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Abstract: The aim of this article is to analyze the efficiency and accuracy of finite-difference and
finite-element Galerkin schemes for non-stationary hyperbolic and parabolic problems. The main
problem solved in this article deals with the construction of accurate and efficient discrete schemes on
nonuniform and dynamic grids in time and space. The presented stability and convergence analysis
enables improving the existing accuracy estimates. The obtained stability results show explicitly
the rate of accumulation of interpolation and projection errors that arise due to the movement
of grid points. It is shown that the cases when the time grid steps are doubled or halved have
different stability properties. As an additional technique to improve the accuracy of discretizations
on non-stationary space grids, it is recommended to use projection operators instead of interpolation
operators. This technique is used to solve a test parabolic problem. The results of specially selected
computational experiments are also presented, and they confirm the accuracy of all theoretical error
estimates obtained in this article.

Keywords: finite-difference schemes; Galerkin schemes; non-uniform grids; adaptive grids; hyperbolic
problems; parabolic problems; stability; interpolation errors; projection errors
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1. Introduction

Numerical algorithms that form the basis for recent simulations of various complex
processes in engineering, technologies, physics, and medicine are based on two of the most
important theoretical topics. The first one is the approximation theory, and the second one
is the stability analysis. The general convergence framework states that the stability and
approximation properties guarantee the convergence of discrete solutions [1,2]. The deep,
broad, and constructive theories of approximation and stability are developed, and they cover
various important topics dealing with non-smooth data [3–5], weak solutions [6–8], energy
and maximum principle stability estimates [1,2,9,10], ill-posed and inverse problems [11,12],
and nonlocal mathematical models including fractional derivatives [13–16].

The topic of the stability of discrete methods for solving non-stationary linear PDEs is
very important and actively investigated. In our paper, we restrict ourselves to a specific
question dealing with the stability of finite-difference schemes with respect to interpolation
and projection errors. In addition, here, we note the impact of A.V. Gulin on this field of
research [17]. Again, in the presented review, we mainly restricted ourselves to Gulin’s
works connected to a research topic that is close to our paper, when second-order PDEs are
solved with non-classical nonlocal boundary conditions [18,19].

Adaptive grids in both space and time are used to fit the grid points to the dynamics
of the solution and to minimize the approximation error [1,20,21]. At the same time, in
many cases, uniform grids have been used in recent big data projects due to two important
properties: high-order approximations can be constructed directly on uniform grids, and
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the obtained structure of the grids is well suited for parallel computing techniques [22,23].
Thus, different modifications of the algorithms are proposed that try to preserve the
uniformity of the grid as close as possible [24].

There are a huge number of different methods for solving linear second-order partial
differential equations of parabolic and hyperbolic types. Still, we are not proposing new
methods in this article. Our goal is to analyze the efficiency of the scheme that is constructed
in [25]. It uses the interpolation technique to define initial conditions on the previous time
level. Thus, our aim is to derive stability estimates with respect to this new source of
discretization error. It is shown that such errors accumulate undesirably fast. As an
alternative, we recall the Discontinuous Galerkin (DG) method, which uses the projection
operator instead of the interpolation operator. The results of the computational experiments
confirm the theoretical estimates. We note that the presented example of the time grid
was selected only as a benchmark to compare the accumulation rates of interpolation and
projection errors.

We conclude that, in this article, we present the stability and convergence analysis of a
new three-level finite-difference scheme, which is used to solve a hyperbolic problem on a
perturbed uniform time grid [25]. At some specific points, the length of the grid steps can
be doubled or halved. The error analysis performed in this paper is based on the energy
method and state that, in the worst case, changes of step lengths can lead to the estimates
of the global error (see also [9]):

∥Zn∥E ⩽ (M− + M+)
(
∥Z1∥E +

n

∑
k=1

τk∥Ψn∥
)
. (1)

Here, Ψn is the truncation error of the discrete scheme and

M− = 2m− , M+ = 2m+ ,

where m− is the number of times the time step is halved and m+ is the number of times the
time step is doubled. We note once more that our aim is to make a full stability analysis
of the interpolation errors introduced by the proposed algorithm. It is proven that the
cases of doubling and reducing twice the time steps lead to different error accumulation
rates. Our main aim is not to develop the ideas proposed in [25], but to explain why this
new finite-difference scheme is not working as good as can be expected from schemes
constructed on a uniform grid. The estimates derived in our analysis agree well with the
results of extensive computational experiments.

