi,l+1 = LQ
i,lK

Q
i,l(LQ

i,l)
⊤ + L

F2l
i,l K

F2l
i,l (L

F2l
i,l)

⊤ = LQ
i,l+1KQ

i,l+1(LQ
i,l+1)

⊤.

Recalling (3) again, it follows

Axioms 2024, 13, 249 9 of 19

Fi,l+1(X·,l+1) = A⊤
i Ei

(
(A⊤E)2l+1−1(X·,l+1)A2l+1−1

)
Ai

= A⊤
i Ei

(
(A⊤E)2l+1−2 · A⊤E(X·,l+1)A · A2l+1−2

)
Ai

= A⊤
i Ei

(
(A⊤E)2l+1−2

(m

∑
s=1

p·,s A⊤
s [L

Q
1,l+1, . . . , LQ

m,l+1][ps,1KQ
1,l+1 ⊕ . . .

⊕ps,mKQ
1,l+1][L

Q
1,l+1, . . . , LQ

m,l+1]
⊤As

)
A2l+1−2

)
Ai

= A⊤
i Ei

(
(A⊤E)2l+1−2

(m

∑
s=1

p·,sLF1
s,l+1KF1

s,l+1(LF1
s,l+1)

⊤
)

A2l+1−2
)

Ai

= A⊤
i Ei

(
(A⊤E)2l+1−3

(m

∑
s=1

p·,s A⊤
s [L

F1
1,l+1, . . . , LF1

m,l+1][ps,1KF1
1,l+1 ⊕ . . .

⊕ps,mKF1
1,l+1][L

F1
1,l+1, . . . , LF1

m,l+1]
⊤As

)
A2l+1−3

)
Ai

= A⊤
i Ei

(
(A⊤E)2l+1−3

(m

∑
s=1

p·,sLF2
s,l+1KF2

s,l+1(LF2
s,l+1)

⊤
)

A2l+1−3
)

Ai

= ...

= A⊤
i Ei

(m

∑
s=1

p·,sL
F2l+1−1
s,l+1 K

F2l+1−1
s,l+1 (L

F2l+1−1
s,l+1)⊤

)
Ai

= L
F2l+1
i,l+1 K

F2l+1
i,l+1 (L

F2l+1
i,l+1)

⊤.

Then (7) holds true for k = l + 1. The proof is complete.

3.2. Truncation and Compression

It is evident that the columns of L
F2k
i,k at the k-th iteration will scale approximately

as O(m2k−1
li), where li is the initial column number of the factor LQ

i . Consequently, we
implement the truncation and compression (TC) to reduce the column number of low-rank
factors [11,28]. Notably, our algorithm employs the TC technique twice within one iteration:

once for L
F2k
i,k and once for LQ

i,k.
For simplicity in notation, we omit the subscript i for low-rank factors. Recalling (8)

and (9), we perform TC on L
F2k
k and LQ

k using QR decompositions with column pivoting.
Then, one has

L
F2k
k PF2k = [QF2k Q̃F2k]

[
U

F2k
1 U

F2k
2

0 ŨF2k

]
, ∥ŨF2k ∥ < u f

0 τ,

LQ
k PQ

k = [QQ
k Q̃Q

k]

[
UQ

k,1 UQ
k,2

0 ŨQ
k

]
, ∥ŨQ

k ∥ < uq
0τ,

(10)

where PF2k and PQ
k are permutation matrices ensuring that the diagonal elements of the

decomposed block triangular matrices decrease in absolute value. Additionally, u f
0 and uq

0
represent constants, and τ is some small tolerance controlling TC. Let m f2k and mq

k denote

the respective column numbers of L
F2k
k and LQ

k , bounded above by a given mmax. Then,
their ranks satisfy

r f2k := rank(L
F2k
k) ≤ m f2k ≤ mmax and rq

k := rank(LQ
k) ≤ mq

k ≤ mmax

with mmax ≪ N. The truncated factors are still denoted as

Axioms 2024, 13, 249 10 of 19

L
F2k
k PF2k = QF2k [U

F2k
1 U

F2k
2] := QF2k UF2k , (11)

LQ
k PQ

k = QQ
k [U

Q
k,1 UQ

k,2] := QQ
k UQ

k , (12)

respectively. The compressed kernels are denoted as

K
F2k
k := UF2k PF2k K

F2k
k (UF2k PF2k)⊤, (13)

KQ
k := UQ

k PQ
k KQ

k (U
Q
k PQ

k)⊤, (14)

where K
F2k
k and KQ

k represent the abbreviated kernels in (8) and (9) without subscript i, respectively.

3.3. Computation of Residuals

Given the initial matrix Xi,0 = Qi = LQ
i (LQ

i)
⊤, for i = 1, . . . , m the initial residual of

the CDSEs is

Sc0(X·,0) = Xi,0 − A⊤
i Ei(X·,0)Ai − Qi = LR

i,0KR
i,0(LR

i,0)
⊤, (15)

where LR
i,0 = A⊤

i [L
Q
1,0, . . . , LQ

m,0], KR
i,0 = pi,1 I⊕, . . . ,⊕pi,m I.

When the k-th iteration Xi,k = LQ
i,kKQ

i,k(LQ
i,k)

⊤ is available, the residual of CDSEs has
the decomposition

Sck(X·,k) = Xi,k − A⊤
i Ei(X·,k)Ai − Qi = LR

i,kKR
i,k(LR

i,k)
⊤ (16)

with
LR

i,k = [LQ
i,0, LQ

i,k, L
F2k
i,k], KR

i,k = −I ⊕ KQ
i,k ⊕−K

F2k
i,k .

Similarly, we also impose the truncation and compression on LR
i,k, k ≥ 0, i.e, imple-

menting the QR decomposition with pivoting:

LR
i,kPR

i,k = [QR
i,k Q̃R

i,k]

[
UR

i,k,1 UR
i,k,2

0 ŨR
i,k

]
, ∥ŨR

i,k∥ < ur
0τ, (17)

where PR
i,k is a pivoting matrix and ur

0 is some constant. Let UR
i,k = [UR

i,k,1, UR
i,k,2]. The

corresponding kernel of residual is also denoted as

KR
i,k := UR

i,kPR
i,kKR

i,k(U
R
i,kPR

i,k)
⊤, (18)

and the terminating condition of the whole algorithm is chosen to be

Rel_Res = max
i

∥KR
i,k∥

∥KR
i,0∥

≤ ϵ (19)

with ϵ being the tolerance.

3.4. Large-Scale Algorithm and Complexity

The OSA with a low-rank structure equipped with TC is summarized in the following
OSA_lr Algorithm 1.

To show the computational complexity of the algorithm OSA_lr, we assume that all
matrices Ai for i = 1, . . . , m are sufficiently sparse. This allows us to consider the cost of
both the product AiB and solving the equation AiX = B, which are both within the range
of cN floating-point operations (flops), where B is an N × mb matrix with mb ≪ N and

c is a constant. Additionally, the number of truncated columns of L
F2k−1
i,k and LQ

i,k for all

Axioms 2024, 13, 249 11 of 19

i = 1, . . . , m are denoted as m f
k and mq

k, respectively. The flops and memory of the k-th
iteration are summarized in Table 3 below.

Algorithm 1: Algorithm OSA_lr. Solve large-scale CDSEs with low-ranked Qi

Inputs: Sparse matrices Ai, low-rank factors LQ
i for i = 1, . . . , m, probability matrix

Π ∈ Rm×m, truncation tolerance τ, upper bound mmax and the iteration tolerance ϵ.
Outputs: Low-ranked matrix LX

i and the kernel matrix KX
i with the solution

Xi ≈ LX
i KX

i (L
X
i)

⊤.
1. Set LQ

i,0 = LQ
i and KQ

i,0 = Ii for i = 1, . . . , m.
2. For k = 1, . . . , until convergence, do

3. Compute K
F2k
i,k and L

F2k
i,k as in (8).

4. Truncate and compress L
F2k
i,k as in (10) with accuracy u f

0 τ.

5. Construct compressed low-ranked factor L
F2k
i,k and kernel K

F2k
i,k as in (11) and (13).

6. Compute KQ
i,k and LQ

i,k as in (9).
7. Truncate and compress Lq

i,k as in (10) with accuracy uq
0τ.

8. Construct compressed low-ranked factor LQ
i,k and kernel KQ

i,k as in (12) and (14).
9. Evaluate the relative residual Rel_Res in (19).
11. If Rel_Res < ϵ, break, End.
12. k := k + 1;
14. End (For)
18. Output KX

i := KQ
i,k, LX

i := LQ
i,k.

Table 3. Complexity and memory at k-th iteration in algorithm OSA_lr.

Items Flops Memory

L
F2k−1

i,k
cmq

k−12k−1(m2k−1
+ m)N m2k−1

mq
k−1N

K
F2k−1

i,k
m(mq

k−1)
2(1 + m2k)(k + 1)/2 (m2k−1

mq
k−1)

2

L
F2k−1

i,k QR ∗ 2(m2k−1
mq

k−1)
2(N − m2k−1

mq
k−1/3) (m f

k)
2

Compressed K
F2k−1

i,k
4m f

k (m
2k−1

mq
k−1)

2 (m f
k)

2

LQ
i,k — (mq

k−1 + m f
k)N

KQ
i,k — (mq

k−1 + m f
k)

2

LQ
i,k QR ∗ 2(m f

k mq
k−1)

2(N − m f
k mq

k−1/3) (mq
k)

2

Compressed KQ
i,k 4mq

k(m
f
k + mq

k−1)
2 (mq

k)
2

∗ Householder QR decomposition is used [29].

3.5. Error Analysis

In this subsection, we will conduct the error analysis of OSA_lr. For i = 1, . . . , m, let

δAi = Ai − Âi, δXi,k = Xi,k − X̂i,k (20)

be the errors yielded by roundoff or iteration. Here, Ai and Xi,k are true matrices, while
Âi and X̂i,k are the practical iteration matrices. The following lemma indicates the error
propagation of the operator.