We also investigate the difference in the stability of the backward Euler (BE) finite-
difference scheme and the DG finite-element scheme when both schemes are used to
solve one-dimensional parabolic problems on dynamically shifted uniform space grids.
A good review on the DG method is given in [20,21,26], and applications for parabolic and
hyperbolic problems are described in [4,5,27] Our analysis also proves that the accumulation
of interpolation and projection approximation errors is quite different. The stability of the
DG scheme with respect to the projection error has much better properties. Numerical
examples illustrate these theoretical results.

In Section 2, the semi-discrete hyperbolic problem is formulated, and a standard three-
level finite difference scheme is constructed on the uniform time grid. The stability of this
scheme is investigated by using the energy and spectral methods. Note that the spectral
method will be the main tool in our theoretical analysis.

In Section 3, the three-level finite-difference scheme from [25] is considered. It is
defined on modified uniform time grids when, at some points, the lengths of the grid steps
are doubled or halved. The most valuable property of this scheme is that the approximation
is performed on uniformly distributed grid points; thus, the basic advantages of such
discrete schemes are preserved. In Section 3.1, the case when the sizes of the grid are
doubled is considered. We prove that, in this case, the finite- difference scheme remains
unconditionally stable and the second-order accuracy in time is valid. This estimate
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improves the result presented in [25]. The new global error estimate is connected to the fact
that no additional approximation errors, such as an interpolation error, are introduced, and
it is sufficient to analyze the stability of the scheme on uniform sub-grids only.

In Section 3.2, the case when the sizes of the grid are halved is considered. The obtained
stability estimates give a possibility to define the convergence rate for different asymptotics
of the number of times the time step is halved. In particular, it is proven that, due to the
accumulation of interpolation errors, the convergence order of the global error is reduced to
the first-order if the grid sizes are halved only at a finite number of points and the discrete
solution is not converging at all if this number is proportional to O(1/τ). The results of the
computational experiments agree well with these theoretical conclusions.

In Section 4, the accumulation of interpolation errors is demonstrated also for parabolic
problems. It is proven that, if the space grid depends on time (in a discontinuous fashion),
then the stability of the implicit backward Euler (BE) finite-difference scheme with respect to
the interpolation error leads only to conditional convergence rates. As a possibility to avoid
this negative effect, it is recommended to use DG schemes, when the interpolation operator
is changed to the projection operator. The DG scheme is stable with respect to the projection
error. The results of the computational experiments agree well with these conclusions.

Some final conclusions are given in Section 5.

2. Problem Formulation

Let Ω = (0, 1)d be an open and bounded domain Ω ⊂ Rd, d ⩾ 1. Define a self-adjoint
linear elliptic diffusion operator:

Au = −div(K∇u) in Ω (2)

with K(x) ∈ Rd×d symmetric and the uniformly positive definite d × d matrix. Operator A
is supplemented with homogeneous Dirichlet boundary conditions on ∂Ω.

Next, by using the finite-volume or finite-element methods, we approximate operator
A by discrete operator Ah, which is defined in a real finite-dimensional Hilbert space H:

Ah = A∗
h ⩾ αA I, αA > 0, (3)

where I is the identity operator in H. In order to simplify the notation for discrete operators,
we restrict ourselves to d = 1.

Consider a semi-discrete hyperbolic problem for the function u(t) ∈ H:

d2u
dt2 + β

du
dt

+ Ahu = f (t), t > 0 (4)

u(0) = u0,
du
dt

(0) = v0, u0, v0 ∈ H, (5)

where β > 0. Then, the following a priori estimate of the solution of (4) can be proven
directly by using the energy method (see also [1,9,25]):∥∥∥du

dt
(t)
∥∥∥2

+ ∥u(t)∥Ah ⩽ ∥v0∥2 + ∥u0∥2
Ah

+
1

2β

∫ t

0
∥ f (s)∥2ds, (6)

where, for any self-adjoint positive definite operator B, a Hilbert space HB is defined with
the inner product and the norm:

(u, v)B = (Bu, v), ∥u∥B = (u, u)1/2
B .

First, let us define a uniform time grid

ωt = {tn : tn = tn−1 + τ, n = 1, . . . , N, t0 = 0, tN = T}.



Axioms 2024, 13, 244 4 of 15

The discrete function Un = U(tn) gives an approximation of the exact solution u(tn). The
differential problem (4) is approximated by the following standard implicit symmetrical
three-level scheme:

Un+1 − 2Un + Un−1

τ2 + β
Un+1 − Un−1

2τ
+ Ah

Un+1 + Un−1

2
= Fn, (7)

U0 = u0, U1 = u0 + τv0.