Lemma 1. Given errors δXi,k and δAi as in (20), the error of the operator is

∥δFi,l(Xk)∥ ≤ (mp)2l
(α2l+1

δXk + 2l+1qkα2l+1−1δA) for l ≤ k,

where α = maxi{∥Ai∥}, qk = maxi{∥Xi,k∥}, δA = maxi{∥δAi∥}, δXk = maxi{∥δXi,k∥},
and p = maxi,j{pi,j}.

Axioms 2024, 13, 249 12 of 19

Proof. By merely retaining one order error of δAi and δXi,k, it follows from the definition
of Fi,l(Xk) in (3) that the practical operator is

F̂i,l(Xk) = (Ai + δAi)
⊤

2l−1︷ ︸︸ ︷{ m

∑ p·,·(Aj + δAj)
⊤ . . .

{ m

∑ p·,·(As + δAs)
⊤
[m

∑ p·,·(X·,k + δX·,k)
]
·

2l−1︷ ︸︸ ︷
(As + δAs)

}
. . . (Aj + δAj)

}
(Ai + δAi)

≤ (Ai + δAi)
⊤

2l−2︷ ︸︸ ︷{ m

∑ p·,·(Aj + δAj)
⊤ . . .

{ m

∑ p·,·(At + δAt)
⊤
[
Fi,0(Xk) + (mp)2(A⊤

s δX·,k As

+(δAs)
⊤X·,k As + A⊤

s X·,kδAs)
] 2l−2︷ ︸︸ ︷
(At + δAt)

}
. . . (Aj + δAj)

}
(Ai + δAi) (21)

≤ (Ai + δAi)
⊤

2l−3︷ ︸︸ ︷{ m

∑ p·,·(Aj + δAj)
⊤ . . .

{ m

∑ p·,·(Au + δAu)
⊤
[
Fi,1(Xk) + (mp)3((As At)

⊤δX·,k As At

+(δAs At)
⊤X·,k As At + (As At)

⊤X·,kδAs At + (AsδAt)
⊤X·,k As At

+(δAs At)
⊤X·,k As At)

] 2l−3︷ ︸︸ ︷
(Au + δAu)

}
. . . (Aj + δAj)

}
(Ai + δAi) (22)

≤ . . .

Note that error items in
[
·
]

in (21) and (22) have corresponding upper bounds

(mp)2(α2δXk + 2qkαδA) and (mp)3(α4δXk + 4qkα3δA), respectively. After multiplying the
left by (Ai + δAi)

⊤ and the right by Ai + δAi in the outermost layer, the upper bounds of
the errors are (mp)2(α4δXk + 4qkα3δA) and (mp)3(α6δXk + 6qkα5δA), respectively. Then,
by the induction, it is not difficult to see that the final error is

(mp)2l
(α2l+1

δXk + 2l+1qkα2l+1−1δA).

We have the following error bound at the k + 1-th iteration.

Theorem 2. Given errors δXk and δAi as in (20), the error at the k + 1-th iteration has the bound

δXk+1 ≤ (1 + (mpα2))2k
δXk + 2k+1(mp)2k

α2k+1−1qkδA + O(τ), (23)

where m, p, α, and qk are defined in Lemma 1 and τ is the error of TC described in Section 3.2.

Proof. It follows from the iteration format (4) that the error at the k + 1-th iteration has the
upper bound

∥δXi,k+1∥ ≤ ∥δXi,k∥+ ∥δFi,k(Xk)∥+ O(τ),

where O(τ) represents the truncation and compression error on Fi,k(Xk) and Xi,k. By taking
l = k in Lemma 1, one has

∥δXi,k+1∥ ≤ δXk + (mp)2k
α2k+1δXk + 2k+1(mp)2k

qkα2k+1−1δA + O(τ)

and (23) holds true.

Axioms 2024, 13, 249 13 of 19

4. Numerical Examples

In this section, we illustrate the effectiveness of OSA_lr in computing symmetric solu-
tions to large-scale CDSEs (1) through practical examples [23,26,27,30–33]. The algorithm
OSA_lr was coded by MATLAB 2019a on a 64-bit PC running Windows 10. The computer
is equipped with a 3.0 GHz Intel Core i5 processor with six cores and six threads, 32 GB
RAM, and a machine unit roundoff value of eps = 2.22 × 10−16. The maximum allowed
column number of the low-ranked factors in OSA_lr is bounded by mmax = 1000, and the
tolerance for the TC of columns is set to τ = 10−16. In our experiments, we also attempted
using N·eps as the TC tolerance for τ but found it had no impact on the computation
accuracy. The residuals of the equations are calculated in (19) with a termination tolerance
of ϵ = 10−13. It is noteworthy that we no longer compare with the linearly convergent
iterative methods in Section 2, as the computational complexity of those algorithms per
iteration is O(N3).

Example 3. We still employ the modification of the all-pass SISO system [26] in Section 2, but
here we take N = 12,000. We list the calculated results of OSA_lr in Table 4, where the columns
δk and tk record the CPU time for each iteration and for cumulative iterations, respectively. The
Resi and Rel_Resi (i = 1, 2) columns provide the absolute residual ∥KR

i,k∥ and relative residual

∥KR
i,k∥/∥KR

i,0∥ computed by OSA_lr at each iteration, respectively. The mQi
k (i = 1, 2) columns

indicate the column number of the low-ranked factor LQ
i,k.