The unconditional stability of this scheme can be proven by using the energy and spec-
tral methods. They give similar general information on the stability of the discrete solution,
but still can give estimates of the accumulation of truncation and interpolation errors in
different norms. This possibility enables us to follow the dynamics of the interpolation
errors in more detail.

Let us start from the application of the standard energy method [9]. If β > 0, then it is
easy to obtain the following stability estimate:∥∥∥Un+1 − Un

τ

∥∥∥2
+

1
2
∥Un+1∥2

Ah
+

1
2
∥Un∥2

Ah

⩽
∥∥∥Un − Un−1

τ

∥∥∥2
+

1
2
∥Un∥2

Ah
+

1
2
∥Un−1∥2

Ah
+

τ

2β
∥Fn∥2. (8)

First, the uniform space grid is used:

ωx =
{

xj : x0 = 0, xJ = 1, xj = jh
}

.

Then, discrete functions Uj = U(xj), xj ∈ ωx can be defined. Let us assume that functions
U satisfy the homogeneous boundary conditions:

U0 = 0, UJ = 0.

The inner product in the Hilbert space H is defined in a standard way:

(U, V) =
J−1

∑
j=1

UjVjh.

Then, the second-order derivative − ∂2u
∂x2 is approximated by the discrete operator:

AhU = −
Uj+1 − 2Uj + Uj−1

h2 .

The eigenvectors {φk(xj) =
√

2 sin(πkxj)} of Ah make a full basis set of orthonormal
vectors [1,9]:

Ah sin(πkxj) = λk sin(πkxj), λj =
4 sin2(πkh/2)

h2 , k = 1, . . . , J − 1.

It follows that Ah is a self-adjoint and positive definite operator in H.
We also consider a general nonuniform space grid:

ωx =
{

xj : x0 = 0, xJn = 1, xj = xj−1 + hj−0.5, j = 1, . . . , J − 1
}

.

By using the finite-volume method [1,9], the following operator Ah can be defined on
this grid:

AhU = − 1
hj

(
Uj+1 − Uj

hj+0.5
−

Uj − Uj−1

hj−0.5

)
,

where hj = (hj+0.5 + hj−0.5)/2. The inner product in the Hilbert space H is defined by
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(U, V) =
J−1

∑
j=1

UjVjhj.

Again, it easy to prove that Ah is a self-adjoint and positive definite operator in H, i.e., the
estimates (3) are valid.

As a basic technique for the stability analysis of discrete schemes proposed in this
paper, we use the spectral method. It was efficiently used for non-stationary problems with
nonlocal fractional-order elliptic operators [16,28,29].

Functions Un ∈ H can be written as

Un
j =

J−1

∑
k=1

cn
k φk(xj), j = 1, . . . , J − 1,

where cn
k = (Un, φk).

By using the Fourier method, we write discrete problems for each coefficient cn
k :

cn+1
k − 2cn

k + cn−1
k

τ2 + β
cn+1

k − cn−1
k

2τ
+ λk

cn+1
k + cn−1

k
2

= f n
k , (9)

c0
k = ũk, c1

k = ũk + τṽk,

where

Fn
j =

J−1

∑
k=1

f n
k φk(xj), j = 1, . . . , J − 1,

u0
j =

J−1

∑
k=1

ũk φk(xj), v0
j =

J−1

∑
k=1

ṽk φk(xj).

Lemma 1. Let us assume that β ⩾ 0, then the discrete scheme (9) is unconditionally stable.

Proof. The solution of the homogeneous version of Equation (9) can be written as

cn
k = γk1qn

1 + γk2qn
2 ,

where q1 and q2 are solutions of the characteristic equations:

(
1 +

τ

2
β +

τ2

2
λk

)
q2 − 2q +

(
1 − τ

2
β +

τ2

2
λk

)
= 0.

Next, we write this equation in a standard form:

q2 − 2

1 + τ
2 β + τ2

2 λk
q +

1 − τ
2 β + τ2

2 λk

1 + τ
2 β + τ2

2 λk
= 0. (10)

It follows from the Hurwitz criterion that |q1,2| ⩽ 1 if and only if

1 − τ
2 β + τ2

2 λk

1 + τ
2 β + τ2

2 λk
⩽ 1,

2

1 + τ
2 β + τ2

2 λk
⩽

2 + τ2λk

1 + τ
2 β + τ2

2 λk
.

Both inequalities are unconditionally satisfied. The proof is finished.

3. Nonuniform Grids

Let us consider a general nonuniform grid:

ωt = {tn : tn = tn−1 + τn−1/2, n = 1, . . . , N, t0 = 0, tN = T} (11)

and denote tn−1/2 = tn−1 + 0.5τn−1/2.
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3.1. The Time Steps Are Doubled at Some Grid Points.