From the table, it is evident that OSA_lr achieves the prescribed equation residual level
within five iterations, and the residual history demonstrates the quadratic convergence
of the algorithm. The column count mQi

k for the low-ranked factor LQ
i,k expands at a rate

greater than twice with each iteration, resulting in an exponential increase in the CPU
time. Particularly, significant growth in the CPU time occurs during the third and fourth
iterations. In numerical experiments, we observed that this substantial increase in the
CPU time primarily lies in the residual computation step, specifically in Step 9 of OSA_lr.
Hence, further investigation on the efficient evaluation of the equation residual is a crucial
consideration for large-scale computations. We also plot the residual history of OSA_lr in
Figure 7 to show its performance, where R-Res_i (i = 1, 2) denotes the relative residual of
the i-th equation.

Table 4. CPU time and residual in Example 3.

It. δtk tk Res1 Rel_Res1 Res2 Rel_Res2 mQ1
k mQ2

k

1 0.012 0.012 2.06 × 100 2.06 × 100 3.06 × 100 3.06 × 100 3 3
2 0.135 0.147 1.35 × 10−1 1.35 × 10−1 6.15 × 10−2 6.15 × 10−2 9 9
3 0.659 0.806 1.44 × 10−3 1.44 × 10−3 6.44 × 10−4 6.44 × 10−4 21 21
4 35.765 35.571 1.80 × 10−7 1.80 × 10−7 7.51 × 10−8 7.51 × 10−8 46 46
5 488.519 525.090 4.42 × 10−14 4.42 × 10−14 2.72 × 10−14 2.72 × 10−14 109 109

Example 4. We continue to examine CDSEs from Example 2 [27,30], but with larger scales
N = 21,000, 28,000, and 35,000. The derived results of OSA_lr are presented in Table 5.

The symbols δk, tk, Resi, Rel_Resi, and mQi
k (i = 1, 2) are defined similarly to those in

Example 3. In all experiments, the equation residuals (in log 10) reached the predetermined
residual level by the sixth iteration. For equations of different dimensions, the Resi (i = 1, 2)
columns indicate that the algorithm OSA_lr is of nearly quadratic convergence, except for
the final two iterations. The mQi

k column reveals that, in the fifth and sixth iterations, the
column number of the factor LQ

i,k increased by nearly five times and six times, respectively.
This resulted in a substantial increase in the CPU time during the last two iterations.A
further detailed analysis indicated that this increased time primarily came from the com-

Axioms 2024, 13, 249 14 of 19

putation of equation residuals in the final two steps. The performance of OSA_lr on the
residual history with N = 35,000 is plotted in Figure 7 , where R-Res_i (i = 1, 2) denotes the
relative residual of the i-th equation.

Table 5. CPU time and residual in Example 4.

It. δtk tk Res1 Rel_Res1 Res2 Rel_Res2 mQ1
k mQ2

k

N = 21,000

1 0.005 0.005 1.51 × 101 1.51 × 101 1.55 × 101 1.55 × 101 3 3
2 0.010 0.015 4.73 × 10−2 4.73 × 10−2 2.70 × 10−2 2.70 × 10−2 7 7
3 0.019 0.034 6.10 × 10−4 6.10 × 10−4 3.83 × 10−4 3.83 × 10−4 15 15
4 0.053 0.088 6.30 × 10−7 6.30 × 10−7 4.04 × 10−7 4.04 × 10−7 31 31
5 1.354 1.441 3.67 × 10−12 3.67 × 10−12 2.37 × 10−12 2.37 × 10−12 157 157
6 235.119 235.119 1.93 × 10−14 1.93 × 10−14 7.13 × 10−15 7.13 × 10−15 908 908

N = 28,000

1 0.006 0.006 1.51 × 101 1.51 × 101 1.55 × 101 1.55 × 101 3 3
2 0.017 0.023 4.73 × 10−2 4.73 × 10−2 2.70 × 10−2 2.70 × 10−2 7 7
3 0.029 0.052 6.10 × 10−4 6.10 × 10−4 3.83 × 10−4 3.83 × 10−4 15 15
4 0.078 0.130 6.30 × 10−7 6.30 × 10−7 4.04 × 10−7 4.04 × 10−7 31 31
5 1.373 1.503 4.09 × 10−12 4.09 × 10−12 2.86 × 10−12 2.86 × 10−12 147 147
6 239.690 241.193 1.59 × 10−14 1.59 × 10−14 8.68 × 10−15 8.68 × 10−15 908 908

N = 35,000

1 0.008 0.008 1.51 × 101 1.51 × 101 1.55 × 101 1.55 × 101 3 3
2 0.025 0.034 4.73 × 10−2 4.73 × 10−2 2.70 × 10−2 2.70 × 10−2 7 7
3 0.043 0.077 6.10 × 10−4 6.10 × 10−4 3.83 × 10−4 3.83 × 10−4 15 15
4 0.098 0.175 6.30 × 10−7 6.30 × 10−7 4.04 × 10−7 4.04 × 10−7 31 31
5 1.617 1.793 4.76 × 10−12 4.76 × 10−12 3.46. × 10−12 3.46 × 10−12 161 161
6 248.356 250.148 1.97 × 10−14 1.97 × 10−14 8.62 × 10−15 8.62 × 10−15 908 908

Example 5. Consider the thermal convective flow control systems in [23,30,31]. These problems
involve a flow region with a prescribed velocity profile, incorporating convective transport. Achieving
solution accuracy with upwind finite element schemes typically requires a considerable number
of elements for a physically meaningful simulation. In the illustrated scenario (see the left side of
Figure 4), a 3D model of a chip is subjected to forced convection, utilizing tetrahedral element type
SOLID70 as described by [34]. Both the Dirichlet boundary conditions and initial conditions are set
to 0.

x10
4

。 II

00

2

4

1

2

4

8

2

6

．

．

6

8

．

．

O

-
O

-
0

-
0

1

1

1

1

0.5

niZ = 381,276

1.5 2

4

001x

Figure 4. The 3D model of the chip and the discretized matrix A1.

Axioms 2024, 13, 249 15 of 19

We consider the case that the fluid speed is zero and the discretization matrices are
symmetric. The system matrices are

A1 = (I + r1BB⊤)−1 A, A2 = (I + r2BB⊤)−1 A, Q1 = Q2 = C⊤C,

where r1 and r2 are random numbers from (0, 1) and matrices A ∈ RN×N , B ∈ RN×1, and
C ∈ R1×N (N = 20,082) can be found at [23]. Since A1 and A1 have almost the same sparse
structure, we only plot A1 in the right of Figure 4, where the non-zero elements attain the
scale of 381,276. In the numerical experiments, we set m = 2 and use the probability matrix

Π =

(
0.631 0.369
0.143 0.857

)
. We ran OSA_lr for 10 different r1 and r2 and recorded the averaged

CPU time, residual of CDSEs, and column dimension of the low-ranked factor in Table 6.

Table 6. CPU time and residual in Example 5.

It. δtk tk Res1 Rel_Res1 Res2 Rel_Res2 mQ1
k mQ2

k

1 0.017 0.017 2.06 × 10−1 2.22 × 100 6.13 × 10−1 1.05 × 100 10 10
2 0.083 0.100 9.73 × 10−6 5.03 × 10−5 9.83 × 10−6 1.69 × 10−5 22 22
3 0.665 0.766 2.74 × 10−10 1.47 × 10−9 2.75 × 10−10 4.72 × 10−10 46 46
4 1073.56 1074.34 2.48 × 10−17 1.33 × 10−16 2.49 × 10−16 4.28 × 10−16 112 112

The computational results in Table 6 reveal that OSA_lr requires only four iterations
to achieve the predetermined equation residual accuracy. Moreover, the Resi and Rel_Resi
columns indicate that OSA_lr exhibits quadratic convergence. The mQi

k column demon-
strates that the column count of the low-rank factor LQi

k approximately doubles in the
first three iterations but experiences a close to three-fold increase in the final iteration.
In terms of the CPU time for each iteration, the time required for the final iteration is
significantly greater than the sum of the preceding three. A detailed analysis indicates that
the primary reason for this phenomenon is similar to the previous examples, wherein the
computation of equation residuals in the algorithm accounts for the majority of the time.
The performance of OSA_lr on the residual history is plotted in Figure 7, where R-Res_i
(i = 1, 2) denotes the relative residual of the i-th equation.

Example 6. Consider the structurally vertical stand model from machinery control systems,
depicted on the left side of Figure 5, representing a segment of a machine tool [30]. In this structural
component, a set of guide rails is situated on one of its surfaces. Throughout the machining process,
a tool slide traverses various positions along these rails [32]. The model was created and meshed
using ANSYS. For spatial discretization, the finite element method with linear Lagrange elements
was employed and implemented in FEniCS.

The derived system matrices are

A1 = −0.01[(I + r1BB⊤)−1 A], A2 = −0.015[(I + r2BB⊤)−1 A],
Q1 = LQ

1 (LQ
1)

⊤, Q2 = LQ
2 (LQ

2)
⊤,

where r1 and r2 are random numbers from (0, 1) and LQ
1 and LQ

2 ∈ RN×1 are vectors
with all elements being zeros except fives ones located in rows (3341, 6743, 8932, 11,324,
and 16,563) and rows (1046, 2436, 6467, 8423, and 12,574), respectively. As the sparse
structures of A1 and A2 are analogous, the right of Figure 5 only exhibits the structure of A1,
which contains 602,653 non-zero elements. Matrices A ∈ R16,626×16,626 and B ∈ R16,626×1

can be found at [23]. In this example, we set m = 2 and use the probability matrix as

Π =

(
0.564 0.436
0.785 0.215

)
.

Axioms 2024, 13, 249 16 of 19

0 5000 1500010000

nz = 602,653

0

2000

4000

6000

8000

10000

12000

14000

16000

Figure 5. The vertical stand model and the discretized matrix A1.