In [25], special weakly nonuniform grids are considered, when the step size of the grid
can be doubled or halved at a finite number of points. Let us consider the case that, when
starting at time t = tn, the grid step is doubled τn+1 = 2τn. Here, τn denotes the length of
the discrete step till the grid point tn, and τn+1 is a modified step for the following sequence
of uniformly distributed grid points.

The original algorithm is defined by

Un+1/2 − 2Un + Un−1

τ2
n

+ β
Un+1/2 − Un−1

2τn
+ Ah

Un+1/2 + Un−1

2
= Fn,

Un+1 − 2Un+1/2 + Un

τ2
n

+ β
Un+1 − Un

2τn
+ Ah

Un+1 + Un

2
= Fn+1/2;

next, Un+2 is computed using the standard three-level scheme on the uniform grid with
the step τn+1:

Un+2 − 2Un+1 + Un

τ2
n+1

+ β
Un+2 − Un

2τn+1
+ Ah

Un+2 + Un

2
= Fn+1. (12)

We present a slightly modified version of the original discrete scheme when temporary
grid points are not used. First, the solution Un+1 is computed

Un+1 − 2Un + Un−2

τ2
n+1

+ β
Un+1 − Un−2

2τn+1
+ Ah

Un+1 + Un−2

2
= Fn (13)

Next, the uniform grid version of the discrete scheme (12) is used to compute Un+2.
The stability and convergence analysis is based on the results of Lemma 1.

Theorem 1. The solution of the finite-difference scheme (12) and (13) converges to order O(τ2).

Proof. We restrict ourselves to the analysis of one time moment where the time step is
doubled. First, starting at time point tn, the discrete scheme is again defined as a three-level
scheme on a uniform grid with a doubled time step τn+1 = 2τn. Thus, the scheme remains
unconditionally stable.

Second, the initial conditions, i.e., discrete solutions on layers tn and tn−2, are calcu-
lated by using solutions derived by a more accurate scheme with the time step τn. As a
conclusion, we obtain that the discrete solution converges to order O(τ2). In the case of
more time moments, when the step size of the grid ωt is doubled, the same arguments are
iteratively applied.

In the computational experiments, we compared the accuracy of the constructed
combined discrete scheme (12) and (13) with a popular benchmark scheme. This three-level
finite-difference scheme is constructed on a general non-uniform time grid (11):

1
τn

(Un+1 − Un

τn+1/2
− Un − Un−1

τn−1/2

)
+ β

Un+1 − Un−1

2τn

+ Ah

[
Un +

1
2

τn

(Un+1 − Un

τn+1/2
− Un − Un−1

τn−1/2

)]
= Fn. (14)

Here, τn = 1
2 (τn+1/2 + τn−1/2).

We present the results of the computational experiments. The differential problem (4)
is solved for β = 1 till the final time moment T = 1. The initial and boundary data and
f (x, t) are chosen so that the solution u(x, t) is the function:

u(x, t) = et sin(πx).
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The space grid ωx is uniform, and the number of points is equal to J = 20. The time grid is
generated by dividing the time interval [0, 1] into five subintervals:

[(k − 1)/5, k/5], k = 1, . . . , 5.

In each subinterval, uniform grids are generated with time step sizes of

τ(k) = 2k−5/N, k = 1, . . . , 5.

Let us denote Zn
j = u(xj, tn)−Un

j as the global error of the discrete solution. The max-
imum norm of a discrete function Zn is defined as

∥Z(tn)∥∞ = max
0<j<J

|Zn
j |.

The experimental convergence rate ρ(τ) is defined as

ρ(τ) = log2

(∥Z(2τ)∥∞

∥Z(τ)∥∞

)
.

In order to show that the constructed three-level discrete scheme on this special non-
uniform time grid ωt is stable and additional grid points really reduce the global error
of the discrete solution, we give also the errors Z3 of the classical three-level discrete
scheme (14) when the time grid is uniform and it has N discrete points. The results of the
computational experiments are presented in Table 1, where Z1 is the error for the discrete
solution of the scheme (12) and (13), Z2 is the error for the discrete solution of the classical
finite-difference scheme (14) on non-uniform time grids, and Z3 is the error of the solution
of the symmetrical scheme (7) when the time grid is uniform in [0, 1] and it has N points.

Table 1. Errors ∥Z1∥∞ and experimental convergence rates ρ(τ) at T = 1 for the discrete solution of
the scheme (12) and (13) and errors ∥Z2∥∞ and experimental convergence rates ρ(τ) for the discrete
solution of the finite-difference scheme (14) for a sequence of time steps τ. ∥Z3∥∞ is the error of the
discrete solution of the the symmetrical scheme (7) when the time grid is uniform and it has N points.