We utilized OSA_lr to solve the CDSEs, and the computed results are presented in
Table 7. It can be observed from the table that OSA_lr terminates after four iterations,
achieving a high-precision solution, where the equation residuals reach a level of O(10−15)
to O(10−16). The iteration history in the Resi and Rel_Resi columns illustrates the quadratic
convergence of OSA_lr. The mQi

k column indicates that in the second, third, and fourth
iterations, the column count of the low-rank factor LQi

k approximately doubles, triples,
and quadruples, respectively. This demonstrates that the truncation and compression
techniques have a limited impact on reducing the column count of LQi

k in this scenario.
Similarly, δtk reveals that the CPU time for the final iteration is significantly greater than
the sum of the preceding three, primarily due to the algorithm spending substantial time
computing equation residuals in the last iteration.

Table 7. CPU time and residual in Example 6.

It. δtk tk Res1 Rel_Res1 Res2 Rel_Res2 mQ1
k mQ2

k

1 0.023 0.023 5.01 × 100 5.01 × 100 5.01 × 100 5.01 × 100 3 3
2 0.091 0.114 1.78 × 10−6 1.78 × 10−6 3.77 × 10−6 3.77 × 10−6 7 7
3 0.787 0.901 2.25 × 10−10 2.25 × 10−11 4.52 × 10−11 4.52 × 10−11 25 25
4 164.941 165.842 5.59 × 10−15 5.59 × 10−15 5.96 × 10−16 5.96 × 10−16 119 119

Example 7. Consider a semi-discretized heat transfer problem aimed at optimizing the cooling of
steel profiles in control systems, as discussed in works by [23,30]. The order of the models varies due
to the application of different refinements to the computational mesh. For the discretization process,
the ALBERTA-1.2 fem-toolbox [33] and the linear Lagrange elements are utilized. The initial mesh
(depicted on the left in Figure 6) is generated using MATLAB’s pdetool.

0 1 2 6 73 4 5
nz = 10,202,003 104

0

1

2

3

4

5

6

7

104

Figure 6. The initial mesh for cooling of steel and the discretized matrix A1 and A2.

Axioms 2024, 13, 249 17 of 19

We slightly modify the model matrices as follows:

A1 = r1[(I + BB⊤)−1 A], A2 = r2[(I + BB⊤)−1 A],
Q1 = LQ

1 (LQ
1)

⊤, Q2 = LQ
2 (LQ

2)
⊤,

where r1 = 0.009 and r2 = 0.008 for N = 20,209 and r1 = 0.0015 and r2 = 0.0012 for
N = 79,841. In this experiment, we take LQ

1 = r3C′ and LQ
2 = r4C′, with r3, r4 being a

random number in (0, 1). Matrices A ∈ RN×N , B ∈ RN×1, and C ∈ R1×N can be found
at [23]. The sparse structures of matrices A1 and A2 are nearly identical, and for illustration
purposes, we only display the structure of A1 with N = 79,841 on the right side of Figure 6.
The probability matrix is defined as

Π =

(
0.713 0.287
0.584 0.416

)
.

We employed OSA_lr to solve CDSEs under two different dimensions, and the com-
puted results are presented in Table 8. It is evident from the table that OSA_lr terminates
after achieving the predetermined equation residual levels for various dimensions. The
Rel_Resi column indicates a significant decrease in the relative equation residuals to the
level of O(10−8) by the second iteration, enabling the algorithm to obtain a high-precision
solution in only four iterations. The two columns of mQi

k demonstrate that, for different
dimensions, the column count of the low-rank factor LQi

k increases by a factor of two,
indicating that truncation and compression techniques effectively constrain the growth of
the column count of LQi

k in this scenario. Similarly, the δtk column reveals that in the final
iteration, due to the computation of equation residuals, OSA_lr consumes considerably
more CPU time than the sum of the preceding three iterations. The performances of OSA_lr
on the residual history with N = 20,209, 799,841 are plotted in Figure 7, where R-Res_i
(i = 1, 2) denotes the relative residual of the i-th equation.

Figure 7. Relative residual histories for OSA_lr in Examples 3–7.

Axioms 2024, 13, 249 18 of 19

Table 8. CPU time and residual in Example 7.

It. δtk tk Res1 Rel_Res1 Res2 Rel_Res2 mQ1
k mQ2

k

N = 20,209

1 0.011 0.011 8.30 × 100 1.34 × 100 6.82 × 100 1.34 × 100 12 12
2 0.052 0.063 2.39 × 10−7 3.84 × 10−8 2.48 × 10−7 4.86 × 10−8 24 24
3 0.129 0.192 7.72 × 10−13 1.24 × 10−13 8.01 × 10−11 1.57 × 10−13 48 48
4 489.420 489.612 5.13 × 10−15 8.25 × 10−16 2.07 × 10−15 4.06 × 10−16 96 96

N = 79,841

1 0.614 0.614 8.29 × 100 1.33 × 100 6.81 × 100 1.33 × 100 12 12
2 5.140 5.754 1, 77 × 10−7 2.84 × 10−8 1.06 × 10−7 2.09 × 10−8 24 24
3 16.946 22.700 4.74 × 10−12 7.63 × 10−13 2.86 × 10−12 5.60 × 10−13 48 48
4 874.870 895.570 2.73 × 10−15 4.39 × 10−16 3.67 × 10−15 7.19 × 10−16 96 96

5. Conclusions

This paper introduces an OSA method for coupled Stein equations in a class of jump
systems. The convergence of the algorithm is established. For large-structured problems,
the OSA method is extended to a low-rank structured iterative format, and an error
propagation analysis of the algorithm is conducted. Numerical experiments, drawn from
practical problems [23], indicate that in small-scale computations, the OSA outperforms
existing linearly convergent iterative methods in terms of both the CPU time and accuracy.
In large-scale computations, OSA_lr efficiently computes high-precision solutions for
CDSEs. Nevertheless, the experiments reveal that the time spent on residual computation
in the final iteration is relatively high. Therefore, improving the efficiency of the algorithm’s
termination criteria is a direction for further research in future work, and it is currently
under consideration.