N ∥Z1∥∞ ρ1(τ) ∥Z2∥∞ ρ2(τ) ∥Z3∥∞

20 1.018 × 10−3 — 1.279 × 10−3 — 3.611 × 10−3

40 2.429 × 10−4 2.067 3.255 × 10−4 1.974 9.042 × 10−4

80 5.914 × 10−5 2.038 8.204 × 10−5 1.988 2.261 × 10−4

160 1.458 × 10−5 2.020 2.052 × 10−5 1.999 5.654 × 10−5

320 3.620 × 10−6 2.010 5.131 × 10−6 2.000 1.414 × 10−5

As expected, the new three-level discrete scheme is stable and preserves the second
order of convergence. We also note that additional grid points decrease the error; thus, the
application of such a modified time grid is justified.

3.2. The Time Steps Are Halved at Some Grid Points

For the case when the time step size is halved τn+1 = 1
2 τn, the following algorithm

is proposed in [25]. The auxiliary solution Ũn+2 is computed using the standard three-
level scheme:

Ũn+2 − 2Un + Un−1

τ2
n

+ β
Ũn+2 − Un−1

2τn
+ Ah

Ũn+2 + Un−1

2
= Fn. (15)

Then, solution Un+1 is computed by using the linear interpolation algorithm:

Un+1 =
Ũn+2 + Un

2
. (16)
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The final value of the solution Un+2 is obtained on the uniform grid with time step τn+1:

Un+2 − 2Un+1 + Un

τ2
n+1

+ β
Un+2 − Un

2τn+1
+ Ah

Un+2 + Un

2
= Fn+1. (17)

Again, we propose a modification of this algorithm when an auxiliary solution is not
required. It is sufficient to use Un−1/2, which is obtained by the linear interpolation:

Un+1 − 2Un + Un−1/2

τ2
n+1

+ β
Un+1 − Un−1/2

2τn+1
+ Ah

Un+1 + Un−1/2

2
= Fn. (18)

In order to simplify the stability analysis, we take β = 0. Note, that it follows from
the results given above that the real part of the solutions of characteristic Equation (10) is
decreased for β > 0.

Theorem 2. Let us assume that the interpolation error of (16) can be bounded by

|ΨI | ⩽ Cτ2.

If M is the number of times the time step of grid ωt is halved, then the following estimate of the
global error of scheme (18) is valid:

∥Zn∥ ⩽ Mτ. (19)

In particular, if M is finite, then the error of the solution of discrete scheme (18) is estimated by

∥Zn∥ ⩽ Cτ. (20)

If M = C/
√

τ, then we have the estimate:

∥Zn∥ ⩽ C
√

τ. (21)

If M = C/τ, then the discrete solution of (18) is not converging at all:

∥Zn∥ ⩽ O(1). (22)

Proof. It is sufficient to consider the following problem for the Fourier coefficients of the
error vector:

zn
k = γk1qn

k1 + γk2qn
k2, k = 1, . . . , J − 1,

z0
k = 0, z1

k = d, |d| = Cτ2,

where qk1 and qk2 are solutions of the characteristic equation:

(
1 +

τ2

2
λk

)
(qn+1

k )2 − 2qn
k +

(
1 +

τ2

2
λk

)
= 0.

Let us denote
b =

1

1 + τ2

2 λk
.

Simple computations give

qk,1,2 = b ± i
√

1 − b2,

zn
k =

d√
1 − b2

sin(φn),

where
b ± i

√
1 − b2 = cos(φ)± i sin(φ).
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Then, it follows that √
1 − b2 =

√
1 − 1/

(
1 +

τ2

2
λk

)2

=
τ
√

λk
√

1 + τ2λk
1 + τ2λk/2

. = Cτ.

Thus, taking into account the estimate of the interpolation error and the bound for
√

1 − b2,
we obtain that the global error estimate (19) is valid. The remaining error estimates (20)–(22)
follow directly.

Next, we present the results of computational experiments. The time grid is generated
by dividing the time interval [0, 1] into five subintervals:

[(k − 1)/5, k/5], k = 1, . . . , 5.

In each subinterval, uniform grids are generated with step sizes

τ(k) = 21−k/N, k = 1, . . . , 5,

where N is the selected number of time points in the first subinterval. The results of the com-
putational experiments are given in Table 2, where Z1 is the error for the discrete solution
of the scheme (18), Z2 is the error for the discrete solution of the classical finite-difference
scheme (14) on non-uniform time grids, and ρ1,2(τ) are experimental convergence rates.

Table 2. Errors ∥Z1∥∞ and experimental convergence rates ρ(τ) at T = 1 for the discrete solution of
the scheme (18) and errors ∥Z2∥∞ and experimental convergence rates ρ(τ) for the discrete solution
of the finite-difference scheme (14) for a sequence of time steps τ.

N ∥Z1∥∞ ρ1(τ) ∥Z2∥∞ ρ2(τ)

20 6.600 × 10−3 — 2.205 × 10−4 —
40 3.200 × 10−3 1.044 5.787 × 10−5 1.930
80 1.573 × 10−3 1.025 1.481 × 10−5 1.966
160 7.798 × 10−4 1.012 3.743 × 10−6 1.984
320 3.881 × 10−4 1.007 0.941 × 10−7 1.991

The presented results agree well with the theoretical convergence rate O(τ) given in
Theorem 2.

In the final computational experiment, the length of the time grid steps was allowed
to be doubled or halved. The length of sub-blocks is equal to 4τ, τ = 1/N, and the grid
points are distributed as

n = 12m, m = 0, 1, . . .

tn+k = tn+k−1 + τ, k = 1, 2, 3, 4,

tn+4+k = tn+4+k−1 + τ/2, k = 1, . . . , 8.

The results of the computational experiments are given in Table 3, and they agree well with
the theoretical estimates.

It follows from the presented results that, as is stated in Theorem 2, the discrete
solution is not converging at all for such a modified time grid. Still the solution of the
finite-difference scheme (14) is converging to quadratic order.
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Table 3. Errors ∥Z1∥∞ and experimental convergence rates ρ(τ) at T = 1 for the discrete solution of
the scheme (18) and errors ∥Z2∥∞ and experimental convergence rates ρ(τ) for the discrete solution
of the finite-difference scheme (14) for a sequence of time steps τ.

N ∥Z1∥∞ ρ1(τ) ∥Z2∥∞ ρ2(τ)

20 1.036 × 10−2 — 1.819 × 10−3 —
40 9.391 × 10−3 0.142 4.245 × 10−4 2.099
80 9.033 × 10−3 0.056 1.084 × 10−4 1.969
160 8.964 × 10−3 0.011 2.737 × 10−5 1.986
320 8.958 × 10−3 0.010 6.873 × 10−6 1.994

4. Parabolic Interpolation

Let us consider one-dimensional parabolic problem:

∂u
∂t

=
∂2u
∂x2 + f (x, t), (x, t) ∈ Q,

0 < x < 1, 0 < t ⩽ T,
u(0, t) = µ0(t), u(1, t) = µ1(t),
u(x, 0) = u0(x), 0 ⩽ x ⩽ 1,

. (23)

where Q = {(x, t) : 0 < x < 1, 0 < t ⩽ T} and functions f (x, t), u0(x), µ0(t), and µ1(t)
are sufficiently smooth.

In addition to the uniform time grid ωt:

ωt = {tn : tn = nτ, n = 1, 2, . . . , N},

we define a nonuniform space grid, which can depend on time:

ωx(tn) =
{

xn
j : xn

0 = 0, xn
Jn
= 1, xn

j = xn
j−1 + hn

j−0.5
}

.

The grid ωh(tk) is not constant in time; thus, the number of grid points Jn and the position
of each point may depend on tn.

4.1. Finite-Difference Scheme

The main aim of this subsection is to show that the accumulation of the classical trunca-
tion error and of the additional interpolation error can be very different [1,9]. Generally, we
are interested in investigating the stability of the BE finite difference scheme with respect to
different types of local approximation errors.

In order to simplify our analysis, we assume that, at each time level that the space grid
ωx(tn) is uniform, only the number of grid points Jn can vary from one step to another. The
differential problem (23) is approximated by the implicit backward Euler (BE) scheme:

Un
j − In

n−1Un−1
j

τ
= Un

xx + f (xn
j , tn), 0 < j < Jn,

Un
0 = µ0(tn), Un

Jn
= µ1(tn),

U0(xj) = U0(xj), x0
j ∈ ωk(t0).

(24)

Here, we denote the discrete solution Uk
j = U(xk

j , tk), and the discrete operator:

Uxx =
Uj+1 − 2Uj + Uj−1

h2 , j = 1, . . . , J − 1

is used to approximate the second-order derivative in space. Then, the linear interpolation
operator In

n−1:
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In
n−1Un−1

j =
xn

j − xn−1
l

xn−1
l+1 − xn−1

l

Un−1
l+1 +

xn−1
l+1 − xn

j

xn−1
l+1 − xn−1

l

Un−1
l

is applied to compute the values of a discrete solution Un−1 at grid points xn
j ∈ ωx(tn),

where xn−1
l ⩽ xn

j ⩽ xn−1
l+1 .