Author Contributions: Conceptualization, B.Y.; methodology, B.Y.; software, B.H.; validation, N.D.;
formal analysis, N.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the NSF of China (11801163), the NSF of Hunan
Province (2021JJ50032, 2023JJ50165, 2024JJ7162), and the Degree & Postgraduate Education Reform
Project of Hunan University of Technology and Hunan Province (JGYB23009, 2024JGYB210).

Data Availability Statement: All examples and data can be found in [30].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chen, C.-T. Linear System Theory and Design, 3rd ed.; Oxford University Press: New York, NY, USA, 1999.
2. Betser, A.; Cohen, N.; Zeheb, E. On solving the Lyapunov and Stein equations for a companion matrix. Syst. Control Lett. 1995,

25, 211–218. [CrossRef]
3. Hueso, J.L.; Martínez, G.; Hernández, V. A systolic algorithm for the triangular Stein equation. J. VLSI Signal Process. Syst. Signal

Image Video Technol. 1993, 5, 49–55. [CrossRef]
4. Li, T.-X.; Weng, P.C.-Y.; Chu, E.K.-W.; Lin, W.-W. Large-scale Stein and Lyapunov Equations, Smith Method, and Applications.

Numer. Algorithms 2013, 63, 727–752. [CrossRef]
5. Fan, H.-Y.; Weng, P.C.-Y.; Chu, K.-W. Numerical solution to generalized Lyapunov/Stein and rational Riccati equations in

stochastic control. Numer. Algorithms 2016, 71, 245–272. [CrossRef]
6. Yu, B.; Dong, N.; Tang, Q. Factorized squared Smith method for large-scale Stein equations with high-rank terms. Automatica

2023, 154, 111057. [CrossRef]
7. Borno, I.; Gajic, Z. Parallel algorithm for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems.

Comput. Math. Appl. 1995, 30, 1–4. [CrossRef]
8. Wu, A.-G.; Duan, G.-R. New Iterative algorithms for solving coupled Markovian jump Lyapunov equations. IEEE Trans. Auto.

Control 2015, 60, 289–294.
9. Zhou, B.; Duan, G.-R.; Li, Z.-Y. Gradient based iterative algorithm for solving coupled matrix equations. Syst. Control. Lett. 2009,

58, 327–333. [CrossRef]

http://doi.org/10.1016/0167-6911(94)00072-4
http://dx.doi.org/10.1007/BF01880271
http://dx.doi.org/10.1007/s11075-012-9650-2
http://dx.doi.org/10.1007/s11075-015-9991-8
http://dx.doi.org/10.1016/j.automatica.2023.111057
http://dx.doi.org/10.1016/0898-1221(95)00119-J
http://dx.doi.org/10.1016/j.sysconle.2008.12.004

Axioms 2024, 13, 249 19 of 19

10. Li, Z.-Y.; Zhou, B.; Lam, J.; Wang, Y. Positive operator based iterative algorithms for solving Lyapunov equations for Itô stochastic
systems with Markovian jumps. Appl. Math. Comput. 2011, 217, 8179–8195. [CrossRef]

11. Yu, B.; Fan, H.-Y.; Chu, E.K.-W. Smith method for projected Lyapunov and Stein equations. UPB Sci. Bull. Ser. A 2018, 80, 191–204.
12. Sun, H.-J.; Zhang, Y.; Fu, Y.-M. Accelerated smith iterative algorithms for coupled Lyapunov matrix equations. J. Frankl. Inst.

2017, 354, 6877–6893. [CrossRef]
13. Li, T.-Y.; Gajic, Z. Lyapunov iterations for solving coupled algebraic Riccati equations of Nash differential games and algebraic

Riccati equations of zero-sum games. In New Trends in Dynamic Games and Applications; Olsder, G.J., Ed.; Annals of the International
Society of Dynamic Games; Birkhäuser: Boston, MA, USA, 1995; Volume 3.

14. Wicks, M.; De Carlo, R. Solution of Coupled Lyapunov Equations for the Stabilization of Multimodal Linear Systems. In Proceedings of
the 1997 American Control Conference (Cat. No.97CH36041), Albuquerque, NM, USA, 4–6 June 1997; Volume 3, pp. 1709–1713.

15. Ivanov, I.G. An Improved method for solving a system of discrete-time generalized Riccati equations. J. Numer. Math. Stoch. 2011,
3, 57–70.

16. Qian, Y.-Y.; Pang, W.-J. An implicit sequential algorithm for solving coupled Lyapunov equations of continuous-time Markovian
jump systems. Automatica 2015, 60, 245–250. [CrossRef]

17. Costa, O.L.V.; Aya, J.C.C. Temporal difference methods for the maximal solution of discrete-time coupled algebraic Riccati
equations. J. Optim. Theory Appl. 2001, 109, 289–309. [CrossRef]

18. Costa, O.L.V.; Marques, R.P. Maximal and stabilizing Hermitian solutions for discrete-time coupled algebraic Riccati equations.
Math. Control Signals Syst. 1999, 12, 167–195. [CrossRef]

19. Ivanov, I.G. Stein iterations for the coupled discrete-time Riccati equations. Nonlinear Anal. Theory Methods Appl. 2009, 71,
6244–6253. [CrossRef]

20. Bai, L.; Zhang, S.; Wang, S.; Wang, K. Improved SOR iterative method for coupled Lyapunov matrix equations. Afr. Math. 2021, 32,
1457–1463. [CrossRef]

21. Tian, Z.-L.; Xu, T.-Y. An SOR-type algorithm based on IO iteration for solving coupled discrete Markovian jump Lyapunov
equations. Filomat 2021, 35, 3781–3799. [CrossRef]

22. Penzl, T. A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 1999, 21, 1401–1408.
[CrossRef]

23. Korvink, G.; Rudnyi, B. Oberwolfach Benchmark Collection. In Dimension Reduction of Large-Scale Systems; Benner, P., Sorensen, D.C.,
Mehrmann, V., Eds.; Lecture Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2005; Volume 45.

24. Wang, Q.; Lam, J.; Wei, Y.; Chen, T. Iterative solutions of coupled discrete Markovian jump Lyapunov equations. Comput. Math.
Appl. 2008, 55, 843–850. [CrossRef]

25. Mathworks. MATLAB User’s Guide; Mathworks: Natick, MA, USA, 2020. Available online: https://www.mathworks.com/help/
pdf_doc/matlab/index.html (accessed on 15 March 2024).

26. Ober, R.J. Asymptotically Stable All-Pass Transfer Functions: Canonical Form, Parametrization and Realization. IFAC Proc. Vol.
1987, 20, 181–185. [CrossRef]

27. Chahlaoui, Y.; Van Dooren, P. Benchmark examples for model reduction of linear time-invariant dynamical systems. In Dimension
Reduction of Large-Scale Systems; Springer: Berlin/Heidelberg, Germany, 2005; Volume 45, pp. 379–392.

28. Chu, E.K.-W.; Weng, P.C.-Y. Large-scale discrete-time algebraic Riccati equations—Doubling algorithm and error analysis. J.
Comput. Appl. Math. 2015, 277, 115–126. [CrossRef]

29. Higham, N.J. Functions of Matrices: Theory and Computation; SIAM: Philadelphia, PA, USA, 2008.
30. Chahlaoui, Y.; Van Dooren, P. A collection of benchmark examples for model reduction of linear time invariant dynamical systems.

Work. Note 2002. Available online: https://eprints.maths.manchester.ac.uk/1040/1/ChahlaouiV02a.pdf (accessed on 15 March
2024).

31. Moosmann, C.; Greiner, A. Convective thermal flow problems. In Dimension Reduction of Large-Scale Systems; Lecture Notes in
Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2005; Volume 45, pp. 341–343.

32. Lang, N. Numerical Methods for Large-Scale Linear Time-Varying Control Systems and Related Differential Matrix Equations; Logos-
Verlag: Berlin, Germany, 2018.

33. Schmidt, A.; Siebert, K. Design of Adaptive Finite Element Software—The Finite Element Toolbox ALBERTA; Lecture Notes in
Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2005; Volume 42.

34. Harper, C.A. Electronic Packaging and Interconnection Handbook; McGraw-Hill: New York, NY, USA, 1997.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.amc.2011.01.031
http://dx.doi.org/10.1016/j.jfranklin.2017.07.007
http://dx.doi.org/10.1016/j.automatica.2015.07.011
http://dx.doi.org/10.1023/A:1017510321237
http://dx.doi.org/10.1007/PL00009849
http://dx.doi.org/10.1016/j.na.2009.06.025
http://dx.doi.org/10.1007/s13370-021-00911-8
http://dx.doi.org/10.2298/FIL2111781T
http://dx.doi.org/10.1137/S1064827598347666
http://dx.doi.org/10.1016/j.camwa.2007.04.031
https://www.mathworks.com/help/pdf_doc/matlab/index.html
https://www.mathworks.com/help/pdf_doc/matlab/index.html
http://dx.doi.org/10.1016/S1474-6670(17)55030-2
http://dx.doi.org/10.1016/j.cam.2014.09.005
https://eprints.maths.manchester.ac.uk/1040/1/ChahlaouiV02a.pdf

	Introduction
	Operator Smith Iteration for CDSEs
	Iteration Scheme
	Examples

	Structured Algorithm for Large-Scale Problems
	Structured Iteration Scheme
	Truncation and Compression
	Computation of Residuals
	Large-Scale Algorithm and Complexity
	Error Analysis

	Numerical Examples
	Conclusions
	References