Let us denote Zn
j = u(xn

j , tk)− Un
j as the error of the discrete solution; it satisfies the

following discrete problem:
Zn

j − Zn−1
j

τ
= Zn

xx + Ψn
A + Ψn

I ,

Zn
0 = 0, Zn

Jn
= 0,

(25)

where Ψn
A is the truncation error of the discrete scheme and Ψn

I is the interpolation error.

Lemma 2. Let us assume that u(x, t) ∈ C2
4(Q). The truncation error Ψn

A of the discrete scheme
(24) and the interpolation error Ψn

I can be estimated by

|ΨA| ⩽ C(h2 + τ), |ΨI | ⩽
Ch2

τ
. (26)

The proof of these estimates is based on the Taylor expansion technique and is given
in many classical textbooks; see, e.g., [1].

Let us define the maximum norm of a discrete function Z, which satisfies the homoge-
neous boundary conditions:

∥Z∥∞ = max
0<j<J

|Zj|.

Theorem 3. The solution of the discrete scheme (24) converges to the solution of the differential
problem (23), and the following error estimate is valid:

∥Zn∥∞ ⩽ C
(

τ + h2 +
h2

τ

)
, n = 1, . . . , N.

Proof. By applying the maximum principle to the solution of the problem (25), we obtain
the stability estimate:

∥Zn∥∞ ⩽ ∥Zn−1∥∞ + τ
(
∥Ψn

A∥∞ + ∥Ψn
I ∥∞.

)
By applying this stability inequality iteratively, we show that

∥Zn∥∞ ⩽ ∥Z0∥∞ +
n

∑
k=1

τ
(
∥Ψk

A∥∞ + ∥Ψk
I∥∞.

)
The required estimates of the global error are obtained by using the estimates of Lemma 2.

As one interesting conclusion from Theorem 3, we provide the accuracy estimates
when the discrete time step τ is asymptotically decreased with respect to the space grid
step h:

∥Zn∥∞ ⩽ C


h, i f τ = O(h),
√

h, i f τ = O(h1.5)

O(1), i f τ = O(h2).
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In order to show the accuracy of the obtained theoretical estimates, we present the
results of the computational experiments. The data u0(x), µ0, µ1, and f (x, t) were chosen
so that the solution u(x, t) is the function:

u(x, t) = et sin(πx).

The given test problem is solved till T = 1.
The space grids are defined as a sequence of two uniform/almost uniform grids in the

following way:

ωx(tn) =

{
ωx1 =

{
xj : x0 = 0, xJ = 1, xj = jh, j = 1, . . . , J − 1

}
, if n = 2m,

ωx2 =
{

xj : x0=0, xJ+1=1, xj=(j + 1
2 )h, j = 1, . . . , J

}
, if n=2m+1.

We see that the lengths of the steps of both grids are equal, but the grid points are shifted
by 1

2 h relative to each other. In the case of odd time layers, the approximation of the
second-order derivatives near the boundaries is performed by using the standard discrete
operators as was described in the previous section. The second order of the truncation error
is preserved also for this modified discrete scheme.

The results of the computational experiments are presented in Table 4, where Z is the
error for the discrete solution of the BE scheme (24) and ρ(h) denotes the experimental
convergence rate.

Table 4. Errors ∥Z∥∞ and experimental convergence rates ρ(h) at T = 1 for the discrete solution of
the BE scheme (24) for a sequence of time and space steps τ, h.

J τ ∥Z∥∞ ρ(h)

τ = 4h 80 0.05 5.55 × 10−3 —
160 0.025 2.71 × 10−3 1.034
320 0.0125 1.34 × 10−3 1.016
640 0.00625 6.65 × 10−4 1.011

τ = 2h1,5 160 3.12 × 10−3 3.37 × 10−3 —
320 1.10 × 10−3 2.56 × 10−3 0.397
640 3.91 × 10−4 1.87 × 10−3 0.453

1280 1.38 × 10−4 1.34 × 10−3 0.481

τ = 40h2 80 6.25 × 10−3 6.65 × 10−3 —
160 1.56 × 10−3 7.41 × 10−3 −0.156
320 3.91 × 10−4 7.62 × 10−3 −0.040
640 9.76 × 10−5 7.67 × 10−3 −0.009

The presented results of the computational experiments agree well with the theoretical
estimates obtained above.

4.2. Discontinuous Galerkin Method

In this subsection, we solve the same parabolic problem by applying the discontinuous
Galerkin (DG) method [20,27]. Let us consider the time intervals:

In = {t : tn−1 ⩽ t ⩽ tn}.

A space of discrete solutions is defined as

W(0) = {U(x, t) : U|In ∈ S1
h,n},

where S1
h,n is a space of piecewise linear in x functions:
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S1
h,n = {v(x, t) : v(x, t) =

Jn

∑
j=0

cn
j φn

j (x)}

and the basis functions φj are defined as

φj =


x−xj−1
hj−1/2

, xj−1 ⩽ x ⩽ xj,
xj+1−x
hj+1/2

, xj ⩽ x ⩽ xj+1,
, 0 ⩽ j ⩽ J.

By using the discontinuous Galerkin method, we define a discrete function U ∈ W(0),
which is constant in time t on each time interval In and satisfies the equation:

τ
(dUn

dx
,

dv
dx

)
+ ([Un−1], v+n−1) =

∫ tn

tn−1
( f , v)dt, ∀v ∈ S1

h,n , (27)

where

[Un−1] = Un − Un−1,

v±n = v(tn ± 0), vn = v−n = v+n−1,

U−
0 = u0.

From (27), we obtain the discrete scheme:

Un − PhUn−1

τ
= Un

xx +
1
τ

∫ tn

tn−1
(Ph f )dt, (28)

where Ph f defines the L2 projection:

(Ph f , v) = ( f , v), ∀v ∈ S1
h,n.

By comparing the DG scheme (27) with the BE finite-difference scheme (24), we see that the
main difference is in the way in which the solution values on the previous time level are
computed. In the DG scheme, instead of the interpolation operator, the projection operator
is used.

By applying the convergence analysis techniques described, e.g., in [20], the following
result is proven directly.

Theorem 4. The solution of the DG scheme (28) converges to the solution of the differential problem
(23), and the error estimate is valid:

∥u(tk)− Uk∥ ⩽ C
(

2 + log
( tk

τ

))
max

1⩽k⩽K

(
∥h2

k f ∥Ik + ∥τ f ∥Ik + ∥[Uk−1]∥

+
∥∥∥h2

k
τ
[Uk−1]

∥∥∥∗) ⩽ C(τ + h2).

The term ∥ · ∥∗ arises only if S1
h,n−1 ⊈ S1

h,n.

Next, in Table 5, we present the results of the computational experiments. The same
test problem is solved as for the BE scheme (24). Here, Z is the error for the discrete solution
of the DG scheme (27) and ρ(h) denotes the experimental convergence rate.
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Table 5. Errors ∥Z∥∞ and experimental convergence rates ρ(h) at T = 1 for the discrete solution of
the DG scheme (27) for a sequence of time and space steps τ, h.

J τ ∥Z∥∞ ρ(h)

τ = 4h 80 0.05 1.12 × 10−2 —
160 0.025 6.19 × 10−3 0.855
320 0.0125 3.11 × 10−3 0.993
640 0.00625 1.55 × 10−3 0.998

τ = 2h1.5 160 3.12 × 10−3 3.98 × 10−4 —
320 1.10 × 10−3 1.40 × 10−4 1.507
640 3.91 × 10−4 4.93 × 10−5 1.506

1280 1.38 × 10−4 1.74 × 10−5 1.503

τ = 40h2 80 6.25 × 10−3 8.12 × 10−4 —
160 1.56 × 10−3 2.03 × 10−4 2.00
320 3.91 × 10−4 5.08 × 10−5 2.00
640 9.76 × 10−5 1.27 × 10−5 2.00

It follows from the presented results that the the solution of the DG scheme (27) is
unconditionally converging to order O(τ + h2).

5. Conclusions

In this paper, we investigated the stability of two finite-difference and finite-element
schemes constructed for the solution of hyperbolic and parabolic problems. The main result
shows that the accumulation of the classical truncation errors and the accumulation of the
interpolation errors are quite different. The accumulation of the interpolation errors gives
only conditional estimates, and the application of the discrete scheme with smaller time
steps can lead to not smaller, but larger global errors.

A more accurate stability analysis was performed for the three-level discrete scheme,
which was presented in a recent paper [25]. It was proven that, for almost uniform time
grids with a possibility to double the step sizes of the grid at some time moments, the
second-order convergence rates are preserved. In the case when the time grid step sizes are
halved at some time moments, additional interpolation errors are introduced. A detailed
spectral stability analysis was used to estimate the asymptotics of the global error in
this case.

The results of extensive computational experiments were presented, they confirmed
the accuracy of the obtained theoretical convergence estimates.
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